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Abstract

3D video is expected to provide an enhanced user experience by using the impression of depth to bring greater
realism to the user. Quality assessment plays an important role in the design and optimization of 3D video
processing systems. In this paper, a new 3D image quality model that is specifically tailored for mobile 3D video is
proposed. The model adopts three quality components, called the cyclopean view, binocular rivalry, and the scene
geometry, in which the quality must be quantified. The cyclopean view formation process is simulated and its
quality is evaluated using the three proposed approaches. Binocular rivalry is quantified over the distorted stereo
pairs, and the scene quality is quantified over the disparity map. Based on the model, the 3D image quality can
then be assessed using state-of-the-art 2D quality measures selected appropriately through a machine learning
approach. To make the metric simple, fast, and efficient, final selection of the quality features is accomplished by
also considering the computational complexity and the CPU running time. The metric is compared with several
currently available 2D and 3D metrics. Experimental results show that the compound metric gives a significantly
high correlation with the mean opinion scores that were collected through large-scale subjective tests run on
mobile 3D video content.
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1 Introduction
Recently, with the rapid advances being made in 3D
video technologies, mobile 3D video has become a sub-
ject of interest for both the entertainment and consumer
electronics industries. Mobile 3D video offers a number
of challenges, because it is expected to deliver a high-
quality experience to the mobile users while using limited
resources, including lower bandwidths and error-prone
wireless channels. One of the greatest challenges is the
evaluation of 3D video quality in a perceptual manner.
Normally, a 3D video system includes several signal pro-
cessing stages, e.g., scene capture and content creation,
video format conversion, encoding, transmission, possible
post-processing at the receiver side, and rendering and
display of the image. Each stage may contribute to the
degradation of the 3D visual quality, and the errors that
occur at certain steps may propagate through the chain.
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Therefore, quality assessment (QA) plays an important
role in the design and optimization of the system in rela-
tion to the prospective users, systems, and services.
QA of any multimedia content is best performed sub-

jectively, i.e., by asking test participants to give their
opinions on different aspects of the quality of the con-
tent that they experienced. While it is highly informative
in that it directly reflects human perception, subjective
evaluation has many limitations. It is a time-consuming
and expensive process and is not suitable for real-time
quality monitoring and adjustment of the systems. There-
fore, research on objective QA usually follows the subject-
ive studies to design algorithms that can automatically
assess multimedia quality in a perceptually consistent
manner. Consider, for example, a wireless multimedia net-
work system: a server can be dedicated to the evaluation
of the delivered content quality using objective QA mea-
sures, and the results can be used to control and allocate
the streaming resources. At the encoding and decoding
stages, objective QA can also be used to optimize the
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encoding and rendering algorithms. Objective QA of con-
ventional (i.e., 2D) images and video have been an active
research topic for several decades, but the research work
on QA for 3D images and video is relatively young and
less mature.
A 3D video can be defined as time-varying imagery

that supports the binocular visual cue, which, in com-
bination with other 3D visual cues, delivers a realistic
perception of depth. In its simplest form, 3D video is
formed using two separate video channels (i.e., left and
right) in which the time-synchronized frames form
stereo pairs. Early attempts to objectively quantify 3D
video images have applied 2D metrics to each frame of
the stereo pair. Each frame is viewed as a single image
for which the quality is measured separately, and then
the overall 3D quality is calculated by averaging over
time and space (i.e., the mean of the left and right chan-
nel quality values). This approach, however, hardly cor-
responds to the actual binocular mechanisms of the
human visual system (HVS) and, thus, hardly correlates
with the subjective quality scores. Recently, the inclusion
of some 3D factors as part of the quality evaluation
process has been attempted [1]. In [2], a 3D discrete co-
sine transform (DCT)-based stereo QA method was pro-
posed for mobile 3D video. The method attempts to
model the mechanisms of binocular correspondence for-
mation, using the information in the neighboring blocks
and contrast masking by grouping similarly sized 4 × 4
blocks of pixels in the left and right channels for joint
analysis in the 3D DCT domain. In [3], the local depth
variance for each reference block is used to weigh the
quality metric proposed in [2] appropriately. In [4], a
monoscopic quality component and a stereoscopic qual-
ity component for measurement of stereoscopic image
quality have been combined. The former component as-
sesses the monoscopically perceived distortions caused by
phenomena such as blurring, noise, and contrast change,
while the latter assesses the perceived degradation of the
binocular depth cues only. In [5], an overall stereo quality
metric was proposed through the combination of image
quality with disparity quality using a nonlinear function.
In [6], the 3D video quality was analyzed on the basis of
being composed of two parts: the stereoscopic 2D video
quality and the depth map quality. In [7], a quality metric
for color stereo images was proposed based on the use of
the binocular energy contained in the left and right retinal
images, which was calculated using the complex wavelet
transform (CWT) and the bandelet transform. The au-
thors of [8] proposed two approaches based on depth of
image-based rendering to compare synthesized views and
occlusions. Authors in [9] proposed an objective model
for evaluation of the depth quality using subjective results.
In [10], the performances of several state-of-the-art 2D
quality metrics were compared for quantification of the
quality of stereo pairs formed from two synthesized views.
In [11] the authors studied the perception of stereoscopic
crosstalk and performed a set of subjective tests to obtain
mean opinion scores (MOS) of stereoscopic videos. They
attempted to predict the MOS by combination of a struc-
tural similarity index (SSIM) map and pre-filtered dense
disparity map. The quality metric proposed in [12] at-
tempts to predict the perceived quality of color stereo
video by a combination of contrast sensitivity function
(CSF) filters with rational thresholds.
In [1], an analysis of the factors that influence the 3D

quality of experience has been conducted. According to
that analysis, the following HVS properties should be
taken into account in the design of 3D quality metrics
[13]. First, the HVS perceives ‘2D’ types of degradation
after they are combined in the cyclopean view and not
individually in the left and right channels. Therefore, it
is meaningful to measure 2D artifacts on the cyclopean
view. The forms of degradation related to the 3D geom-
etry and perceived through disparity are characterized as
‘3D’ artifacts. Thus, the cyclopean image of both the de-
graded and the reference video streams should be ex-
tracted and compared, along with the binocular disparity
that is presented in the degraded stream. Second, while
the 2D and 3D artifacts can be assessed separately, the
content in one visual path may influence the other. The
binocular perception of depth is influenced by pictorial
depth cues. It is possible that there may be masking or
facilitation between the depth cues that come from the
two visual paths. Consequently, the 3D quality is influ-
enced by the 2D content. The perception of the asym-
metric quality depends on the scene depth. Artifacts in
the cyclopean view may be masked by the convergence
process. Consequently, the 2D quality is then influenced
by the 3D content. The overall quality of a 3D scene is
therefore a combination of the ‘cyclopean’ and ‘binocu-
lar’ perceptual qualities.
Based on the above analysis, a new model for the

assessment of 3D image quality is investigated in this
paper. The model considers three components: the cyc-
lopean view, binocular rivalry, and the depth presence.
This general model aims to reflect the peculiarities of
3D scene perception. These peculiarities include the fu-
sion of the left and right (stereo) images into a single
(cyclopean) image and its 2D quality, the possible influ-
ence of binocular rivalry on visual comfort, and the in-
fluence of the depth presence on correct perception of
the 3D scene geometry. The investigation aims to find
suitable features to quantify the qualities of these three
components in a 3D image to enable their combination,
leading to an objective metric that is in accordance with
the objective opinion. An abundant set of features that
are used in the state-of-the-art 2D QA metrics is adop-
ted, and a machine learning approach is applied to find
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the best combinations of these features. With regard to
the formation of the cyclopean view, three different qua-
lity models are investigated that depend on whether the
image fusion process is simulated at pixel level or at
block level. The binocular disparity, i.e., the differences
between the images seen in each eye, is an important
cue that the HVS uses to perceive 3D scenes. However,
artifacts in a stereoscopic pair may introduce unnatural
stereoscopic correspondences that cannot be interpreted
by the binocular HVS. These effects are perceived as a
binocular rivalry, and this binocular rivalry must be quan-
tified. The binocular suppression theory states that mask-
ing and facilitation effects exist between the images that
are perceived by each eye [14]. It is anticipated that the
masking between the eyes works in a similar manner to
the masking effects between the different spatial orienta-
tions. In this paper, a local method for binocular rivalry
evaluation is proposed that quantifies the quality of the
binocular rivalry between the viewed left channel and
right channel. Also, the depth presence is quantified using
the disparity map, which gives the apparent motion be-
tween corresponding pixels in the left and right images.
To fuse the three proposed components in a per-

ceptually driven manner, two mobile 3D video databa-
ses and related subjective tests are used [15,16]. Earlier
subjective studies aimed to set more precise limits for ac-
ceptance of the quality experienced when both the com-
pression artifacts using different 3D video coding methods
and varying amounts of depth are presented. They have
also taken a more systematic approach to the examination
of depth versus compression artifacts by varying a dense
set of parameters that influence quality. In the first mobile
3D video database, the number of compression artifacts
has been varied by selecting five quantization parameters
(QPs) and the strength of the depth effect was varied by
selecting two camera baseline ranges. The video sequences
in the second 3D video database have been encoded using
four different coding methods, including H.264/AVC Sim-
ulcast, H.264/AVC multiview video coding (MVC), mixed
resolution stereo coding (MRSC), and video plus depth
(V +D). The encoding parameters have been chosen in ac-
cordance with the settings of the prospective system for
Figure 1 Model of the optical path.
mobile 3D video delivery [15] to evaluate the perceived
quality provided by each type of content. The combina-
tions of the quality features according to our model, lead-
ing to the quality metric, are tested on both databases.
The results show that this metric outperforms the current
popular metrics over different 3D video formats and com-
pression methods.

2 Image processing channel in stereo vision
A simplified model of the stereoscopic HVS is presented
in Figure 1. The model follows the main functional sta-
ges of binocular vision, as discussed in [1]. In the first
stage, the light captured by the eyes is processed separ-
ately in each eye. A set of perceptual HVS properties are
produced by this processing, including light adaptation,
contrast sensitivity, and low chromatic resolution. These
properties can be modeled by luminance masking, con-
version to a perceptual color space, and CSF-based mas-
king, as shown in Figure 2. In the next stage, the visual
information passes through the lateral geniculate nu-
cleus (LGN), where the inputs from both eyes are proc-
essed together. It is assumed that the LGN decorrelates
the stereoscopic signal and then forms the so-called cyc-
lopean view [17]. The visual information is then fed to
the V1 brain center, which is sensitive to patches with
different spatial frequencies and orientations. The pro-
cesses in the LGN and the V1 center can be modeled as
multichannel decomposition, followed by binocular, spa-
tial and temporal masking, as shown in Figure 2 [17].
The perceptual properties of the binocular vision sug-

gest that the visual information is simultaneously proc-
essed in two different pathways, as shown in Figure 3.
One pathway performs a fusion process using the bin-
ocular information to form a cyclopean view, which is a
2D representation of the scene as if it was observed from
a virtual point that appears between the eyes [1]. During
fusion, the HVS attempts to reconstruct details that are
available to one eye only, which allows the observer to
reconstruct any partially occluded details of the scene.
The other pathway compares the images that have been
projected onto each retina and extracts the distance infor-
mation (also known as binocular depth cues [17]). Larger



Figure 2 Image processing channel for realization of the model.
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differences between the retinal images result in a more
pronounced binocular depth. However, if these differences
are too large, the images from the two eyes cannot be
fused, and instead of the cyclopean view, the HVS per-
ceives binocular rivalry [18]. Binocular rivalry is one of the
major sources of visual discomfort in 3D video. This
phenomenon can be caused by several factors, including
physical misalignments, luminance, color, reflection, hy-
perconvergence, hyperdivergence, and ghosting [19].
Based on this model, we assume that the quality of a

3D image is perceived as a combination of two compo-
nents: the quality of the cyclopean view, and the quality
of the binocular image. The subjective experiments in
[15] show that the presence of depth influences the per-
ceived quality, and this influence can be either positive
or negative, depending on the content. As described in
[1], the same amount of blockiness is graded differently
in scenes with differently pronounced depths. The pres-
ence of stereoscopic depth also affects the perceived
overall quality. Larger binocular differences will increase
the perceived binocular depth but may also reduce the
quality of the cyclopean view. This effect is not mono-
tonic, which indicates that there might be an ‘optimal’
global depth for a 3D scene on portable autostereoscopic
displays, at which the HVS has the lowest sensitivity to
any cyclopean image degradation.
Figure 3 Model of the binocular fusion and depth extraction process
3 Feature-based quality estimation
In this section, we propose a new 3D QA model com-
posed of three components: the quality of the cyclopean
view, the prominence of the binocular depth, and the
presence of binocular rivalry. The block diagram of our
model is shown in Figure 4. We select a set of features
that (potentially) quantify each quality component. Com-
binations of these features are then matched against the
MOS that were obtained from subjective quality tests.

3.1 Cyclopean view assessment
The quality of the cyclopean view can be measured in a
full-reference setting. The first step is to create the cyc-
lopean views of the reference and the distorted stereo
pairs. When both cyclopean views are available, we can
compare the structural differences between the two cyc-
lopean views using an ordinary full-reference 2D quality
metric.
One way to create the cyclopean view is to generate a

dense disparity map of the stereo pair and reconstruct
the view from an intermediate observation position. In
case the corresponding pixels in the two observations
have different colors or intensities, the mean values of
both properties are taken. This roughly corresponds
to the way that the cyclopean view is fused by the
HVS in the absence of stereoscopic rivalry [1]. However,
.



Figure 4 Block diagram of proposed 3D metric.
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rendering of the intermediate camera involves the in-
terpolation of pixels from both views. To reduce the influ-
ence of any interpolation errors, we can fuse the two
views and reconstruct an observation that matches one
of the views. This can be done by warping one of the
views onto the other - for example, by rendering the
right view using the left view pixels and the disparity
map - and then fusing the two views. Because we aim
to assess the structural differences between the two cyc-
lopean views, we assume that this transformation would
still allow any distortions in either view to be quantified.
Wherever occlusions occur, the available pixels from the
opposite view are used. In our approach, we calculate a
dense disparity map and an occlusion map between the
left and right images using a color-weighted local search
method [20].
Using the disparity map, the pixels in the right channel

are then mapped to their positions in the left channel,
which is denoted here as a ‘right to left’ mapping, i.e.,
R2L:

R2L x; yð Þ ¼ IR xþ Δ x; yð Þ; yð Þ; x ¼ 1…N ; y ¼ 1…M;

ð1Þ

where (x, y) indicates the pixel location, M, N indicates
the image size of one channel, IR is the image from the
right channel, and Δ(x, y) is the pixel shift for the pixel
at position (x, y). Occluded pixels are handled by
replacing them with corresponding pixels from the
left image:

R~2L x; yð Þ ¼ IL x; yð Þ; if Ω x; yð Þ ¼ 1
R2L x; yð Þ; otherwise;

�
ð2Þ

where IL is the left image, Ω is the binary occlusion
map, and Ω(x, y) = 1 marks the occluded pixels. The
final cyclopean view, Icyc, is generated as the mean of the
left image and the mapped image from the right image:

Icyc ¼ IL þ R~2L
2

: ð3Þ

The cyclopean view formation process is shown in
Figure 5, and an example of the cyclopean view ob-
tained is given in Figure 6.
When the cyclopean view is obtained, we then apply

three quality evaluation models. Hereafter, we use the
notation QA to denote any quality assessment measure,
which compare the similarity (dissimilarity) between ima-
ges or image blocks. Specific QAs are discussed in Section
3.4 where they are indexed (e.g., QA1, QA2…) to denote
the particular assessment measure.
The first model assumes QA on a global basis:

QCV
1 ¼ QA Icycref ; I

cyc
dis

� �
; ð4Þ

where Icycref and Icycdis are the cyclopean images that were
obtained from the reference and distorted stereo pairs,
respectively.



Figure 5 Flow chart for generation of the cyclopean view.
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The second model evaluates the cyclopean view in a
block-by-block fashion, as shown in Figure 7. In the left
channel, an 8 × 8-sized reference block A starting at co-
ordinates (i,j) is selected. The corresponding block in
the disparity map is denoted by Δij. In the right channel,
the block with the same coordinates (i,j) is marked B′.
Using the disparity map, the corresponding block B is
then found by taking the median of the disparity values
in the disparity patch Δij:

d̂ ¼ ⌈median Δij
� �

8 � 8⌉; ð5Þ

where Δij is the disparity mapping with coordinates
(i,j), {⋅}8 × 8 indicates an 8 × 8 block, and d̂ can be a
Figure 6 An illustration example of forming a cyclopean view. (a) Left
(f) Updated right to left. (g) Cyclopean view.
positive value, zero, or a negative value. The model as-
sumes that the quality of the block is represented by the
quality of the better channel of the two,

QCV
2 ¼

XNblk

i¼1
max qLi ; q

R
i

� �
Nblk

; ð6Þ

where Nblk is the number of blocks, and qLi and qRi
are the quality scores of the left and right channels,
respectively,

q L
i ¼ QA Aref ;Adisð Þ ð7Þ

q R
i ¼ QA Bref ;Bdisð Þ; ð8Þ

where Aref is the reference block in the original left
image I Lref ; Idis is the corresponding block in the distorted
left image I Ldis , and Bref and Bdis are the corresponding
blocks in I Rref and I Rdis, respectively.
The third model closely follows the second model but

assumes that the block quality is represented by the ave-
rage of the quality values measured in the left and right
channels:
. (b) Right. (c) Disparity map. (d) Right to left. (e) Occlusion map.



Figure 7 Location of similar blocks for the second binocular rivalry quality model.
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QCV
3 ¼

XNblk

i¼1
qLi þ qRi
� �

=2

Nblk
: ð9Þ

3.2 Binocular rivalry assessment
Binocular rivalry occurs when the eyes attempt to con-
verge on a single point in a scene, but the images seen
by the two eyes are not sufficiently similar. Binocular ri-
valry can occur naturally in a complex 3D scene with
numerous occlusions. However, the presence of severe
artifacts in only one of the channels can cause unnatural
binocular rivalry, which is perceived as a severe stereo-
scopic artifact. Binocular rivalry can be measured in a
non-reference setting, i.e., by analyzing the distorted pair
only. We assume that regardless of whether or not the
rivalry is present in the original pair, its presence in the
distorted pair would be equally disturbing. In our ap-
proach, we use the dense depth map to find the corre-
sponding blocks in the two channels and measure the
cumulative difference between the corresponding blocks,
as follows:

QBR ¼
XNblk

i¼1
QA Adis;Bdisð Þ
Nblk

: ð10Þ

3.3 Binocular depth assessment
In this paper, we evaluate the presence of the binocular
depth by estimation of the dense depth map for the ste-
reo pair. We calculate a dense disparity map using the
color-weighted local-window method described in [20].
The quality of depth QDQ is then studied as follows:

QDQ
1 ¼ QA Δref ;Δdisð Þ; ð11Þ

where Δref is the disparity map from the original stereo-
scopic image, and Δdis is the disparity map from the
distorted stereoscopic image. Here, QA denotes a QA
function that uses one of the candidate features, as
described in the Section 3.4.

3.4 Candidate features
Each of the three quality components described above re-
lies on a comparison function denoted by QA. However,
the data that are compared are not in the same modality
in each case; in one case, we measure the similarity be-
tween the images, while in another we compare disparity
maps. These cases are interpreted in different ways by the
HVS, and the optimum similarity measure would be
different for each case. To determine the most suitable
measure in each case, we have selected and tested ten
state-of-the-art QA methods.
We denote the original input image (block) by u and

the distorted image (block) by v. The first quality feature
is calculated based on the mean squared error (MSE),
which is the most popular difference metric used in
image and video processing:

QA1 u; vð Þ ¼ 1
MN

X
i

X
j

uij−vij
� �2

: ð12Þ

The MSE is chosen because it is simple to calculate,
has clear physical meaning, and is mathematically con-
venient in the context of optimization.
The second quality feature is the gradient-normalized

sum-of-squared-difference (SSD) [21]. The result is
normalized with reference to the gradient map and is
calculated as the mean of the SSD. Any local intensity
variations in the textured areas between u and v are
thus penalized:

QA2 u; vð Þ ¼ 1
MN

X
i

X
j

uij−vij
� �2
∇uij
�� ��2 þ 1

ð13Þ

where ∇uij is the gradient value of input signal u.
Many studies have confirmed that the HVS is more

sensitive to low-frequency distortions rather than to
those at high frequencies. It is also very sensitive to con-
trast changes and noise. Therefore, the third measure
aims to remove the mean shifting and contrast stretching
in the manner shown in [22]. The measure is calculated in
8 × 8 blocks and uses the decorrelation properties of the
block DCT and the effects of the individual DCT coeffi-
cients on the overall perception:

QA3 ¼
1

Nblk

XM−7

i¼1

XN−7

j¼1
Ew u−vð Þ ð14Þ
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Ew uð Þ ¼ 1
64

X8

i¼1

X8

j¼1
DCT uð Þ2ijTcij; ð15Þ

where Tc is the matrix of correction factors for each of
the 8 × 8 DCT coefficients, which was normalized based
on the JPEG quantization table in [22].
The fourth quality measure is inspired by [23], which

was designed based on [22] by taking the CSF and the
between-coefficient contrast masking of the DCT basis
functions into account. In the same manner shown in
[22], the measure operates with the values of the DCT
coefficients of the 8 × 8 pixel block. The model allows
each DCT coefficient to calculate its own maximum dis-
tortion value that is not visible because of the between-
coefficient masking. It is assumed that the masking
degree of each coefficient DCT(u)ij depends upon its
square value (power) and on the human eye sensitivity to
this DCT basis function as determined using the CSF.
Several basis functions can jointly mask one or several
other basis functions. Then their masking effect value de-
pends upon the sum of their weighted powers [23]. The
final formula is expressed as follows:

QA4 ¼
1

Nblk

XM−7

i¼1

XN−7

j¼1

Ew u−vð Þ⋅MaskEff ; ð16Þ

where MaskEff is the reduction of the masking and con-
trast operation given in [23].
The fifth measure is based on the feature similarity

index (FSIM) method proposed in [24]. FSIM was de-
signed to compare the low-level feature sets of the refer-
ence image and the distorted image. Phase congruency
(PC) and the gradient magnitude (GM) are used in FSIM
and play complementary roles in the characterization of
the local image quality. The measure is defined as

QA5 ¼
X

i

X
j
SL uij; vij
� �

PCm uij; vij
� �

X
i

X
j
PCm uij; vij

� � ð17Þ

PCm x; yð Þ ¼ MAX PC xð Þ; PC yð Þf g; ð18Þ
where PC is the phase congruency operation of [25], and
SL(u, v) is the similarity map formed by combination of
the similarities of PC and GM as SL = SPC × SGM. SPC
and SGM are calculated as

SPC u; vð Þ ¼ 2PC uð Þ⋅PC vð Þ þ T 1

PC2 uð Þ þ PC2 vð Þ þ T 1
ð19Þ

SGM u; vð Þ ¼ 2GM uð Þ⋅GM vð Þ þ T 2

GM2 uð Þ þ GM2 vð Þ þ T 2
; ð20Þ

where T1 and T2 are positive constants. In our work, in
addition to the compound measure QA5, we also con-
sider the individual components, i.e., the PC and the
GM, separately, and thus form the sixth and seventh mea-
sures, respectively:

QA6 ¼
X

i

X
j
SPC uij; vij
� �

⋅PCm uij; vij
� �

X
i

X
j
PCm uij; vij

� � ð21Þ

QA7 ¼ SGM u; vð Þ: ð22Þ

The SSIM metric proposed in [26] is considered in the
formation of the eighth candidate quality measure. The
measure is composed using the luminance comparison
l(u,v), the contrast comparison c(u, v) and the structure
comparison s(u,v), as follows:

QA8 ¼ l u; vð Þ⋅ c u; vð Þ⋅ s u; vð Þ; ð23Þ

l u; vð Þ ¼ 2 μuμv þ c1
μ2u þ μ2v þ c1

; ð24Þ

c u; vð Þ ¼ 2 covuv þ c2
σ2u þ σ2v þ c2

; ð25Þ

s u; vð Þ ¼ σuv þ C3

σuσv þ C3
; ð26Þ

where μu and μv are the means of u and v, respectively,
σ2u and σ2v are the variances of u and v, respectively, covuv
is the covariance of v, c1 and c2 are the two variables
used to stabilize the division with a weak denominator,
and c3 = c2 / 2. In this paper, QA9 is defined as the lumi-
nance comparison and QA10 ¼ 2σuvþc2

σ2uþσ2vþc2
, which is a sim-

plified formula for c(u, v) × s(u, v), as shown in [26].

3.5 Machine learning methods for feature fusion
As described in the previous sections, the proposed
quality approach aims to combine three different mea-
sures, by separately measuring the quality of the cyclopean
view, the binocular rivalry, and the presence of depth. The
limited knowledge of the subjective quality perception of
3D images means that it is not possible to predict which
of the QA models will produce the best correlation with
the subjective scores. Therefore, to find the best combin-
ation of quality measures and image features, we adopt a
machine learning approach.
We assume that the best combination of features can

be found by linear regression. Given a set of quality
measures φ(k,l), the MOS over a set of test videos Θk are
predicted using linear combinations where

Θk ¼ θ̂0 þ
XL

l¼1
φ k;lð Þθ̂ l; ð27Þ

or
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Θ ¼
Θ1

Θ2

⋮
ΘK

2
664

3
775 ¼

1; φ 1;1ð Þ; φ 1;2ð Þ;…;φ 1;Lð Þ
1; φ 2;1ð Þ; φ 2;2ð Þ;…;φ 2;Lð Þ

⋮
1; φ K ;1ð Þ; φ K ;2ð Þ;…; φ K ;Lð Þ

2
664

3
775

θ̂0

θ̂1

⋮
θ̂L

2
664

3
775;
ð28Þ

where the vector Θ represents the subjective scores, L is
the number of quality measures, K is the number of test
stimuli (videos), and θ̂0;1;2;…;L are the parameters of the
model. The above linear model in vector form can also
be rewritten as an inner product:

Θ ¼ φT θ̂: ð29Þ

To fit the linear model to a set of training data, θ̂ is nor-
mally determined using the least squares method [27]:

f θð Þ ¼
XK
i¼1

Θ
⇀

i − φTi θ
� 	2

¼ Θ
⇀
−φTθ

� 	T
Θ
⇀
−φTθ

� 	
;

ð30Þ

where f(θ) is the cost function, and θ can be chosen to
minimize f(θ) using its derivatives, where

∇θf θð Þ ¼ ∇θ
⇀
Θ−φTθ
� 	T ⇀

Θ−φTθ
� 	

¼ φT
⇀
Θ−φTφθ ¼ 0: ð31Þ

Then,

θ ¼ φTφ
� �−1

φT
⇀
Θ; ð32Þ

where the array of quality measures φ is formed by the
proposed 3D quality models, where φ = [QCV, QBR, QDQ].
Figure 8 Contents of 3D video database I.
Efficient solution of Equation 28. Using Equation 32 re-
quires a simple, reasonable, and efficient quality measure
array and the use of subjective scores from properly con-
ducted subjective experiments. The subjective experi-
ments are described in the Section 4.

4 Mobile 3D video test content and related
subjective tests
Two mobile 3D video databases and their corresponding
subjective tests have been used for this study. The first
database, denoted by ‘3D database I’, contains four ste-
reoscopic videos, called Akko&Kayo, Champagne Tower,
Pantomime, and LoveBirds1, with varying levels of com-
pression artifacts and depth presence [16]. Thumbnails
of the videos in this database are shown in Figure 8. The
database has 60 videos and consists of four scenes; each
scene is captured in stereo using three different base-
lines, and each captured video is compressed by an
H.264 encoder using five different values for the QP.
The original videos are high-resolution multiview vid-

eos. They have been converted into stereo videos with
lower resolution by suitable rescaling. To maintain the
variable depth levels, each video sequence has been retar-
geted by selecting different camera pairs from the available
multiview video sequences. For all sequences, the left
camera has been retained, while the right camera was
selected at two different depth levels called the short
baseline and the wide baseline. In addition, a mono-
scopic video sequence was generated by repeating the
left channel sequence in the place of the right channel se-
quence. This would effectively present a 2D view with no
depth effects on the 3D display. The short baseline pro-
duces a 3D scene within a limited disparity range but with
visible 3D effects. The wide baseline provides an optimal
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disparity range for the mobile stereoscopic display by set-
ting the right camera position. All sequences were then
downscaled to lower resolutions for the target display de-
vice. After that, each video was encoded using the H.264/
AVC Simulcast method in intra-frame mode. The QP was
selected in the [25, 30, 35, 40, 45] range and compression
was independently applied to the left and right channels.
Thirty-two observers were involved in the subjective

tests and were equally distributed in terms of gender
with an age range between 18 and 37. The test materials
were presented one by one in a pseudo-random order.
The display device used was an autostereoscopic screen
with a resolution of 428 × 240 pixels per view. After each
clip, the test participants were asked to provide overall
quality scores on a scale from 0 to 10 and indicate the
acceptability of the quality for viewing the mobile 3D
video on a yes/no scale. At the beginning of each ses-
sion, a training set of seven clips was shown. Each test
stimulus was shown twice during the test. A set of dum-
my videos was also shown at the beginning and in the
middle of each test session. A total of 164 video clips
were shown to each observer [15]. The overall ratings of
the stereoscopic videos were finally ranked in terms of
their MOS.
The second database contains six different videos span-

ning different genres of mobile 3DTV and video: these
videos are Bullinger, Butterfly, Car, Horse, Mountain, and
Soccer2, as shown in Figure 9. This set of videos is in-
tended to represent a range of stereoscopic videos with
different content properties, including varying spatial de-
tails, temporal changes, and depth complexity. Each video
sequence lasts 10 s.
The sequences were encoded using four different me-

thods: H.264/AVC Simulcast, H.264/AVC MVC, MRSC,
and V +D. The encoding parameters were chosen as
Figure 9 Contents of 3D video database II.
shown in Table 1 [15]. Coding was carried out using two
codec profiles: the baseline profile and the high profile.
The simple baseline profile uses an IPPP prediction struc-
ture and context-adaptive variable-length code (CAVLC)
[28] prediction. The group of picture (GOP) size was set
at 1. This refers to the low-complexity encoder for mobile
devices. The more complex high profile enables hierarch-
ical B-frames with GOP sizes of 8 and context-based
adaptive binary arithmetic coding (CABAC) quantization.
Because of the variable compressibilities of the different
sequences, individual bit rate points were determined for
each sequence [15]. The QP of the codec was set at 30 for
high quality and 37 for low quality. In total, the database
has six reference sequences and 96 distorted 3D video
sequences.
Subjective tests were carried out with 87 test partici-

pants that were evenly divided in terms of gender and
with ages ranging between 16 and 37 years. The visuali-
zation process was performed by following the same test
procedure and using the same autostereoscopic display as
that used in the tests with 3D database I. The MOS for
both tests are of the same scale.

5 Feature selection
Both subjective experiments were performed while fol-
lowing the same protocol and using the same device and
the same quality evaluation scale. Therefore, we were
able to combine the entries from the two databases into
a single group of opinion scores within the same scale.
We picked 70% of the entries by random selection for for-
ming a training set. The rest of the entries were included
in a test set. We measured the prediction performances of
the different feature groups using the Spearman rank-
order correlation coefficient (SROCC). The SROCC out-
put is in the [−1, 1] range, where a higher absolute value



Table 1 Codec settings of the two profiles

Profile Baseline High

GOP size 1 (IPPP) 8 (hierarchical B-frames)

Symbol mode CAVLC CABAC

Search range 48 48

Intra-period 16 16

Quality level QP (30, 37) QP (30, 37)
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or SROCC indicates a stronger monotonic relationship
between the MOS and the values that were predicted
using the metric.
The set of feature candidates consists of 50 items,

numbered between ℱ1 and ℱ50. There are three quality
components: the cyclopean view (denoted by QCV), the
binocular rivalry (QBR), and the depth quality (QDQ). The
quality of the cyclopean view is assessed using three alter-
native approaches: global comparison QCV

1

� �
, block-wise

selection of the better channel QCV
2 0029

�
, and the block-

wise average QCV
2

� �
. A set of ten measures was applied

to each quality component. The feature candidates are
listed in the first row of Table 2. The measures are
listed in the first column of the same table. For example,
ℱ1 indicates the quality assessment QA1 under cyclopean
view model 1, i.e., QCV

1 ;QA1

� �
; ℱ33 indicates the qua-

lity assessment QA3 under the binocular rivalry model,
i.e., {QBR, QA3}. The quality measures that are not rele-
vant to the comparison of the depth maps are excluded
from the experiments. These combinations are marked
with a dash in Table 2.
We use a regression fitting to measure the per-

formances of the individual features. First, the output
of each candidate feature listed in Section 3.4 was
Table 2 Spearman correlations of each quality feature and ea

Metrics Q1
CV Q2

CV Q3
C

ℱ1 ~ℱ10 ℱ11 ~ℱ20 ℱ21 ~ℱ

QA1 0.5591 0.6022 0.4784

QA2 0.6703 0.7058 0.5849

QA3 0.5816 0.6511 0.5379

QA4 0.5850 0.6839 0.5529

QA5 0.7664 0.8101 0.7964

QA6 0.5588 0.5840 0.5240

QA7 0.7493 0.7347 0.7389

QA8 0.5218 0.5234 0.4452

QA9 0.4210 0.4680 0.3919

QA10 0.5247 0.5192 0.4460

SROCC1 0.9025 0.9144 0.9164

The highest correlation value is marked in italic.
normalized to the range [−10, 10], using logistic fit-
ting as follows:

f xð Þ ¼ β1 1þ β2−β3
β3 þ e−

x
β4

 !
: ð33Þ

The parameters β1, β2, β3, and β4 have been selected in
each individual case so that the output of each feature
fits into the desired range. Then we evaluate the per-
formance of each i feature in terms of Spearman correl-
ation. The results of this evaluation are given in Table 2
in columns 2 to 6. The combined performances of all
quality measurements applied to a given component are
shown on the bottom row of the table, and this measure
is denoted by SROCC1. The results in this row indicate
the applicability of a single component for use in sub-
jective quality prediction. The combined performance
values for the single quality measure when applied to all
components are given in the last column of the table,
which is labeled SROCC2. These results indicate the ap-
plicability of a given quality measure.
From these results, we can see that the use of a single

quality component is insufficient because the quality
values predicted by a single component do not correl-
ate well with the subjective scores. The best correla-
tion is achieved when using feature ℱ15, i.e., QCV

2 ;QA5

� �
.

Using the cyclopean view components (e.g., QCR
i∈ 1;2;3½ �;

n
QAi∈ 1;…;10½ �g), we can achieve SROCC values of more than
0.9. This result can be interpreted as evidence that the 2D
quality of the cyclopean view is a major component of the
overall perceived quality.
In the next experiment, we attempted to find a com-

bination of features and quality measures that produced
a good trade-off between prediction accuracy and
ch quality component

QBR QDQ SROCC2

30 ℱ31 ~ℱ40 ℱ41 ~ℱ50

−0.0109 0.4660 0.8240

0.2204 0.5124 0.7830

0.0345 - 0.6739

0.0656 - 0.7029

0.1085 0.4769 0.8598

−0.0675 0.4199 0.7543

0.3531 0.5870 0.7969

−0.0119 0.5146 0.7433

0.1617 0.4881 0.5375

−0.0327 0.3914 0.7407

0.6357 0.6806 0.9711



Figure 10 Quality performances with sequential feature selection.

Figure 11 Performance improvements of different numbers of
selected features.
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computational complexity. We performed a sequential
feature search, looking for the best combination of n + 1
features using the best combination of n features and
adding one feature at a time. In this manner, we were
able to extract 45 features until we reached the SROCC
value of 0.97, as shown in Figure 10. By studying the
performance improvements introduced by each feature
selection (as shown in Figure 11), we see that a com-
bination of four or five features will result in a good
accuracy vs. complexity trade-off. The difference in per-
formance for each two consecutive number of features is
given in Figure 11, and the difference between the per-
formance for four and five features is marked with a red
circle. The first five features in the sequential search
are {ℱ{15,18,30,34,47}}, where ℱ{15,18,30} evaluates the cyc-
lopean view, ℱ34 evaluates the binocular rivalry, and
ℱ47 evaluates the depth quality.
The computational complexities of the best perfor-

ming combinations of four or five features are shown
in Table 3 and in Figure 12. The Big O complexity,
the McCabe complexity, and the CPU running time
for each combination are shown in Table 3. The Big O no-
tation specifically describes the worst-case scenario. The
McCabe complexity was proposed in [29] and was also
called the cyclomatic complexity or the conditional com-
plexity. McCabe describes the independent paths through
the source code as a directed graph. The McCabe com-
plexity is calculated from the cyclomatic number of its
graph [29]. The CPU time listed in Table 3 is the time
taken to run ten images in each QAi using MATLAB
2012b on the Win64 OS with the Intel Core Duo E8400
CPU. For comparison, the last row of Table 3 contains the
complexity of dense depth estimation and the time it
needs to calculate the disparity map of the ten images
using search window of 50 pixels on the same computer.
Disparity estimation is a step which is required for the cal-
culation of all considered features (see Figure 4), and its
computational complexity is in the same range as the
complexity of the features. The McCabe complexity and
the CPU time of all candidates are compared with the
complexity of disparity estimation in Figure 12.
To find an optimal group of features, we estimated the

performances of all combinations of five and six features.
Since the computational overhead for deriving dense dis-
parity map is the same in each case, we did not take it
into account in the feature selection process. We found
that 5 groups of five features and 18 groups of six fea-
tures had SROCC scores that were higher than 0.93. The
best performing groups of five features are listed in
Table 4, and the best performing groups of six features
are listed in Table 5. The complexity levels of each group
were calculated based on the McCabe complexities, and



Table 3 QA computational complexity

Metrics Corresponding ℱi Big O McCabe Time (s)

QA1 ℱ1, ℱ11, ℱ21, ℱ31, ℱ41 O(N) 2 0.156

QA2 ℱ2, ℱ12, ℱ22, ℱ32, ℱ42 O(δN) 9 0.328

QA3 ℱ3, ℱ13, ℱ23, ℱ33, - O(N2) 15 7.535

QA4 ℱ4, ℱ14, ℱ24, ℱ34, - O(N2) 22 22.32

QA5 ℱ5, ℱ15, ℱ25, ℱ35, ℱ45 O(N2) 25 36.93

QA6 ℱ6, ℱ16, ℱ26, ℱ36, ℱ46 O(N2) 22 37.02

QA7 ℱ7, ℱ17, ℱ27, ℱ37, ℱ47 O(δN) 3 0.484

QA8 ℱ8, ℱ18, ℱ28, ℱ38, ℱ48 O(N2) 9 0.827

QA9 ℱ9, ℱ19, ℱ29, ℱ39, ℱ49 O(N2) 9 0.343

QA10 ℱ10, ℱ20, ℱ30, ℱ40, ℱ50 O(N2) 9 0.718

Dense disparity
estimate

- O(δN) 10 11.30
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the CPU times are shown in Table 3 and Figure 12.
From Table 4, we see that the previously found feature
group, ℱ{15,18,30,34,47}, is not the group with the lowest
complexity, with a McCabe complexity of 108 and a
running time for a single image set of 6.11 s. The fastest
quality measure, ℱ{25,28,30,41,48}, does not contain a com-
ponent that is sensitive to binocular rivalry. Therefore,
by considering the complexity, the correlation perform-
ance, and the sensitivity of the metric to different artifacts,
we selected the second-fastest feature group ℱ{25,28,33,41,48}

for the final quality metric. The output of each feature was
normalized according to formula (33). The weighting and
normalization coefficients used for each feature are given
in Table 6.
This selection is also confirmed by the results of the

full searches over six features. These combinations reach
correlation performances of 0.93, but at considerably
higher computational costs. However, we can see that
the feature evaluation components from the first two
groups (CV and BR) tend to dominate the best performing
combinations. It should be noted that the performance is
Figure 12 QA computational complexity comparison.
calculated based only on the training subset of test videos,
and by selecting a three-component combination, we aim
to provide a balanced combination for a wider, and pos-
sibly more diverse, set of videos.

6 Comparative results
The prediction performance of an objective quality met-
ric can be evaluated in terms of accuracy, monotoni-
city, and association. We use the normalized root mean
squared error (RMSE), the SROCC, and the Pearson linear
correlation coefficient (PLCC) to quantify the correspond-
ing performance properties of our metric. Before calcula-
tion of the correlation performance, we apply a logistic
fitting function to all quality metrics under comparison.
The subjective experiments performed on the two sets

of test sequences have been analyzed in [15,16]. Some
findings relevant to our current work are summarized
here. The results of subjective experiments, involving 3D
database I were interpreted in [15] as both the artifact
level and the presence of stereoscopic depth affect the
user acceptance of and satisfaction with the 3D video se-
quences. Also, according to the subjective test results for
database II [16], MVC and the V + D approach provide
the best subjective quality for all compression levels. We
believe that a well-performing 3D quality metric should
be able to predict these subjective preferences.
We compared the feature group proposed in Section 5

(i.e., ℱ{25,28,33,41,48}) with several state-of-the-art quality
metrics. The results are as shown in Tables 7 and 8. The
metrics that were intended for 2D image quality [i.e.,
peak signal-to-noise ratio (PSNR), SSIM, normalized
root mean squared error (NRMSE), and PSNR-HVS] have
been applied separately to the left and right channels and
the final results have been averaged. In the PSNR case, the
MSE derived in each channel was averaged in advance.
Four metrics that predict the quality of the stereoscopic
content have been included in the comparison: PHVS3D
[2], PHSD [3], 3DBE [7], and the stereo metric, described



Table 4 Computational comparisons for five quality
features (full search)

Feature
selection

QCR QBR QDQ McCabe Time (s) SROCC

1 ℱ{25,28,30,41,48} + + 54 3.95 0.9260

2 ℱ{15,16,17,25,29} + 84 11.16 0.9255

3 ℱ{9,15,16,32,35} + + 90 11.15 0.9243

4 ℱ{25,28,34,41,48} + + + 67 6.11 0.9242

5 ℱ{25,28,33,41,48} + + + 60 4.63 0.9236

Sequential ℱ{15,18,30,34,47} + + + 68 6.13 0.9106

The values for the selected set of features are marked in italic.

Table 6 Linearization and weighting coefficients used in
the final quality metric

ℱ25 ℱ28 ℱ33 ℱ41 ℱ48

Weighting coefficient 1.8627 −1.0692 0.1202 0.4880 −0.4443

β1 39.08 9.896 0.309 0.088 9.896

β2 −166.6 370.8 3.281 9.749 370.8

β3 4,483 3,577 −0.809 −0.866 3,577

β4 0.139 0.114 803.6 454.2 0.1142
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in [5]. The quality values for 3DBE were kindly provided
by the authors of the metric in [7]. All metrics work on
the luminance components of the images.
The SROCC, PLCC, and normalized RMSE values for

each compared QA on 3D databases I and II can be seen
in Tables 7 and 8, respectively. For visual comparison,
prediction results for databases I and II are shown in
Figures 13 and 14, respectively. To quantify the perform-
ance in terms of their different aspects, the videos from
both databases are grouped into several subsets. Test se-
quences in 3D database I are classified into three subsets
based on the depth levels in Table 7: ‘mono’ is used for
monoscopic sequences, and short and wide are used for
stereoscopic sequences. 3D database II is grouped into
four subsets based on the encoding methods used, i.e.,
MRSC, MVC, SIM, and V +D. The two algorithms with
the best performance levels are marked in bold.
Table 5 Computational comparisons for six quality features (f

Combination number Feature selection QCR Q

1 ℱ{9,15,16,22,32,35} + +

2 ℱ{15,16,22,29,32,35} + +

3 ℱ{15,16,19,22,32,35} + +

4 ℱ{9,12,15,16,32,35} + +

5 ℱ{15,16,24,29,32,35} + +

6 ℱ{9,15,16,24,32,35} + +

7 ℱ{12,15,16,29,32,35} + +

8 ℱ{15,16,23,29,32,35} + +

9 ℱ{9,15,16,23,32,35} + +

10 ℱ{9,15,16,21,32,35} + +

11 ℱ{15,16,21,29,32,35} + +

12 ℱ{5,9,15,16,17,35} + +

13 ℱ{9,15,16,17,32,35} + +

14 ℱ{5,15,16,17,29,35} + +

15 ℱ{12,25,28,30,41,48} +

16 ℱ{12,15,16,19,32,35} + +

17 ℱ{9,12,25,28,41,48} +

Sequential ℱ{15,18,30,34,47,22} + +
The predominant distortions in this database are
caused by DCT-based compression and are manifested
as blocking and smearing artifact characteristic for harsh
quantization levels. These distortions affect the cyclo-
pean view quality and can be detected by quality metrics,
sensitive to texture degradation. PSNR-HVS produces
the third best performance on the mono set, where the
SROCC, PLCC, and RMSE values are 0.921, 0.917, and
0.716, respectively. PHSD and PHVS3D also correlate
well with the MOS in that database. PHSD is an im-
proved version of PHVS3D, in which the disparity errors
are considered. The SSIM metric, if used separately in
each channel, does not correlate well with the subjective
scores of 3D database I. The proposed combination of
five quality features has the best correlation with the
MOS, which were compared using either SROCC or
PLCC. The overall correlations of SROCC, PLCC, and
RMSE reach 0.935, 0.924, and 0.684 correspondingly.
Most QA metrics fail on the wide baseline sets. The pro-
posed metric shows higher correlations on all subsets,
ull search)
BR QDQ McCabe Time (s) SROCC

99 11.1868 0.9358

99 11.1868 0.9352

99 11.1868 0.9331

99 11.1868 0.9329

112 13.3864 0.9325

112 13.3864 0.9321

99 11.1868 0.9317

105 11.9075 0.9317

105 11.9075 0.9315

92 11.1696 0.9313

92 11.1696 0.931

109 14.8621 0.9309

93 11.2024 0.9309

109 14.8621 0.9309

+ 63 3.9781 0.9306

99 11.1868 0.9305

+ 63 3.9406 0.9304

+ 77 6.1606 0.9162



Table 7 Spearman and Pearson correlations of compared metrics on 3D video database I

PSNR SSIM PSNR-HVS NRMSE 3DBE Ref [5] PHVS3D PHSD Proposed

SROCC Mono 0.875 0.704 0.921 0.857 0.782 0.703 0.929 0.918 0.939

Short 0.883 0.683 0.907 0.874 0.602 0.702 0.910 0.935 0.956

Wide 0.850 0.599 0.877 0.833 0.549 0.609 0.896 0.934 0.952

All 0.864 0.623 0.886 0.841 0.649 0.631 0.917 0.865 0.935

PLCC Mono 0.874 0.768 0.917 0.903 0.801 0.755 0.927 0.915 0.949

Short 0.877 0.756 0.915 0.920 0.577 0.739 0.914 0.928 0.942

Wide 0.820 0.681 0.865 0.857 0.530 0.671 0.887 0.920 0.941

All 0.843 0.707 0.885 0.879 0.613 0.694 0.906 0.844 0.924

RMSE Mono 0.864 1.237 0.716 0.747 1.201 1.307 0.695 1.026 0.858

Short 0.823 1.206 0.698 0.707 1.497 1.312 0.693 0.750 0.556

Wide 0.921 1.346 0.781 0.830 1.587 1.449 0.774 0.821 0.635

All 0.874 1.293 0.737 0.783 1.438 1.362 0.715 0.873 0.684

Values in bold indicate the best score; values in italic indicate the second best.
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and the SROCC values of the short and wide baseline sub-
sets are quite consistent at 0.956 and 0.952, respectively.
3D database II contains a wider range of video dis-

tortions, most notably some cases of severe binocular ri-
valry. Such distortions do not affect large areas of the
image but are immediately visible to the observer. As a
result, quality metrics assessing texture quality tend to
grade such cases as being of high quality, while obser-
vers grade them as having annoying artifacts. Most of the
metrics included in our comparison fail on the ‘V +D’ set,
particularly PSNR, PSNR-HVS, PHVS3D, and SSIM, for
which the PLCC values are less than 0.1. This can be
attributed to the presence of binocular rivalry artifacts
Table 8 Spearman and Pearson correlations of compared met

PSNR SSIM PSNR-HVS

SROCC MRSC 0.076 0.398 0.399

MVC 0.328 0.587 0.423

SIM 0.368 0.543 0.418

V + D 0.050 0.205 0.094

All 0.254 0.443 0.227

PLCC MRSC 0.196 0.361 0.369

MVC 0.293 0.432 0.380

SIM 0.301 0.420 0.411

V + D −0.170 0.099 −0.057

All 0.236 0.379 0.223

RMSE MRSC 1.581 1.475 1.588

MVC 1.785 1.529 1.685

SIM 1.883 1.699 1.854

V + D 1.674 1.771 1.869

All 1.735 1.623 1.753

Values in bold indicate the best score; values in italic indicate the second best.
which are caused by view rendering based on the esti-
mated depths. For most videos exhibiting stereoscopic dis-
tortions, 2D metrics fail to predict the subjective scores.
The overall SROCC values of PSNR and PSNR-HVS are
only 0.254 and 0.227, respectively. Although the results
for SSIM and NRMSE are slightly improved, their overall
SROCC values are still very low. Among the 3D quality
metrics, the PHVS3D metric does not perform well, but
the improved PHSD version has the second best correl-
ation with all the MOS in the database. Finally, in Table 8,
we see that the metric proposed in this paper shows better
performance because it is sensitive to a wider range of
stereoscopic distortions.
rics on 3D video database II

NRMSE Ref [5] PHVS3D PHSD Proposed

0.452 0.562 0.306 0.649 0.910

0.608 0.803 0.264 0.810 0.973

0.561 0.699 0.292 0.778 0.932

0.316 0.522 0.221 0.737 0.877

0.413 0.646 0.323 0.799 0.942

0.487 0.519 0.271 0.536 0.906

0.617 0.649 0.202 0.726 0.963

0.561 0.564 0.317 0.778 0.940

0.211 0.308 0.002 0.653 0.907

0.425 0.541 0.294 0.730 0.942

1.488 1.315 1.468 1.242 0.667

1.437 1.404 1.812 1.258 0.544

1.691 1.579 1.769 1.240 0.664

1.877 1.641 1.611 1.143 0.754

1.633 1.491 1.671 1.222 0.661
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7 Conclusions
One of the biggest challenges in 3D QA is the calcula-
tion of the QA metric in a perceptual manner. In this
paper, a novel full-reference stereoscopic quality metric
that is applicable to mobile 3D video has been proposed.
Figure 14 Logistic fitting figures of the different metrics and propose
First, we built two 3D quality databases that were anno-
tated with subjective test results in terms of their MOS.
The databases include not only compression distortions
but also differently pronounced depth and 3D format con-
version distortions. According to the results of subjective
d metric on 3D video database II.
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tests and interviews with the test participants [15], the
number of compression artifacts is dominant in the evalu-
ation of the content quality, whereas the presence of depth
enhances the user experience. The viewers were very crit-
ical of the spatial quality and accepted only low numbers
of artifacts in the content. The 3D effect enhances the user
satisfaction and acceptance of the content; however, if the
content is not presented with high spatial quality, then the
content was declared to be less acceptable or completely
unacceptable, regardless of the 3D effect. Motivated by
these results, we modeled the 3D quality using three com-
ponents: the cyclopean view, binocular rivalry, and the
depth quality. The cyclopean view is simulated using
three models. The first model generates a single cyclopean
image by globally fusing the left and right views of a scene
based on the properties of human stereo vision. The sec-
ond and third models are based on local fusion methods,
which calculate the quality on the block level between the
left and right channels using a disparity map. Dissimilar
visual stimuli between the two eyes bring binocular rivalry.
In our approach, the amount of binocular rivalry is quan-
tified by comparison of only the corresponding blocks in
the distorted stereoscopic pair, using the disparity map
that is provided by the reference pair. The differences be-
tween the images of a scene as seen by each eye are also
used to form the perceived depth. The geometrical distor-
tions are measured directly on the disparity map (and are
called the depth quality).
Several QA methods are used to assess each quality

component, with tests conducted using a training set
that was extracted from the two available databases. To
make the quality metric simple, fast, and efficient, the
feature selection for all considered QAs is processed by
studying their computational complexity and the CPU
run times. Finally, six features are selected for the three
components. The cyclopean view is measured by two qua-
lity assessment methods, i.e., QA5 and QA8, which are
both under the third (local) cyclopean view model; bin-
ocular rivalry is evaluated using QA3; and the depth qua-
lity is measured using the disparity map with QA1 and
QA8. The experimental results have shown that the
proposed metric significantly outperforms the current
state-of-the-art quality metrics. We must note that our
implementation does not take masking effects created by
motion into account. This is will be studied in our future
investigations. However, our experiments to date have
shown that this masking plays a minor role in estimation
of the quality. This observation has been confirmed by
subjective tests on still images and videos with the same
content, which resulted in very similar MOS.
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