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Abstract

The segmentation of the heart is usually demanded in the clinical practice for computing functional parameters
in patients, such as ejection fraction, cardiac output, peak ejection rate, or filling rate. Because of the time required,
the manual delineation is typically limited to the left ventricle at the end-diastolic and end-systolic phases,
which is insufficient for computing some of these parameters (e.g., peak ejection rate or filling rate). Common
computer-aided (semi-)automated approaches for the segmentation task are computationally demanding, and an
initialization step is frequently needed. This work is intended to address the aforementioned problems by providing
an image-driven method for the accurate segmentation of the heart from computed tomography scans. The
resulting algorithm is fast and fully automatic (even the region of interest is delimited without human intervention).
The proposed methodology relies on image processing and analysis techniques (such as multi-thresholding based
on statistical local and global parameters, mathematical morphology, and image filtering) and also on prior
knowledge about the cardiac structures involved. Segmentation results are validated through the comparison
with manually delineated ground truth, both qualitatively (no noticeable errors found after visual inspection) and
quantitatively (mass overlapping over 90%).
1 Introduction
Cardiovascular disease is the leading direct or contributing
cause of non-accidental deaths in the world [1]. As a
consequence, the current research is particularly focused
on its early diagnosis and therapy. An example of this
effort is the delineation of the left ventricle (LV) of the
heart, which turns out to be an important tool in the
assessment of cardiac functional parameters such as
ejection fraction, myocardium mass, or stroke volume.
Fully automatic and reliable segmentation methods are
desirable for the quantitative and massive analysis of these
clinical parameters, because the traditional practice of
manual delineation of the heart’s ventricles is subjective,
prone to errors, tedious, hardly reproducible, and very
time-consuming - typically between 1 and 2 h per
cardiac study, thus exhausting the radiologist’s capacity
and resources. Even though the most relevant medical
information can be extracted from the left heart, a
segmentation of the whole heart (and eventually also
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the great vessels) can be useful to extract a model of the
organ before surgery or to facilitate diagnosis [2,3].
Compared with other imaging modalities (such as ultra-

sound and magnetic resonance imaging), cardiac computed
tomography (CT) can provide detailed anatomical
information about the heart chambers, great vessels, and
coronary arteries [4,5]. Actually, CT is often preferred by
diagnosticians since it provides more accurate anatomical
information about the visualized structures, thanks to its
higher signal-to-noise ratio and better spatial resolution.
Although computed tomography was at one time
almost absent in cardiovascular examinations, recent
technological advances in X-ray tubes, detectors, and
reconstruction algorithms, along with the use of
retrospectively gated spiral scanning, have opened the
doors to new diagnostic opportunities [6], enabling the
non-invasive derivation of the aforementioned functional
parameters [7,8]. Therefore, computed tomography
becomes an important imaging modality for diagnosing
cardiovascular diseases [9].
In the recent literature, one can find many papers

which tackle the (semi-)automated segmentation of the
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heart from CT or MRI scans. These works deal with
different strategies for approaching the segmentation task,
including image-driven algorithms [10-13], probabilistic
atlases [14,15], fuzzy clustering [16], deformable models
[17-19], neural networks [20], active appearance models
[21,22], anatomical-based landmarks [23], or level set
and its variations [24,25]. A comprehensive review of
techniques commonly used in cardiac image segmentation
can be found in Kang et al. [5]. Nevertheless, many
published methods have various disadvantages for routine
clinical practice: they are either computationally demanding
[6,14,16,22], potentially unstable for subjects with pathology
[25,26], limited to the left ventricle [11,24,25,27], require
additional images to be acquired [28,29], or need complex
shape and/or gray-level appearance models constructed (or
‘learned’) from many manually segmented images - which
is labor intensive and of limited use due to both anatomical
and image contrast inconsistencies [14,22,26-28]. Moreover,
most prior work has been devoted to segmenting cardiac
data given a reasonable initialization [25,30] or an accurate
manual segmentation of a subset of the image data [31,32].
For full automation, and with the purpose of eliminating
the inter- and intra-observer variability, initialization should
also be automatic.
In this work, we propose an efficient image-driven

method for the automatic segmentation of the heart from
CT scans. The methodology relies on image processing
techniques such as multi-thresholding based on statistical
local and global features, mathematical morphology, or
image filtering, but it also exploits the available prior
knowledge about the cardiac structures involved. The
development of such a segmentation system comprises
two major tasks: initially, a pre-processing stage in which
the region of interest (ROI) is delimited and the statistical
parameters are computed; and next, the segmentation
procedure itself, which makes use of the data obtained
during the previous stage. Our fully automatic approach
improves on the state of the art through both computation
speed and simplicity of implementation.
The paper is organized as follows: in Section 2, the

proposed methodology is presented; along subsections
2.1 and 2.2, the pre-processing and segmentation stages,
respectively, are detailed; Subsection 2.3 deals with the
extraction of the left ventricle from the outcome of the
previous segmentation. Next, the validity of our approach
is tested through the segmentation of different cardiac CT
scans and the subsequent comparison of the results with
manually delineated ground truth. Finally, the conclusions
close the paper.

2 Proposed methodology
As commented before, the segmentation algorithm is based
on the information available about the cardiac structures
and tissues. This knowledge allows us to separate the region
of interest from the rest of the image (such as bones of the
rib cage) and to obtain the statistically derived thresholds
which are needed in order to define the binary masks
that will be used along the procedure. In the following
subsection is explained how to calculate these thresholds,
which depend on the distribution of the image histogram.
An important feature of the proposed algorithm is that it
uses the same type of thresholds for all the slices of the
scan, not an ad hoc set for each image.

2.1 Pre-processing stage
In this stage, all the variables needed to perform the
segmentation (statistical parameters, position of the
spine, etc.) are determined, and a preliminary cleaning of
the images (which basically selects the ROI) is performed.

2.1.1 Statistical parameters
Let us consider the volume which results of the CT scan
as a scalar function f(x,y,z), where x =1,…,N, y =1,…,M,
and z =1,…,P, being N, M, and P the number of discrete
elements (voxels) in each of the spatial dimensions. For
each of the axial slices (i.e., for a fixed value k of the z
coordinate) the following parameters are computed:

a) Mean value of the intensity of the pixels, μ(k):

μ kð Þ ¼ 1
NM

XN
x¼1

XM
y¼1

f x; y; kð Þ ð1Þ

This value allows us to automatically separate the air
and the background from the rest of the image. Indeed,
the histogram of images which result from a standard
CT scan always present five to seven well-delimited
distributions of gray levels. The lowest intensity levels
are related to the air and the highest to the bones.
Consequently, the first (i.e., leftmost) and second peaks of
the histogram correspond to the image background
and the air in the lungs, respectively. This can be
seen in Figure 1, where the image is thresholded with
an intensity value laying in the valley which separates the
two leftmost maxima from the remaining peaks (five, in
this example). This value is the parameter μ(k).

b) Mean intensity value of the pixels with an intensity
level higher than μ(k) in the kth slice, μsup(k):

μsup kð Þ ¼ 1
Rk

XRk

i¼1

XiY ikð Þ ð2Þ

where Rk is the number of pixels (Xi,Yi) in the kth slice
which satisfy f(Xi,Yi,k) > μ(k). This value is used when
computing the global mean μglobal, which is the parameter



Figure 1 Example of thresholding with μ(k). (a) Original slice, (b) histogram, (c) binary mask computed by thresholding with μ(k), and (d)
masked slice.
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that the algorithm requires in the segmentation stage in
order to separate cardiac structures from the rest of the
image. Moreover, it is also used for obtaining a binary
mask which determines the position of the spine in each
image. The gray level represented by the parameter μsup(k)
belongs to the interval of intensities in which deoxygen-
ated blood and bone marrow are included. Hence, masks
obtained from this parameter would contain the outer
layer of bones and tissues where oxygenated blood flows,
whose intensity levels are higher than the value of μsup(k).
However, as shown in Figure 2, this parameter is not a
suitable threshold for segmenting cardiac structures, since
the resulting mask does not include some tissues where
deoxygenated blood flows, such as right atrium and right
ventricle. Therefore, in order to accomplish our goal, a
lower threshold is needed. More precisely, the required
threshold has to be located in the interval of gray levels
which corresponds to muscular tissues.

c) Standard deviation of intensities of pixels in the kth
slice with an intensity level higher than μ(k), σ(k):

σ kð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Rk−1

XRk

i¼1

f XiXikð Þ−μsup kð Þ
� �2vuut ð3Þ
Figure 2 Example of thresholdi006Eg with μsup(k). (a) Original slice, (b)
and (d) masked slice.
The threshold μsup(k) + σ(k) allows us to obtain a binary
mask which is used later in the segmentation stage in
order to locate the descending aorta in all the slices of the
volumetric scan. The resulting gray level is useful for
separating the outer layer of the bones and the structures
where oxygenated blood flows from the rest of the image,
as shown in Figure 3.

d) Mean of the parameter μsup(k) minus the standard
deviation of μsup(k) (in the following global mean),
μglobal:

μglobal ¼
1
P

XP
k¼1

μsup kð Þ
 !

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

P−1

XP
i−1

μsup ið Þ
� �

−
1
P

XP
k−1

μsup kð Þ2
vuut

ð4Þ

This is a global parameter, since it depends on the
whole CT scan. It belongs to the interval of intensities
which characterize muscular tissues. The reason for not
using the mean of μsup(k) as a threshold is that this value is
located on the edge of two distributions, one representing
muscular tissues and the other representing deoxygenated
blood, thus occasionally causing an overfitting to the
histogram, (c) binary mask computed by thresholding with μsup(k),



Figure 3 Example of thresholding with μsup(k) + σ(k). (a) Original slice, (b) histogram, (c) binary mask computed by thresholding with
μsup(k) + σ(k), and (d) Masked slice.
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structures of interest and consequently yielding the
appearance of holes in the mask. In order to avoid
this problem, a less restrictive threshold, i.e., μglobal, is
used instead. Figure 4 shows the difference of thresholding
with μglobal and μsup(k). Anyway, the resulting binary mask
is yet inadequate for separating the structures of interest,
since pulmonary veins and part of the bones are still
present after the thresholding. This is addressed further in
Section 2.2.

2.1.2 Position of the spine and the aorta
Once the statistical parameters are computed, a later
step (which will be performed in the segmentation stage)
is to remove the spine from the dataset. For doing so, we
exploit the fact that both the spine and the descending
aorta are present in all the slices of the (axial) scan. Firstly,
P binary masks are obtained by thresholding each CT slice
Figure 4 Example of thresholding with μglobal. (a) Original slice, (b) hist
original slice masked with (c), (e) binary mask computed by thresholding w
with its corresponding parameter μsup(k). If the area which
is common to all these masks is computed (e.g., by means
of a logical AND), the resulting pixels with a value of 1
certainly belong to either the spine or the aorta. More
precisely, the common object with the highest number of
pixels should belong to the spine. Nevertheless, it is
possible that the pixels which belong to the spine are non-
connected, and as a result, the object with the highest
number of pixels actually represents the aorta, which
would be falsely labeled as spine. In order to avoid such
an error, a morphological dilation with a horizontal
structuring element is previously performed, as shown in
Figure 5b. The object of highest area after the dilation is
used as the mask for selecting the spine in all the slices.
During the process of removing the spine, a portion

of the descending aorta can also be incorrectly deleted
(e.g., if it overlaps with the mask computed through
ogram, (c) binary mask computed by thresholding with μsup(k), (d)
ith μglobal, and (f) original slice masked with (e).



Figure 5 Position of the spine and the aorta. (a) Common area to all masks computed by thresholding with μsup(k), (b) morphological
horizontal dilation of the common area, (c) object of highest area, (d) masked common area (i.e., pixels belonging to the spine), and (e) common
area to all masks computed by thresholding with μsup(k) + σ(k) (i.e., pixels belonging to the aorta).

Larrey-Ruiz et al. EURASIP Journal on Image and Video Processing 2014, 2014:52 Page 5 of 13
http://jivp.eurasipjournals.com/content/2014/1/52
the dilation of the common area). Therefore it becomes
necessary to previously locate the aorta in order to restore
it after the deletion procedure. With this purpose, we first
compute the common area to all the superimposed masks
which are obtained by thresholding each slice with its
corresponding value μsup(k) + σ(k). As explained in the
previous subsection, the threshold μsup(k) + σ(k) allows us
to select the structures where oxygenated blood flows:
aorta and left atrium and ventricle. Among these
structures, the only one which is common to all slices is
Figure 6 Automatic selection of the ROI. (a) Original slice, (b) binary ma
(column #70 highlighted), (d) one-dimensional profile corresponding to th
highest area, and (g) masked slice (region of interest).
the descending aorta. As shown in Figure 5e, the resulting
image exclusively contains pixels belonging to the aorta,
which will be used to select and restore the latter in the
segmentation stage. It should be noted that the logical
AND (Figure 5e) would likely result in an empty
mask in cases of severe scoliosis or tortuous aorta. In
order to prevent such a problem, the algorithm includes
a rigid registration stage, which finds the relative dis-
placement (in pixels) between each binary mask and
the following one. The P masks are then correctly
sk computed by thresholding with μ(k), (c) object of highest area
e column #70, (e) outcome of the proposed algorithm, (f) object of
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aligned (i.e., shifted an integer number of pixels in
the x- and/or y-axis) prior to the computation of the
logical AND.

2.1.3 Automatic selection of the region of interest
This procedure determines, through the analysis of the
columns of each image (considered as a matrix of size
N ×M), which regions have to be removed. For each
image, M one-dimensional profiles (i.e.; M arrays of N
elements, corresponding to the M columns of the slice) are
obtained from the binary mask computed by thresholding
with μ(k); as commented before, this parameter is suitable
for separating the air and the background from the rest of
the image, as shown in Figure 1. Additionally, all the
objects, but that with the highest number of pixels, are
removed after the thresholding, as shown in Figure 6c.
Each profile (i.e., each column of the binary mask)

consists in a number of ‘pulses’ of amplitude 1 (the
number of pulses may vary from none to more than one),
as shown in Figure 6d. These pulses represent the pixels
with a value of 1 in the corresponding column of the binary
mask. The proposed algorithm, which automatically selects
the ROI depending on the number and width of the
pulses which appear in each one-dimensional profile,
is summarized in the following pseudo-code:

1. DO initialize the mean width: wmean =0.1*N
2. DO initialize the maximum width to be removed:

wmax =0.3*N
3. FOR j =1:M
Figure 7 Flowchart of the segmentation stage.
DO compute the jth one-dimensional profile
IF width wj of the leftmost pulse of the jth profile
satisfies wj < wmax (i.e., the corresponding pixels
belong to the rib cage)
THEN update the mean width wmean with the
value wj and remove (i.e., set to 0) the upmost wj

pixels with a value of 1 in the jth column of the
binary mask
ELSE remove the upmost wmean pixels with a
value of 1 in the jth column of the binary mask
(i.e., remove only the pixels which belong to the rib
cage, not the ones which belong to the heart)

4. IF after the processing there is more than one object
in the resulting mask, select the largest one and
discard the rest.

An example of the results obtained with this procedure
can be seen in Figure 6.

2.2 Segmentation stage
In this stage, the segmentation itself is performed, using
for this purpose the data collected through the previous
subsection: the local and global statistical parameters
(which will serve as thresholds), some pixels which
belong to the spine and some pixels which belong to
the descending aorta, and the particular region of
interest which will be processed in each slice of the scan.
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In the following, the sequential steps of the proposed
segmentation algorithm (whose flowchart is shown in
Figure 7) are detailed.

2.2.1 Location of the aorta
This procedure consists of two tasks. Firstly, each
one of the P slices of the scan is thresholded with its
corresponding value μsup(k) + σ(k). Next, the objects which
appear in the resulting binary mask are labeled; the object
which contains the pixels extracted in the process
described in Subsection 2.1.2 is the descending aorta
in the kth image. Figure 8 illustrates this procedure.
The reason for locating the aorta is twofold: it is the
only object of interest in the slices with too much
liver (i.e., slices in which the liver takes up a large area), as
shown Figure 8d; additionally, since there exists the
possibility of deleting part or even the totality of the
aorta during the removal of the spine (as explained in
Subsection 2.1.2), it becomes necessary to know the
position of this artery in order to restore it at the
end of the following procedure.

2.2.2 Deletion of the spine
This process consists of four steps. First, the P slices of
the scan are thresholded with their corresponding values
μsup(k), thus allowing us to isolate bones and tissues
where oxygenated blood flows from the rest of the
image. At this point, the objects of the resulting binary
mask are labeled, and the spine is then selected as the
Figure 8 Location of the aorta. (a) Original slice, (b) binary mask compu
pixels belonging to the aorta, (d) original slice with too much liver, (e) bin
which contains the pixels belonging to the aorta.
object which contains the pixels obtained by the process
described in Subsection 2.1.2. Next, the binary mask
defined by the spine is dilated with a horizontal
structuring element, and the outcome is used as a mask
for separating cardiac structures from the posterior part of
the chest wall (since the process described in Subsection
2.1.3 does not remove the lower part of the image).
Finally, the descending aorta is added, and the object
in which it is contained is selected as the resulting
mask. Figure 9 illustrates this procedure.

2.2.3 Computation of the final mask
In order to segment the structures of interest (i.e.,
ventricles, atria, aorta, and vena cava vein), a threshold
belonging to the interval of intensities which represent
muscular tissues is needed. As explained in Subsection
2.1.1, this value is the parameter μglobal. Obviously, the use
of μglobal as a threshold results in a binary mask which
contains all the aforementioned structures, since the gray
level of the cardiac muscles is lower than the gray level of
the blood (either oxygenated or not). The bone marrow,
which also has an intensity level higher than μglobal, does
not appear in this final mask (shown in Figure 10b)
because of the cleaning process previously performed
(i.e., selection of the ROI and deletion of the spine).

2.2.4 Post-processing of the final mask
As can be appreciated in Figure 10b, the outcome of the
previous step still shows slight imperfections. Therefore,
ted by thresholding with μsup(k) + σ(k), (c) object which contains the
ary mask computed by thresholding with μsup(k) + σ(k), and (f) object



Figure 9 Deletion of the spine. (a) Original slice, (b) binary mask computed by thresholding with μsup(k), (c) object which contains the pixels
belonging to the spine, (d) binary mask computed as the negative of the morphological dilation, (e) binary mask computed by thresholding with
μ(k), (f) ROI before the deletion of the spine, (g) application of mask (d) to the ROI, (h) restoration of the aorta, and (i) masked slice.
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a post-processing of the binary mask is required. First,
objects with a size lower than the minimum area amin

(chosen as amin ≤min{N,M}, which has the value of
500 pixels for all CT scans considered in this paper) are
removed; the size of the objects can be easily determined
after a labeling and pixel counting procedure. Next,
objects with a size similar to that of the structures of
interest but which do not represent cardiac tissues are also
removed. For doing so, we exploit the fact that these un-
desirable objects are local, i.e., they only appear in a narrow
range of slices in the z axis. For the kth image, the algorithm
computes the common area between the 2 × r +1 binary
masks from k − r to k + r, r being the axial range (a value of
5% the number of slices P performs well in all experiments);
these masks are the ones obtained through the application
of the threshold μ(k). Unless the computed common area is
greater than 30% of its actual area (i.e., 30% of the number
of pixels with a value of 1 in the kth slice), an object is
removed from the mask. Lastly, a morphological closing by
reconstruction is carried out in order to fill the tiny holes
that may appear in the final mask. Figure 10c,d,e,f displays
the result of this post-processing stage.

2.3 Left heart segmentation
As already commented in Section 1, the analysis of
the LV is of great importance, since this structure
supplies the oxygenated blood to distant tissues
through the aorta. This subsection illustrates how the
left heart (i.e., left ventricle and left atrium) and
the aorta can be extracted from the outcome of the
methodology presented in subsections 2.1 and 2.2.
After the pre-processing and segmentation stages, the
resulting images show a quasi-bimodal histogram (i.e.,
a histogram which consists in two main clusters of gray
levels, corresponding to oxygenated and non-oxygenated
blood), as shown in Figure 11c. This feature allows us to
precisely segment the left heart by means of the algorithm
Isodata [33], which provides an optimal result with a low



Figure 10 Computation of the final mask. (a) Original slice, (b) binary mask computed by thresholding with μglobal, (c) objects with
a size higher than amin, (d) common area of binary masks in the considered axial range, (e) final (i.e., post-processed) binary mask, and
(f) segmented slice.
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computational cost if the two clusters of gray levels are
nearly Gaussian distributions (an assumption which is true
for virtually all CT scans). The particularization of
the Isodata algorithm to our scenario is summarized
in the following pseudo-code:
Figure 11 Left heart segmentation. (a) Original slice, (b) original slice mask
(threshold t2 is shown), (d) binary mask computed by thresholding with t2, an
1. DO compute the initial threshold t1 as the mean
gray level of the segmented slice

2. DO compute μ1 and μ2 as the mean gray level of
each of the two classes obtained after thresholding
the segmented slice with the threshold t1
ed with the final mask, (c) histogram of the masked image
d (e) segmented slice.



Figure 12 Example of the outcome of the proposed segmentation methodology. (a-g) Left heart segmentation of several slices from a CT
scan, (h) 3D reconstruction of the whole heart, and (i) 3D reconstruction of the left heart.
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3. DO compute the new threshold t2 as the mean value
of μ1 and μ2: t2 = (μ1 + μ2)/2

4. IF t1 and t2 differ less than 1%
THEN go to 5
ELSE t1 = t2, go to 2

5. RETURN t2

Once the left heart is separated from the right heart,
the resulting mask has to be post-processed as explained in
Subsection 2.2.4 (i.e., small objects are removed, contours
are smoothed, and holes are filled). The outcome of this
procedure is shown in Figure 11.

3 Results
Following the methodology described above, the segmenta-
tion algorithm introduced in this paper was applied to 32
clinical exams from randomly selected adult patients
(source: Hospital Universitario Virgen de la Arrixaca -
Murcia, Spain). The datasets were acquired during multiple
breath holds as a stack of 2D + time grayscale axial slices,
using two different CT scanners (Siemens Sensation
64 and Toshiba Aquilion). The imaging protocols are
heterogeneous with diverse capture ranges and resolutions.
A volume may contain 75 to 190 slices, while the size of
each slice is the same with 512 × 512 pixels. The resolution
inside a slice is isotropic and varies from 0.488 to
0.781 mm for different volumes (therefore, the FOV varies
from 250 × 250 mm to 400 × 400 mm). The slice thickness
(i.e., the distance between neighboring slices) is larger than
the in-slice resolution and varies from 0.75 to 3 mm for
different volumes. All the data is in DICOM 3.0 format.
The experiments were carried out on a PC with Intel
Core 2 Duo (2 × 2.4 GHz), 4 GByte of RAM, and the
computations were performed under MATLAB 7.6
(R2008a). The mean running time for fully segmenting the
cardiac structures varies from 23.1 s (512 × 512 × 75 voxels)
to 110.9 s (512 × 512 × 190 voxels). The mean running
time for segmenting only the left heart varies from
5.6 s (512 × 512 × 75 voxels) to 25.1 s (512 × 512 ×
190 voxels). It should be noted that all these times
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could be significantly improved through an optimized
implementation of the algorithms in C/C++.
The resulting contours were visually inspected by

experienced cardiologists from Hospital Universitario
Virgen de la Arrixaca (in the following, HUVA). According
to their evaluation, our automatic approach generated
acceptable results to clinicians. Noticeable errors were not
found. Figure 12 presents some segmentation outputs
from our method. More precisely, the outcome of the
segmentation of the left heart is shown: left atrium
(LA), left ventricle (LV), aorta (Ao), and descending
aorta (DAo). Three-dimensional reconstructions of the
full heart and the left heart, obtained from the corre-
sponding segmentation (as explained in sections 2.2 and
2.3, respectively), are also displayed.
A quantitative validation was also performed. In

this sense, a typically used performance metric is the
correlation ratio (please refer to [34] for its mathematical
definition), which is equivalent to a measure of mass
overlapping between the segmentation results and the
ground truth. In our case, the ground truth consists
in a collection of contours manually delineated by an
expert from HUVA. The mean correlation ratio (CR)
was 94.42%, where a value of 100% means a perfect
match. This value descends down to 87.64% if we
consider the whole CT scan, i.e., if we include the
slices with too much liver (such as e.g., Figure 12f, in
which the expert did not delineate the cardiac struc-
ture labeled as LV, but only the descending aorta).
The maximum computed CR value was 99.81%, and the
minimum value was 46.95% (the latter corresponding to a
slice in which the liver was present). Thus, the correlation
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Figure 13 Example of left heart’s (LA + LV) volume vs. time curve for
ratio reveals a good agreement between the automatic and
the manual segmentations. Another similarity measure
which is broadly used when dealing with contours of
segmented objects is the maximal surface distance (refer
to [35] for a mathematical definition). The mean value of
this measure was 2.36 mm (with a minimum of 1.11 mm
and a maximum of 6.12 mm), where 0 mm would mean a
perfect match of the compared contours.
Finally, an assessment of the left heart’s volume-time

curves was carried out. The temporal variation of the
volume of the left heart (left atrium and left ventricle)
was obtained for both the output of our method and the
manually delineated ground truth. As can be appreciated
in the example shown in Figure 13, the estimated volumes
were very close to the ground truth with a mean error of
1.22% and a standard deviation of 0.68%. It should be
noted that in all cases, the ground truth volumes were
greater of equal than the computed volumes due to the
fact that the output of our method was tightly adjusted to
the boundary of the cardiac structures, while the contours
delineated by the expert followed more loosely their
overall shape.

4 Conclusions
We have developed a comprehensive image-driven segmen-
tation methodology to segment the cardiac structures
(or only the left heart) from CT scans by using a processing
pipeline of multi-thresholding, image cleaning, mathematical
morphology, and image filtering techniques. The algorithm
we propose is simple; hence, it is easy to implement
and validate. All the contours are delineated automatically,
without any initialization or user interaction. Testing
8 10 12 14 16
ame

ed methodology

 truth

dynamic 3D sequence.
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results on the data randomly selected from clinical
exams demonstrated that our approach can be computed
significantly faster than other automated techniques (espe-
cially if compared with model-based approaches). This
makes it feasible to conveniently calculate online the left
heart’s volume for all the imaged cardiac phases (not
only end-diastolic and end-systolic), which in turn enables
the computation of additional quantitative clinical param-
eters such as peak ejection rate and filling rate. Moreover,
this allows for the automatic identification of the imaged
time points of the end-diastole and end-systole (which cor-
respond to the maximum and minimum left heart’s volume
among all time points).
The complete cardiac segmentation methodology per-

formed well on the validation set of 32 clinical datasets
acquired on two different CT scanners from two manu-
facturers. Its accuracy is comparable to other approaches
recently published. Additionally, visual inspection by
experts showed that the proposed algorithm is overall
robust and succeeds in segmenting the heart up to
minor local corrections.
A limitation of our method is that it only provides

a segmentation of the left heart’s blood pool volume
(i.e., endocardium). While this is sufficient for comput-
ing most of the common clinical quantitative parameters
for cardiac function, a segmentation of the left heart’s
epicardium would provide additional clinical information.
Further directions of our research include the porting

of the presented methodology to other modalities, such
as cardiac cine magnetic resonance imaging (cMRI).
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