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Abstract

In recent times, micro aerial vehicles (MAVs) are becoming popular for several applications as rescue, surveillance,
mapping, etc. Undesired motion between consecutive frames is a problem in a video recorded by MAVs. There are
different approaches, applied in video post-processing, to solve this issue. However, there are only few algorithms
able to be applied in real time. An additional and critical problem is the presence of false movements in the stabilized
video. In this paper, we present a new approach of video stabilization which can be used in real time without
generating false movements. Our proposal uses a combination of a low-pass filter and control action information to
estimate the motion intention.
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Introduction
The growing interest in developing unmanned aircraft
vehicles (UAVs) is due to their versatility in several appli-
cations such as rescue, transport, or surveillance. A par-
ticular type of UAV that becomes popular nowadays are
micro aerial vehicles (MAVs) by their advantage to fly in
closed and reduced spaces.
Robust guidance, navigation, and control systems for

MAVs [1] depend on the input information obtained
from on-board sensors as cameras. Undesired move-
ments are usually generated during the fly as a result of
complex aerodynamic characteristics of the UAV. Unnec-
essary image rotations and translations appear in the
video sequence, increasing the difficulty to control the
vehicle.
There are multiple techniques in the literature [2-5]

designed to compensate the effects of undesired move-
ments of the camera. Recently, the video stabilization
algorithm ‘L1 Optimal’ provided by the YouTube editor
was introduced in [6]. Another interesting proposal is the
Parrot’s Director Mode, implemented as an iOS appli-
cation (iPhone operative system) for post-processing of
videos captured with Parrot’s AR.Drones.

*Correspondence: wilbert.aguilar@upc.edu
Automatic Control Department, UPC-BarcelonaTech, Pau Gargallo Street 5,
08028 Barcelona, Spain

Usually, offline video stabilization techniques are
divided in three stages:

• Local motion estimation
• Motion intention estimation
• Motion compensation

Local motion estimation
In this phase, the parameters that relate the uncom-
pensated image and the image defined as reference are
determined frame by frame. Optical flow [7,8] and geo-
metric transformation models [9-11] are two common
approaches for local motion estimation. Our algorithm
uses the latter one.
Geometric transformation models are based on the esti-

mation of the motion parameters. For this estimation,
interest points should be detected and described. A list
of techniques performing this task can be found in the
literature [12-14], but Binary Robust Invariant Scalable
Keypoints (BRISK) [15], Fast Retina Keypoint (FREAK)
[16], Oriented FAST and Rotated BRIEF (ORB) [17], Scale
Invariant Feature Transform [18] (SIFT), and Speeded Up
Robust Feature (SURF) [19] are common in solving com-
puter vision problems [20]. We are using SURF in this
phase as a state-of-the-art algorithm because our con-
tribution is not focused on reducing delays due to the
calculation of interest points, not being significant. The
delay due to smoothing techniques is higher.
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The second part of the motion estimation process is
interest points matching across consecutive frames. This
is a critical part because the estimated motion parame-
ters are directly dependent on the reliability of matched
points. False correspondences will be removed using an
iterative technique called Random Sample Consensus
(RANSAC), a widely used technique based on a model
from a set of points [21-24]. In our work, RANSAC uses
a simple cost function based on gray level difference,
minimizing the delay.

Motion intention estimation
In a second phase, for ensuring coherence in the com-
plete motion sequence, the parameters estimated pre-
viously are validated in the global and not just in the
relative motion between consecutive frames. The main
objective of motion intention estimation is to obtain the
desired motion in the video sequence suppressing high-
frequency jitters from the accumulative global motion
estimation.
Several motion smoothing methods are available for

motion intention estimation such as particle filter [10],
Kalman filter [11], Gaussian filter [25,26], adaptive filter
[26,27], spline smoothing [28,29], or point feature tra-
jectory smoothing [30,31]. In our approach, the control
signal sent to the MAV is dealt as a known information;
hence, a new and different methodology to those in the
literature is considered. A combination of a second-order
low-pass filter, using as few frames as possible, and action
control input is employed to estimate a reliable motion
intention. We achieve to reduce the number of frames
(time window) required for the smoothing signal using an
optimization process.
Most of the techniques cited perform well in video

stabilization applications, but there is an additional
challenge, not studied in the literature and intro-
duced in this paper, which we have called ‘phantom
movement’.

Phantommovement
A phantommovement is mainly a false displacement gen-
erated in the scale and/or translation parameters due to
the compensation of the high-frequency movements in
the motion smoothing. Sometimes the motion smooth-
ing process removes real movements and/or introduces a
delay in them. Both cases are defined as phantom move-
ments. This phenomenon represents a problemwhen tele-
operating theMAV, and its effects in other state-of-the-art
algorithms will be shown in the ‘Results and discussion’
section.
Additionally, our proposal to solve this problem

will be explained in the ‘Real-time video stabilization’
section.

Motion compensation
Finally, the current frame is warped using parameters
obtained from the previous estimation phase to generate
a stable video sequence.
This paper is organized as follows: the estimation of

local motion parameters in our method is explained in the
next section. In addition, we describe the combination of
RANSAC and gray level difference-based cost function for
robust local motion estimation. In the ‘Motion intention
estimation’ section, we present a motion smoothing based
on a low-pass filter. Then, the ‘Real-time video stabiliza-
tion’ section focuses on the optimization of the algorithm
with minimum number of frames to estimate the motion
intention. Furthermore, we propose a novel approach to
solve the problem of phantom movement. Experimental
results and conclusions are presented in the last section.

Robust local motion estimation
To obtain a stabilized video sequence, we estimate
the inter-frame geometric transformation, i.e., the local
motion parameters. In this phase, we determine the rela-
tionship between the current and the reference frame
as a mathematical model. This process can be struc-
turally divided into two parts: (a) interest point detection,
description, and matching and (b) inter-frame geometric
transformation estimation using matched points. Addi-
tionally, an extra process to ensure robustness is (c) robust
cumulative motion parameters.

Interest point detection, description, andmatching
As mentioned in the latter section, there are several
techniques for detecting and matching interest points.
According to the results presented in [20], the computa-
tional cost of SURF is considerably lower than that of SIFT,
with equivalent performance. Using the Hessian matrix
and a space-scale function [32], SURF locates way-points
and describes their features using a 64-dimensional vec-
tor. Once the vector descriptors are obtained, the interest
point matching process is based on minimum Euclidian
distance in the 64-dimensional feature space.

Inter-frame geometric transform estimation using
matched points
From the matched interest points, motion parameters
between the current and the reference frame can be
estimated. Variations between two specific frames are
mathematically expressed by the geometric transforma-
tion which relates feature points in the first frame with
their correspondences in the second frame [33-35],

Isp = Ht · It (1)

where Isp = [
xsp, ysp, 1

]T and It = [
xt , yt , 1

]T are the
coordinates of the interest points at the reference image
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and the uncompensated image, respectively, and Ht is the
3 × 3 geometric transformation matrix. How to chose the
reference image will be analyzed in the next subsection.
The geometric transformation represented by Ht can

be characterized by different models as appropriate. The
most common models are translation, affine, and projec-
tive models.
In previous works [36,37], we have found experimentally

that in both cases, handheld devices and on-board cam-
eras of flying robots, most of the undesired movements
and parasitic vibrations in the image are considered sig-
nificant only on the plane perpendicular to the roll axis
(scale, rotation, and translations). This type of distortion
can be modeled by a projective transformation, and we
use the affine model in our algorithm as a particular case
of the projective one [38]. The benefit is twofold: a lower
computation time than for the projective model and its
ability for direct extraction of relevant motion parameters
(scale, rotation roll, and translations in the xy-plane).
The affine model will determine different roll angles

for Ht(1, 1), Ht(1, 2), Ht(2, 1), and Ht(2, 2). However, we
estimate the mean angle adjustable to these values. This
model is called nonreflective similarity and is a particular
case of the affine model,

Ht =
⎡
⎣
s cos(φ) −s sin(φ) tx
s sin(φ) s cos(φ) ty

0 0 1

⎤
⎦ (2)

Robust cumulative motion parameters
Robustness in our algorithm directly depends on the cor-
rect matching of interest points in consecutive frames.
RANSAC (see Algorithm 1) is a reliable iterative tech-
nique for outlier rejection on a mathematical model, in
this case, the affine model.

Algorithm 1 RANSAC algorithm based on cost
function

∑
j Jj

1: for j = 1 to N do
2: jth affine transform estimation:Hj
3: jth warping of the ith frame: Frame′

j
4: jth cost function computation: Jj =∣∣∣Frame′

j − Framesp
∣∣∣

5: end for
6: Selection of parameters ofHopt for cost function min-

imization: argmin(φ,s,tx,ty)
∑

j

∣∣∣Frame′
j − Framesp

∣∣∣

Affine transform can be estimated from three pairs
of noncollinear points, but SURF and other techniques
obtain hundreds of these pairs of points. RANSAC is per-
formed iteratively N times using three pairs for each Hj,

obtaining N different affine transforms. The value of N is
based on the required speed of the algorithm. An alterna-
tive is to use an accuracy threshold, but this procedure can
be slower.
The cost function of RANSAC algorithm is a key point.

In our proposal, we use the absolute intensity difference,
pixel by pixel, between the warped and the reference
frame. The intensity on a pixel can be affected by common
problems such as lighting changes; however, this is not sig-
nificant in consecutive frames. Therefore, the parameters
of the affine model Hopt that minimize the cost function
are

arg min
(φ,s,tx,ty)

∑
j

∣∣∣Frame′
j − Framesp

∣∣∣ (3)

The affine model has been selected as the geomet-
ric transform between two frames, the one to be com-
pensated and another used as reference, and there are
several alternatives for selecting the reference frame.
An experimental comparative study was carried out in
[37] on three candidates to be the reference frame: the
initial frame

(
Framesp = Frame0

)
, the previous frame(

Framesp = Framei−1
)
, and the compensated previous

frame
(
Framesp = Frame′

i−1
)
. The analysis for the three

proposed approaches was performed by using data
obtained from an on-board camera of a real micro aerial
vehicle. The obtained results show that the approach
based on the previous frame is the best candidate to
reference.
Finally, the transformation matrixHopt is calculated and

applied on the current frame for obtaining a warped frame
similar to the reference frame, i.e., a stable video sequence.

Motion intention estimation
The RANSAC algorithm, based on the minimization of
the gray level difference, is enough for obtaining a high
accuracy in the image compensation of static scenes
(scenes without moving objects) [36,37]. However, our
goal is to achieve a robust stabilization of video sequences
obtained with on-board cameras in micro-aerial vehicles.
Most of the unstable videos captured with either fly-
ing robots or handheld devices contain dynamic scenes
(scenes with moving objects) mainly due to the cam-
era motion. In this way, some movements of the capture
device should not be eliminated, but softly compensated,
generating a stable motion video instead of a static scene.
The process of approximating the capture device’s

movements is known as motion intention. Several video
stabilization algorithms use smoothing methods for
the motion intention estimation such as Kalman filter,
Gaussian filter, and particle filter. Our approach is based
on a second-order Butterworth filter, a low-pass filter used
for smoothing of signals [39].
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Our experimentation platform is a low-cost MAVs,
which shows a complex dynamic behavior during indoor
flight. Consequently, the videos captured with on-board
cameras usually contain significant displacements and
high speed movements on the plane perpendicular to
the roll axis. Effects of wireless communication problems
such as frame-by-frame display, low-frequency videos,
and video freezing should be also considered.
Using the low-pass filter as a motion intention esti-

mator, most of the problems associated to indoor
flight are avoided. However, freezing effects can even-
tually still appear by a low communication quality.
Motion parameters computed from frozen frames must
be discarded before to continue with the estimation
process.
Once the affine transformation parameters (scale, rota-

tion, and translations x and y) are extracted, as well
as the values of parameters from frozen screens are
removed, the low-pass filter computes the motion inten-
tion as an output without high-frequency signals. Low
frequencies are associated to the intentional motion, and
high frequencies are referred to undesired movements,
thus the cutting frequency depending on the applica-
tion and system characteristics. For cutting frequency, a
higher value means an output video similar to the original
movements, including the undesired movements, while
a lower value means that the output video eliminates
intentional movements. In our case, we use a second-
order filter with the same cutting frequency 66.67 Hz to
smooth the signals of the four motion parameters. An

alternative option is to use a different filter for each
motion parameter.
The undesired movement can be estimated by the

subtraction of the motion intention, obtaining a high-
frequency signal. This signal is then used in image warp-
ing to compensate vibrations and, simultaneously, to
keep intentional motions. It can be seen in Figure 1
the motion intention signal estimated with the low-
pass filter (top) and the high-frequency signal (warping
parameter in the figure) to be compensated (down) for
the parameter angle. Similar graphics can be obtained
for the scale and translations in the x-axis and y-axis
(Figures 2, 3, and 4).

Real-time video stabilization
A robust post-processing algorithm for video stabilization
has been detailed; however, the goal is a real-time version.
In this context, it is worth noting that there are very few
techniques for real-time video stabilization, and the first
challenge to be solved being computational cost. Hence,
calculation time is minimized in [40] by using efficient
algorithms of interest point detection and description.
This method reduces time in motion intention estimation
by means of a Gaussian filter without accumulative global
motion, using the stabilized frames in addition to the orig-
inal frames. Our proposal uses an off-line optimization
process for obtaining theminimum number of frames that
can be applied in real time to the system at hands without
decrease in initial off-line video stabilization performance.
Furthermore, this filter will be combined with the known

Figure 1 Angle. Top: accumulative (blue) and intentional (green) motion signals estimated with the low-pass filter. Bottom: high-frequency signal
to be compensated.
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Figure 2 Scale. Top: accumulative (blue) and intentional (green) motion signals estimated with the low-pass filter. Down: high-frequency signal to
be compensated.

control action signal in order to eliminate the so-called
‘phantom’ movements (in fact, a sort of ‘freezing’) in the
compensated video.

Optimizedmotion intention estimation
To minimize the number of frames required in the
video stabilization process, an exhaustive search has been

implemented by an algorithm that iteratively increases the
number of frames used to estimate the motion intention,
whose results are plotted in Figure 5.
For the optimization process, it is necessary to define an

evaluation metric of the video stabilization performance.
Subjective evaluation metrics can be found in the lit-
erature, such as the mean opinion score (MOS), which

Figure 3 Translation in the x-axis. Top: accumulative (blue) and intentional (green) motion signals estimated with the low-pass filter. Bottom:
high-frequency signal to be compensated.
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Figure 4 Translation in the y-axis. Top: accumulative (blue) and intentional (green) motion signals estimated with the low-pass filter. Bottom:
high-frequency signal to be compensated.

is very common in the quality evaluation of the com-
pressed multimedia [41]. The other possibility is to use
objective evaluation metrics such as bounding boxes, ref-
erencing lines, or synthetic sequences [42]. The advantage
of the three referred objective metrics is that estimated
motion parameters can be directly compared against real
motion. The inter-frame transformation fidelity (ITF) [40]

is a widely used method to measure the effectiveness and
performance of video stabilization, whose mathematics
expression is

ITF = 1
Nf − 1

Nf−1∑
k=1

PSNR(k) (4)

Figure 5Minimization of inter-frame transformation fidelity (ITF).We obtain, using four (4) previous and four (4) posterior frames or using only
six (6) previous frames, a performance as good as using the complete video sequence to estimate the motion intention.
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where Nf is the number of video frames and

PSNR(k) = 10 log10
IpMAX
MSE(k)

(5)

is the peak signal-to-noise ratio between two consecutive
frames, with

MSE(k) = 1
M · N

M−1∑
i=0

N−1∑
j=0

‖Framek(i, j)−Framek−1(i, j)‖2

(6)

being the mean square error between monochromatic
images with size M · N and IpMAX the maximum pixel
intensity in the frame.
Based on the optimization of the objective evaluation

metric ITF, two solutions have been obtained with a per-
formance as high as using the complete video sequence
to estimate the motion intention: a) using four (4) previ-
ous and four (4) posterior frames and b) using only six (6)
previous frames.
Our work is focused on the real-time application, so it

is important to analyze how this issue is affected for both
options: a) For the first case, to use four previous and
four posteriors frames means that the algorithm will be
launched four frames after the video sequence initializa-
tion, and the stabilized sequence will be ready after four
frames. b) In the second case, the algorithm starts six
frames after the video sequence initialization, two frame
later than in the first case, but for the rest of the sequence,
it can be applied without added delay. Considering that
the sample frequency was 10 Hz for the system at hands,
a 0.4-s delay would be introduced in the total computa-
tional time when using the first option. Our algorithm
uses the second option, which relies only on precedent
information.

Phantommovements
Previous video stabilization approaches have obtained
good results eliminating undesired movements in images
captured with handheld devices and complex systems, but
all of them were evaluated using the ITF as cost function.
Although the final video has achieved a good ITF perfor-
mance, i.e., a stable video, the motion smoothing process
has generated phantom movements.
For video post-processing applications, the main objec-

tive is to stabilize the video; hence, phantom movements
do not represent a problem. Notwithstanding, for real-
time applications, the objective is to obtain a stable video,
but it should be as real as possible. In this sense, it is
important to decrease the difference between the real and
estimated motion intention, preserving the ITF perfor-
mance.
The root mean square error (RMSE) [43] is adopted in

order to evaluate the reliability of the estimated motion

with respect to the observed motion. A low RMSE means
that the estimated motion intention is similar to the real
motion intention.
Consequently, the proposed objective evaluation metric

to be optimized is the difference between the estimated
global motion and the observed motion, measured as
RMSE:

RMSE = 1
2F

⎛
⎜⎝

√√√√√
F∑
j=0

(
Ex,j − Tx,j

)2 +
√√√√ F∑

i=0

(
Ey,i − Ty,i

)2
⎞
⎟⎠

(7)

where Ex,j and Ey,i are the estimated global motion of the
jth frame in the x-axis and y-axis, respectively, Tx,j and Ty,i
are the observedmotions of the jth frame in the x-axis and
y-axis, respectively, and F denotes the number of frames
in the sequence.
Two alternatives exist to merge information when com-

puting real motion intention (Tx,j, Ty,i): information
obtained from the on-board inertial measurement unit
(IMU) or the control action data. Choice depends on
the accuracy of the model. In our algorithm, the con-
trol action is employed since IMU information is not
very reliable in most of the micro aerial vehicles. In this
way, the observed motion is defined as a combination
between the control action and the smoothed motion
signal.
Our algorithm of motion intention estimation (see

Algorithm 2) uses control action as a logical gate allowing
the execution of the low-pass filter only when a tele-
operated motion intention is present. Additionally, our
algorithm inserts a hysteresis after the execution of the
action control. The objective of this hysteresis is that the
system reaches its maximal (or minimal, according to the
control action signal) position before the effect of a new
control action.

Algorithm 2 Algorithm of reduction of phantom
movements using the control action information
1: {Ui is the current control action, ERi is the estimated

current motion without phantom movements, Ei is
the estimated current motion using the filter}

2: if Ui �= 0 then
3: ERi = Ei
4: else if ((Ui−1>0)∧(Ei>Ei−1)∨(Ui−1<0)∧(Ei<Ei−1))

then
5: ERi = Ei
6: else
7: ERi = RF · (Ei − Ei−1) + Ei−1
8: end if
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We have defined a reliability parameter 0 < RF <

1. A value of RF close to one leads to achieve a higher
ITF value, i.e., a more stable video with phantom move-
ments. On the other hand, using a value of RF close
to zero, we obtain a less stable video without phan-
tom movements. Our complete algorithm is shown in
Figure 6.

Results and discussion
This section has been divided into three parts: experimen-
tal design, video stabilization performance, and compari-
son with another algorithm.

The experimental design
The AR.Drone 1.0, a low-cost quadrotor built by the
French company Parrot (Paris, France), has been used
as experimental platform for several reasons: low cost,
energy conservation, safe flight, and vehicle size. The pro-
posed methodology has been implemented in a laptop
with the following characteristics: Intel Core i7-2670QM
processor, 2.20 GHz with Turbo Boost up to 3.1 GHz and
RAM 16.0 Gb. Real images of four different scenarios are
obtained with the on-board camera (sample frequency =
10 Hz) and processed. Furthermore, a video has been
recorded with a zenith camera to capture the real motion

Figure 6 Flow chart. Our proposal for video stabilization. We use a combination of motion smoothing and the input control action.
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Figure 7 Scene 1. Top: original video. Bottom: stabilized video.

of the flying robot in the xy-plane. RMSE is selected as
objective measure of motion reliability, comparing the
estimated motion with the observed motion. In order to
obtain a position measure, we use a tracker based on opti-
cal flow [44] and camera calibration method for radial
distortion [45]. Next, the RMSE is computed by com-
paring the estimate with the observed motion (from the
zenith camera).

Video stabilization performance
Now, a visual perception of the results obtained for each
experimental environment is showna in Figures 7, 8, 9,
and 10. Experiments demonstrate that the approach based
on motion intention estimation presented in this paper
is robust to the presence of nearby objects, scenes with

moving objects, and common problems described in past
sections from on-board cameras for MAVs during indoor
flight.

Presence of nearby objects
Nearby objects in the scene represents one of the main
problems of video stabilization, because most of inter-
est points are generated in the objects’ region. The image
compensation is computed using the objects’ motion
instead of the scene motion. However, our process of
matching interest points is based on the RANSAC algo-
rithm and the gray level difference between consecutive
frames as cost function. Consequently, the process of
motion estimation is not performed on the objects’ inter-
est points but on the whole scene.

Figure 8 Scene 2. Top: original video. Bottom: stabilized video.
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Figure 9 Scene 3. Top: original video. Bottom: stabilized video.

Scenes withmoving objects
Moving objects are another common problem. Some
objects with many points cause, during the motion esti-
mation, undesirable tracking of these objects. Once more,
the RANSAC-based process of matching interest point is
not only referenced to moving objects but to the whole
image.

Problems from on-board cameras for quadrotors
Scenes frame by frame, significant displacements, low-
frequency videos, freezing, and high-speed displacements
are frequent problems in images captured with an on-
board camera due to the complex dynamic of the quadro-
tors during indoor flight. In all of them, the change
between two consecutive frames could be considerable,
producing a critical problem in video stabilization. In

our approach, motion intention estimation solves these
problems, and previous rejection of data higher than a
threshold provides additional robustness.

Phantommovements
They corresponds to a phenomenon present in previous
video stabilization techniques, but not still reported. Inde-
pendently of which approach is used, video stabilization
process depends on a phase of motion intention estima-
tion. The phantom movements are generated during the
elimination of the high-frequency movements due to the
motion intention estimation which reduces the frequency
of the movements and the previous motion intention esti-
mators which are not able to detect or correct these
troubles. Our proposal eliminates this phantom move-
ments using a combination of a low-pass filter, as a motion

Figure 10 Scene 4. Top: original video. Bottom: stabilized video.
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Table 1 Evaluationmetrics

Video name Evaluation metric Original L1-Optimal Our approach

Video 1 ITF (dB) 14.09 19.62 19.48

RMSE 0.046 0.028

Video 2 ITF (dB) 13.43 19.57 19.52

RMSE 0.051 0.023

Video 3 ITF (dB) 14.65 20.16 19.89

RMSE 0.047 0.029

Video 4 ITF (dB) 16.96 21.24 21.12

RMSE 0.036 0.017

ITF is the measure of video stability. RMSE is the measure of reliability of the
video movements.

intention estimator, with the control action. However, this
method slightly decreases the ITF value.

Comparison
Our approach has been compared with the off-line
method L1-Optimal [6], which is applied in the YouTube
Editor as a video stabilization option. Results on four dif-
ferent scenes are presented in Table 1 using two evaluation
metrics: ITF and RMSE.
The obtained results show that our algorithm is compa-

rable with the L1-Optimal method. The performance of
our approach with respect to the ITF measure is slightly
lower than L1-Optimal, which means that the output
video is a little less stable. However, the RMSE value,
which represents the similarity between the stabilized

video motion and the intentional motion, is higher in our
approach.
It is worth noting that the ITF measure could be

increased varying the reliability factor RF ∈ [0, 1], but
the RMSE inevitably would decrease. For post-production
applications, the value for RF can be equal to one,
but for applications of motion control based on cam-
era information, the realism of the movement is impor-
tant, so the reliability factor should decrease to zero.
Both, observed and estimated scales are graphically com-
pared in Figure 11 for the technique L1-Optimal and our
approach.

Conclusions
After conducting an initial study of motion smooth-
ing methods, it has been experimentally checked that
the low-pass filter has a high performance as algorithm
for motion intention estimation, eliminating undesired
movements.
However, this method can be optimized using a lower

number of frames without decreasing the ITF measure,
as we have presented in this paper. The cutting frequency
depends on the model characteristics; hence, the informa-
tion about the capture system implicates a considerable
contribution in a calibration phase.
The phantom movements are a phenomenon that had

not yet been studied in the video stabilization literature,
but it is a key point in the control of complex dynamic
systems as micro aerial vehicles, where the realism in the
movements could mean the difference that prevents an
accident.

Figure 11 Comparison of the scales. L1-Optimal (blue), our approach (green), and observed (red).
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The reliability factor is adapted to the purpose of the
application. This application can be a post-production
with a high ITF value and a lower realism or the oppo-
site situation, for real-time video stabilization used in
tele-operation systems.
As a future work, we will extend our video stabiliza-

tion method, using the quadrotor model estimated in
[46], for aggressive environments with turbulence and
communication problems. We will apply it for increas-
ing the performance of detection and tracking algo-
rithms. In [47] we presented a first application for face
detection.

Endnote
aVideo results are provided: www.youtube.com/user/

VideoStabilizerMAV/videos.
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