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Abstract

This work proposes a perceptual based no-reference objective image quality metric by integrating perceptually
weighted local noise into a probability summation model. Unlike existing objective metrics, the proposed
no-reference metric is able to predict the relative amount of noise perceived in images with different content, without
a reference. Results are reported on both the LIVE and TID2008 databases. The proposed no-reference metric achieves
consistently a good performance across noise types and across databases as compared to many of the best very
recent no-reference quality metrics. The proposed metric is able to predict with high accuracy the relative amount of
perceived noise in images of different content.

Introduction
Reliable assessment of image quality plays an important
role in meeting the promised quality of service (QoS)
and in improving the end user’s quality of experience
(QoE). There is a growing interest to develop objective
quality assessment algorithms that can predict perceived
image quality automatically. These methods are highly
useful in various image processing applications, such as
image compression, transmission, restoration, enhance-
ment, and display. For example, the quality metric can
be used to evaluate and control the performance of indi-
vidual system components in image/video processing and
transmission systems.
One direct way to evaluate video quality is through sub-

jective tests. In these tests, a group of human subjects
are asked to judge the quality under a predefined viewing
condition. The scores given by observers are averaged to
produce the mean opinion score (MOS). However, subjec-
tive tests are time-consuming, laborious, and expensive.
Objective image quality (IQA) assessment methods can
be categorized as full reference (FR), reduced reference
(RR), and no reference (NR) depending on whether a
reference, partial information about a reference, or no ref-
erence is used for calculation. Quality assessment without
a reference is challenging. A no-reference metric is not
relative to a reference image, but rather an absolute value
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is computed based on some characteristics of the test
image.
Of particular interest to this work is the no-reference

noisiness objective metric. Noisiness and blurriness are
two key distortions in multiple applications, and typi-
cally there is a tradeoff to balance between noisiness and
blurriness. For example, in soft-thresholding for image
denoising [1], the image could be blurry when the thresh-
old is high, while the image could remain noisy when the
threshold is low. Also, in Wiener-based super-resolution
[2], too much regularization will result in less noise at
the expense of more blur. The reconstructed image could
be blurry when the auto-correlation function is modeled
to be too flat, while the reconstructed image could be
noisy when the auto-correlation function is modeled to
be too sharp. No-reference image sharpness/blur metrics
have been widely discussed [3,4]. However, these image
sharpness/blur metrics typically fail in the presence of
noise. The sharpness metric may increase when noise
increases. A no-reference noise-immune image sharp-
ness metric was also proposed [5]. Furthermore, all the
edge-based sharpness metrics can be easily applied in the
wavelet domain as described in [5] to provide resilience
to noise. Still, it lacks the ability to assess the impair-
ment due to noise. For visual quality assessment of nois-
iness, many full-reference metrics are presented in [6],
such as peak signal-to-noise ratio (PSNR), multi-scale
structural similarity (MS-SSIM) [7], noise quality measure
(NQM) [8], and information fidelity criterion (IFC) [9].
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However, these full-reference metrics require the refer-
ence image for calculation. There is a need to develop a
no-reference noisiness quality metric. Furthermore, such
noisiness metric could be further combined with the no-
reference blur metrics [3,4] to provide a better prediction
of image quality for several applications including super-
resolution, image restoration, and othermultiply distorted
images. A global estimate of image noise variance was
used as a no-reference noisiness metric in [10]. The his-
togram of the local noise variances is used to derive the
global estimate. However, the locally perceived visibility
of noise is not considered. Similarly in [11], noisiness is
expressed by the sum of estimated noise amplitudes and
the ratio of noise pixels. Both the metrics of [10,11] do
not account for the effects of locally varying noise on the
perceived noise impairment and they do not exploit the
characteristics of the human visual system (HVS).
To tackle this issue, this paper firstly presents a full-

reference image noisiness metric which integrates percep-
tually weighted local noise into a probability summation
model. This proposed metric can predict the perceptual
noisiness in images with high accuracy. In addition, a no-
reference objective noisiness metric is derived based on
local noise standard deviation, local perceptual weight-
ing, and probability summation. The experimental results
show that the proposed FR and NR metrics show better
and more consistent performance across databases and
distortion types, when compared with several very recent
FR and NR metrics.
The remainder of this paper is organized as follows. A

perceived noisiness model based on probability summa-
tion is presented first followed by details on the contrast
sensitivity thresholds computation. A full-reference per-
ceptually weighted noise (FR-PWN) metric is proposed
next based on perceptual weighting using the computed
contrast sensitivity thresholds and probability summation.
After that, a no-reference perceptually weighted noise
(NR-PWN) metric is further derived. Performance results
and comparison with existing metrics are presented fol-
lowed by a conclusion.

Perceptual noisiness model based on probability
summation
The PSNR simply calculates the difference point by point.
However, the human visual system should be taken into
consideration since the visual impairment due to the same
noise could be perceived differently based on the local
characteristics of the visual content. Contrast is a key con-
cept in vision science because the information in the visual
system is represented in terms of contrast and not in terms
of the absolute level of light. So, the relative changes in
luminance are important rather than the absolute ones [3].
The contrast sensitivity threshold measures the smallest
contrast or the just-noticeable difference (JND) that yields

a visible signal over a uniform background. The proposed
metric makes use of JND for calculating the probability
of noise detection. Even when the noise is uniform, the
impact of the noise will be more visible in image regions
with a relatively lower JND. Consider the noisy signal y as

y(i, j) = y′(i, j) + error(i, j) (1)

where y′(i, j) is the original undistorted image. The prob-
ability of detecting a noise distortion at location (i, j) can
be modeled as an exponential having the following form

P(i, j) = 1 − exp
(

−
∣∣∣∣error(i, j)JND(i, j)

∣∣∣∣
β
)

(2)

where JND(i, j) is the JND value at (i, j) and it depends
on the mean intensity in a local neighborhood region
surrounding pixel (i, j). β is a parameter whose value
is chosen to maximize the correspondence of (2) with
the experimentally determined psychometric function
for noise detection. In psychophysical experiments that
examine summation over space, a value of about 4 has
been observed to correspond well to probability summa-
tion [12].
A less-localized probability of noise detection can

be computed by adopting the ‘probability summation’
hypothesis which pools the localized detection proba-
bilities over a region of interest, R [13]. The probabil-
ity summation hypothesis is based on the following two
assumptions: (1) A noise distortion is detected if and only
if at least one detector senses the presence of a noise
distortion; (2) The probabilities of detection are indepen-
dent; i.e., the probability that a particular detector will
signal the presence of a distortion is independent of the
probability that any other detector will. The measurement
of noise detection in a region R is then given by

Pnoise(R) = 1 −
∏
i,j∈R

(1 − P(i, j)). (3)

Substituting (2) into (3) yields

Pnoise(R) = 1 − exp(−Dβ
R) (4)

where

DR =
⎛
⎝∑

i,j∈R

∣∣∣∣error(i, j)JND(i, j)

∣∣∣∣
β
⎞
⎠

1/β

(5)

From (4), it can be seen that Pnoise(R) increases if DR
increases and vice versa. So DR can be used as a nois-
iness metric over region R. However, the probability of
noise detection does not directly translate to noise annoy-
ance level. In this work, the β parameter in (4) and (5) is
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replaced with α = β × s, which has the effect of steering
the slope of the psychometric function in order to trans-
late noise detection levels into noise annoyance levels. The
factor s was found experimentally to be 1/16 resulting in
a value of 0.25 for α. More details about how JND(i, j)
is computed is given in the Section ‘Perceptual contrast
sensitivity threshold model and JND computation’.

Perceptual contrast sensitivity thresholdmodel
and JND computation
Multiple parameters including screen resolution, the
viewing distance, the minimum display luminance, and
the maximum display luminance are considered in the
contrast sensitivity model [14]. The thresholds are com-
puted locally for each block. Firstly, the contrast sensitivity
threshold t128 is generated for a region with a mean
grayscale value of 128 as follows:

t128 = TMg

Lmax − Lmin
(6)

where Lmin and Lmax are the minimum and maximum
display luminances, Mg is the total number of gray scale
levels, and T is given by the following parabolic approxi-
mation [15]:

T = min(10g0,1 , 10g1,0), (7)

g0,1 = log10 Tmin + K
(
log10

1
2Nωy

− log10 fmin

)2
,

(8)

g1,0 = log10 Tmin + K
(
log10

1
2Nωx

− log10 fmin

)2
.

(9)

In (8) and (9), Tmin is the luminance threshold at fre-
quency, fmin, where the threshold is minimum. ωx and ωy
represent, respectively, the horizontal width and the ver-
tical height of a pixel in degrees of visual angle, K is the
steepness of the parabola.N is the local neighborhood size
and is set to 8. Tmin, fmin, and K can be computed as [15]:

Tmin =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

LT
S0

(
L
LT

)αT

, L ≤ LT

L
S0

, L > LT

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(10)

fmin =

⎧⎪⎪⎨
⎪⎪⎩
f0

(
L
Lf

)αf
, L ≤ Lf

f0, L > Lf

⎫⎪⎪⎬
⎪⎪⎭ (11)

K =

⎧⎪⎨
⎪⎩
K0

(
L
LK

)αK

, L ≤ LK

K0, L > LK

⎫⎪⎬
⎪⎭ (12)

The values of the constants in (10) - (12) are [15]
LT = 13.45 cd/m2, S0 = 94.7, αT = 0.649, αf = 0.182,
f0 = 6.78 cycle/deg, Lf = 300 cd/m2, K0 = 3.125, αK =
0.0706 and LK = 300 cd/m2. Equations 10 to 12 give Tmin,
fmin, and K as functions of local background luminance L.
For a background intensity value of 128, given a gamma-
corrected display, the corresponding local background
luminance is computed as follows:

L = Lmin + 128
Lmax − Lmin

Mg
(13)

where Lmin and Lmax denote the minimum and maximum
luminances of the display. Once the JND for a region with
mean grayscale value of 128, t128, is calculated using (6),
the JND for regions with other mean grayscale values are
approximated as follows [16]:

JND(i, j) = t128

(∑N−1
n1=0

∑N−1
n2=0 In1,n2

N2(128)

)αT

= t128
(
Mean(In1,n2)

128

)αT
(14)

where In1,n2 is the intensity level at pixel location (n1, n2)
in a N×N region surrounding pixel (i, j). It should be
noted that the indices (n1, n2) are used to denote the loca-
tion with respect to the top left corner of theN×N region,
while the indices (i, j) are used to denote the location
with respect to the top left corner of the whole image.
Mean(In1,n2) is the mean value over the considered N×N
region surrounding pixel (i, j). αT is a correction expo-
nent that controls the degree to which luminance masking
occurs and is set to αT = 0.649, as given in [16]. JND(i, j)
in (5) is computed using (14). In our implementation,N =
8 was used for the N×N region.

Full-reference noisiness metric
This work firstly presents a full-reference noisiness met-
ric based on the probability summation model presented
in the previous sections. Figure 1 shows the block diagram
of the proposed full-reference FR-PWNmetric. The input
image is first divided into blocks of M×M. The block will
be the region of interest Rb. The block size is chosen to
correspond with the foveal region. Let r be the visual res-
olution of the display in pixels per degree, v the viewing
distance in centimeters, and d the display resolution in
pixels per centimeter. Then the visual resolution can be
calculated as follows [17]:

r = d · v · tan(π/180) ≈ d
vπ
180

≈ d
v

57.3
. (15)
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Figure 1 Diagram of the proposed full-reference FR-PWNmetric.

In the HVS, the foveal region has the highest visual
acuity and corresponds to about 2° of visual angle. The
number of pixels contained in the foveal region can be
computed as (2 �r�)2 [17]. For example, for a viewing dis-
tance of 60 cm and 31.5 pixels/cm display, the number of
pixels contained in the foveal region is (64)2, correspond-
ing to a block size of 64×64. Using (5), the perceived noise
distortion within a block Rb is given by

DRb =
⎛
⎝ ∑

i,j∈Rb

∣∣∣∣error(i, j)JND(i, j)

∣∣∣∣
α
⎞
⎠

1/α

(16)

where JND(i, j) is the JND at location (i, j) and is com-
puted using (14). Using the probability summation model
as discussed previously, the noisiness measure D for the
whole image I is obtained by using aMinkowski metric for
inter-block pooling as follows:

D =
⎛
⎝∑

Rb

∣∣DRb
∣∣α

⎞
⎠

1/α

(17)

The resulting distortion measure, D, normalized by
the number of blocks, is adopted as the proposed full-
reference metric FR-PWN. This full-reference metric not

only works for noisiness, but could also work for other
additive distortions.

No-reference noisiness metric
In the previous section, a full-reference quality metric
is presented based on the probability summation model
and JND. However, in many cases, the reference image is
not available, so error(i, j) in (16) can not be computed.
Therefore, there is a need to develop a no-reference nois-
iness quality metric. Figure 2 shows the block diagram
which summarizes the proposed no-reference NR-PWN
metric. From (14), it can be seen that JND(i, j) depends
on the local mean of the neighborhood surrounding (i, j).
For the proposed NR metric, the local mean for a pixel
(i, j) belonging to a region RN is taken to be the mean
of region RN and is denoted by mean(RN ). Consequently,
Equation 14 can be written as follows:

JND(i, j) = JND(RN )

= t128
(
Mean(RN )

128

)αT

, for all (i, j) belongs to RN .

(18)

Figure 2 Diagram of the proposed no-reference NR-PWNmetric.
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Now only one JND(RN ) will be calculated for all pixel
(i, j) belonging to the same RN , and different JND(RN )will
be calculated separately for each RN within the consid-
ered region of interest block Rb. The size of the block Rb is
chosen to approximate a foveal region (e.g., 64×64 as dis-
cussed previously). Using p,q as the indices within a local
neighborhood RN , the proposed NR metric is derived
from the presented FR metric (16) as follows:

DRb =
⎛
⎝ ∑

RN∈Rb

∑
p,q∈RN

∣∣∣∣error(p, q)JND(p, q)

∣∣∣∣
α
⎞
⎠

1/α

=
⎛
⎝ ∑

RN∈Rb

∑
p,q∈RN

∣∣error(p, q)∣∣α
(JND(RN ))α

⎞
⎠

1/α
(19)

In (19),
∑

p,q∈RN
∣∣error(p, q)∣∣α can be approximated

by N2E[
∣∣(error(p, q)∣∣α] under the ergodicity assumption,

where N×N is the size of each local neighborhood RN .
Also, if error(p, q) is a Gaussian distribution process with
amean of 0 and a standard deviation of σRN , using the cen-
tral absolute moments of a Gaussian distribution process
[18], it can be shown that

E
[∣∣error(p, q))∣∣α] = σα

RN
2α/2�(α+1

2 )

π1/2 , forα > −1 (20)

where �(t) is the gamma function

�(t) =
∫ ∞

0
xt−1e−xdx. (21)

Using (20), DRb in (19) can be written as follows:

DRb =
⎛
⎝ ∑

RN∈Rb

N2σα
RN

2α/2�( α+1
2 )

π1/2

(JND(RN ))α

⎞
⎠

1/α

(22)

For a given α, define a constant C as

C = 2α/2�(α+1
2 )

π1/2 . (23)

Then, the proposed NR noisiness metric over the region
Rb is given by

DRb =
⎛
⎝ ∑

RN∈Rb

C · N2 · σα
RN

(JND(RN ))α

⎞
⎠

1/α

. (24)

As in (17), the noisiness metric over the image I can be
computed as follows:

D =
⎛
⎝∑

Rb

∣∣DRb
∣∣α

⎞
⎠

1/α

. (25)

The resulting noise measure D, normalized by the num-
ber of blocks, is adopted as the proposed no-reference
NR-PWNmetric.

In (24), the noise variance σRN is estimated directly
from the test image, without the reference image. Multiple
methods are available to estimate the noise variance, such
as fast noise variance estimation (FNV) [19] and gener-
alized cross validation (GCV)-based method [20,21]. In
our implementation, the GCV method was used for com-
puting the local noise variance. Similar results were also
obtained using the FNV [19] noise estimation method.

Performance results
The performance of the proposed FR-PWN andNR-PWN
metrics is assessed using the LIVE [6] and TID2008 [22]
databases.The LIVE database [6] consists of 29 RGB color
image. The images are distorted using different distortion
types: JPEG2000, JPEG, Gaussian blur, white noise, and
bit errors. The difference mean opinion score (DMOS)
for each image is provided. The white noise part of the
LIVE database includes 174 images with a noise standard
deviation ranging from 0 to 2. White noise was added to
the RGB components of images after scaling between 0
and 1. All of the white noise images (174 images) from
the LIVE database are used in our experiments. The
TID2008 database [22] consists of 25 reference images
(512 × 384) and 1,700 distorted images. The images are
distorted using 17 types of distortions, including addi-
tive Gaussian noise, high-frequency noise, JPEG2000, and
Gaussian blur. The MOS was obtained using a total of 838
observers with 256,428 comparisons of the visual qual-
ity of distorted images. All of the additive Gaussian noise
image (100 images) and high-frequency noise images (100
images) from the TID2008 database are used in our exper-
iments. As mentioned in [22], additive zero-mean noise is
often present in images and it is commonly modeled as a
white Gaussian noise. This type of distortion is included
in most studies of quality metric effectiveness. High-
frequency noise is an additive non-white noise which can
be used for analyzing spatial frequency sensitivity of the
HVS [23]. High-frequency noise is typical in lossy image
compression and watermarking.
To measure how well the proposed metrics correlate

with the provided subjective scores, the correlation coef-
ficients adopted by VQEG [24] are used, including the
Pearson’s linear correlation coefficient (PLCC) and the
Spearman rank-order correlation coefficient (SROCC). A
four-parameter logistic function as suggested in [24] is
used prior to computing the Pearson’s linear correlation
coefficient:

MOSPi = β1 − β2

1 + exp
(
Mi−β3|β4|

) + β2 (26)

where Mi is the quality metric for image i, MOSPi is the
predicted MOS or DMOS. Figure 3 shows the DMOS
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Figure 3 Correlation between the predicted score of NR-PWN and DMOS using the LIVE database.

score and predicted DMOS obtained using NR-PWN for
the LIVE database.
Table 1 shows the evaluation results for the LIVE data-

base. In addition to the proposed FR-PWN and NR-
PWN metrics, the performance results of various exist-
ing metrics are presented for comparison, including
seven full-reference metrics, DCTune [25], picture qual-
ity scale (PQS) [26], NQM [8], Fuzzy S7 [27], blockwise
spectral distance measure (BSDM) [28], MS-SSIM [7],

Table 1 Performance evaluation for the LIVE database

Metrics PLCC SROCC

FR DCTune [25] 0.9288 0.9324

PQS [26] 0.9603 0.9535

NQM [8] 0.9885 0.9854

Fuzzy S7 [27] 0.9038 0.9199

BSDM (S4) [28] 0.9559 0.9327

MS-SSIM [7] 0.9737 0.9805

IFC [9] 0.9766 0.9625

FR-PWN (proposed) 0.9846 0.9835

RR QAI [29] 0.8889 0.8639

NR BLINDS-II(SVM) [30] 0.9799 0.9691

BLINDS-II(Prob.) [30] 0.9854 0.9783

HNR [31] 0.962 N/A

BRISQUE [32] 0.9851 0.9786

NIQE [33] 0.9773 0.9662

BIQI [34] 0.9538 0.9510

LBIQ [35] 0.9761 0.9702

Estimated noise standard deviation 0.9497 0.9713

NR-PWN (proposed) 0.9770 0.9816

IFC [9], one reduced reference metric quality-aware
images (QAI) [29], and seven no-reference metrics, blind
image integrity notator using DCT statistics (BLINDS-II)
(SVM) [30], BLINDS-II (Prob.) [30], hybrid no-reference
(HNR) [31], blind/referenceless image spatial quality eval-
uator (BRISQUE) [32], naturalness image quality evalu-
ator (NIQE) [33], blind image quality index (BIQI) [34],
and learning a blind measure of perceptual image quality
(LBIQ) [35]. The benchmarks of full-reference metrics
are obtained from [6], and the others are obtained from
their respective authors or available implementations. The
shown ‘N/A’ in Table 1 means the value is not provided in
the literature.
Table 2 shows the performance of the proposed FR-

PWN and NR-PWN metrics using images with differ-
ent types of distortion as provided by the TID2008

Table 2 Performance evaluation using SROCC for the
TID2008 database

Metrics Additive Gaussian High-frequency
noise noise

FR MS-SSIM [7] 0.8094 0.8685

DCTune [25] 0.8415 0.8721

NQM [8] 0.7679 0.9015

FR-PWN (proposed) 0.8818 0.9194

NR BLINDS-II (SVM) [30] 0.6600 N/A

BLINDS-II (Prob.) [30] 0.6956 0.7454

BRISQUE [32] 0.829 0.6234

NIQE [33] 0.7775 0.8539

GRNN [36] 0.7532 N/A

Li et al. [37] 0.7043 N/A

NR-PWN (proposed) 0.8020 0.9136
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database [22]. The proposed metric is compared with
three full-reference metrics DCTune [25], NQM [8], MS-
SSIM [7], and six very recent no-reference metrics that
reported results for TID2008: BLINDS-II (SVM) [30],
BLINDS-II (Prob.) [30], BRISQUE [32], NIQE [33], gen-
eral regression neural network (GRNN) [36], and Li
et al. [37]. The benchmarks of full-reference metrics are
obtained from [22], and the others are obtained from
their respective authors or available implementations. The
shown N/A in Table 2 means the value is not provided
in the literature. The proposed metric uses the same
parameters as used with the LIVE database without any
training.
From Table 1, it can be observed that the proposed FR-

PWN metric outperforms the existing FR metrics for the
LIVE database while achieving a similar performance as
the NQM [8] metric. Table 2 shows that the proposed
FR-PWN metric outperforms the existing FR metrics for
the TID2008 database, on both Gaussian noise and high-
frequency noise. The proposed NR-PWN metric comes
close in performance to the proposed FR-PWN metric
for both the LIVE and the TID2008 databases. In partic-
ular, Table 1 shows that the proposed NR-PWN metric
performs better than existing NR metrics except for the
Blinds-II and BRISQUE metrics in terms of PLCC. The
proposed NR-PWN metric outperforms all the consid-
ered NR metrics in terms of SROCC and even exist-
ing FR metrics except the full-reference NQM [8] for
the LIVE database. Table 2 shows that the proposed
NR-PWN metric surpasses existing NR metrics except
BRISQUE [32] for additive Gaussian noise, and that it
significantly outperforms existing FR and NR metrics for
high-frequency noise. Particularly, it should be noted that
the performance of BRISQUE [32] drops dramatically on
high-frequency noise and is significantly lower than the
proposed metric. In addition, many of the shown state-of-
the-art metrics including BLINDS-II [30], NIQE [33], and
BRISQUE [32] use 80% of the data for training [30,32,33].
Consequently, these may not perform well on new dis-
tortions outside the training set, such as high-frequency
noise (Table 2). In contrast, the proposed NR-PWN does
not require training and still performs well on this new
distortion.
Furthermore, it is worth indicating that as shown in

Tables 1 and 2, the existing metrics exhibit differences
in performance across different databases and types of
distortions. It is noted in [38] that the performance
of many image quality metrics could be quite different
across databases. The difference in performance can be
attributed to the differences in quality range, distortions,
and contents across databases. Despite this, the results
obtained show that the proposed FR-PWN and NR-PWN
metrics achieve consistently a good performance across
noise types (white noise and high-frequency noise) and

across databases as compared to the existing quality met-
rics. For example, the proposed FR-PWN metric exhibits
a performance similar to NQM [8] for the LIVE database,
while it significantly outperformsNQM [8] for white noise
images from TID2008. Also, the existing BLINDS-II [30]
performs fairly well for the LIVE database, but its perfor-
mance significantly decreases when applied to TID2008.
It is also interesting to note that although the mathe-
matical derivations for the proposed NR-PWN is based
on white noise, the proposed NR-PWN metric performs
consistently well for high-frequency noise, a non-white
noise.
The performance results presented in Tables 1 and 2

for the proposed NR-PWN metric are obtained using the
GCV method [20,21] for local variance estimation. If the
local variance is estimated using the FNVmethod [19], the
resulting SROCC values are 0.9627 for the LIVE database
additive Gaussian noise, 0.7850 for the TID2008 database
additive Gaussian noise, and 0.9210 for the TID2008
database high-frequency noise, respectively.
Finally, the calculation of the proposed FR-PWN

and NR-PWN metrics involves parameters of view-
ing conditions such as maximum luminance Lmax of
the monitor. However, the performance of the pro-
posed metrics are resilient to different Lmax values.
In Tables 1 and 2, the proposed metrics are calcu-
lated using Lmax = 175 cd/m2. The Lmax in real viewing
conditions may vary from 100 cd/m2 for CRT moni-
tors to 300 cd/m2 for LCD monitors. Table 3 shows
the performance of the proposed metric in terms of
SROCC using different values of Lmax, for both the LIVE
and the TID2008 databases. It can be observed that
the proposed metrics are not sensitive to the selection
of Lmax.

Conclusions
This paper proposed both a full-reference and a no-
reference noisiness metrics. The no-reference noisiness
metric is derived from the proposed full-reference metric

Table 3 SROCC of the proposedmetrics using different
Lmax

Lmax (cd/m2) 100 175 300

LIVE additive FR-PWN 0.9835 0.9835 0.9835

Gaussian noise NR-PWN 0.9816 0.9816 0.9816

TID2008 additive FR-PWN 0.8816 0.8818 0.8818

Gaussian noise NR-PWN 0.8020 0.8020 0.8020

TID2008 high- FR-PWN 0.9194 0.9194 0.9197

frequency noise NR-PWN 0.9136 0.9136 0.9136
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and integrates noise variance estimation and perceptual
contrast sensitivity thresholds into a probability summa-
tion model. The proposed metrics can predict the relative
noisiness in images based on the probability of noise
detection. Results show that the proposed metrics achieve
a consistently good performance across noise types and
across databases as compared to the existing quality met-
rics. Further work can be performed to develop a no-
reference quality metric for multiply distorted images.
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