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Abstract

Conventional end-to-end distortion models for videos measure the overall distortion based on independent estimations
of the source distortion and the channel distortion. However, they are not correlating well with the perceptual
characteristics where there is a strong inter-relationship among the source distortion, the channel distortion, and
the video content. As most compressed videos are represented to human users, perception-based end-to-end
distortion model should be developed for error-resilient video coding. In this paper, we propose a structural similarity
(SSIM)-based end-to-end distortion model to optimally estimate the content-dependent perceptual distortion due to
quantization, error concealment, and error propagation. Experiments show that the proposed model brings a better
visual quality for H.264/AVC video coding over packet-switched networks.
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1 Introduction
Most video coding standards achieve high compression
using transform coding and motion-compensated predic-
tion, which creates a strong spatial-temporal dependency
in compressed videos. Thus, transmitting highly com-
pressed video streams over packet-switched networks may
suffer from spatial-temporal error propagation and may
lead to severe quality degradation at the decoder side
[1]. To protect compressed videos from packet loss,
error-resilient video coding becomes a crucial require-
ment. Given transmission conditions, such as bit rate
and packet loss ratio, the target of error resilient video
coding is to minimize the distortion at the receiver [2]:

min Df g s:t: R ≤ RT and ρ ð1Þ

where D and R denote the distortion at the receiver
and the bit rate, respectively. RT is the target bit rate and ρ
is the packet loss ratio. Note that we assume the transmis-
sion conditions are available at the encoder throughout
this paper. This can be either specified as part of the initial
negotiations or adaptively calculated from information
provided by the transmission protocol [3].
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Assume packet containing video data is lost in the
channel and the decoder performs error concealment.
Clearly, the resulting reconstruction at the decoder is
different from the reconstruction at the encoder and the
difference will propagate to the following frames due to
the prediction chain. Therefore, the key challenge of the
error-resilient video coding is to estimate at the encoder
the reconstruction error and error propagation of the
decoder, which is useful to optimize the coding options
to solve the above minimization problem.
A number of end-to-end distortion models (also known

as joint source-channel distortion models) for video
transmission over lossy channels have been proposed
in the literature. In [4,5], several low-complexity estima-
tion models were presented for low error rate applications.
For a more accurate distortion estimation model, the work
in [2] developed a frame-level recursion distortion model,
which relates to the channel-induced distortion due to bit
errors. Another efficient approach is the well-known
recursive optimal pixel estimation (ROPE) model [3]
and its extensions [6-10], which estimate the overall
distortion due to quantization, error concealment, and
error propagation. Recently, several novel source-channel
distortion models were developed for distributed video
coding [11], generic multi-view video transmission [12],
and error-resilient schemes based on forward error cor-
rection [13].
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However, these models are derived in terms of mean
squared error (MSE), which has been criticized for weak
correlation with perceptual characteristics. As most com-
pressed videos are presented to humans, it is meaningful
to incorporate visual features into the error-resilient video
coding to protect important visual information of
compressed videos from packet loss. Thus, several
region-of-interest (ROI)-based approaches were pre-
sented to better evaluate the visual quality [14,15]. How-
ever, ROI-based approaches do not provide accurate
distortion estimation, and ROI determination may be diffi-
cult for most videos, especially for videos with natural
scenes. Therefore, it is expected that a perception-based
end-to-end distortion model could provide a more general
and accurate perceptual distortion estimation.
In [16], the structural similarity (SSIM)-based end-to-

end distortion was predicted by several factors extracted
from the encoder. Although the variation trend is very
similar at the block level, the estimated SSIM cannot
reach the peak points of the actual SSIM. In [17], a para-
metric model was proposed to accurately estimate the
degradation of SSIM over error-prone networks, in which
the content, encoding, and network parameters are con-
sidered. However, the encoding parameters only included
the number of slices per frame and the GOP length. The
proposed model cannot estimate the relative quality of a
block given different coding modes. In our earlier work
[18], we introduced a block-level SSIM-based distortion
model into the error-resilient video coding to minimize
the perceptual distortion. In [19], improved SSIM-based
distortion model and Lagrange multiplier decision method
are proposed for better coding performance. In [18] and
[19], the expected SSIM scores were estimated by the
expected decoded frames. Due to the nonlinear variation
of SSIM, the estimated SSIM scores may be less accurate,
especially at high bit rate.
In this paper, we develop an SSIM-based end-to-end

distortion model to estimate the overall perceptual dis-
tortion for H.264/AVC coded video transmission over
packet-switched networks. Unlike the traditional end-
to-end distortion model, the perceptual quantization
distortion and the perceptual error propagation distor-
tion are dependent on the video content, which makes
the end-to-end distortion become complex or difficult
to estimate at the encoder. Therefore, this paper provides
two major contributions: 1) a SSIM-based reconstruction
quality model; 2) a SSIM-based error propagation model.
Both models are useful to estimate the content-dependent
perceptual distortion at the encoder. Our extensive experi-
mental results demonstrate that the proposed end-to-end
distortion model can bring visual quality improvement for
H.264/AVC video coding over packet-switched networks.
We would like to mention that the scheme presented
in this paper is an enhanced approach based on our
preliminary work in [20]. Different settings are con-
sidered in this paper, including additional descriptions
of related works, technical and implementation details,
and comparison experiment results to better evaluate
the efficiency of the proposed scheme.
The rest of the paper is organized as follows. Section 2

states the problem and motivation. Section 3 describes
the proposed SSIM-based end-to-end distortion model.
Section 4 introduces the distortion model into the error-
resilient video coding. Section 5 provides the simulation
results and Section 6 concludes the paper.
2 Problem and motivation
For H.264/AVC coded video transmission over packet-
switched networks, the general formulation of the widely
used MSE-based end-to-end distortion can be defined as

D ¼ 1−ρð Þ ⋅DQ þ ρ ⋅DC þ 1−ρð Þ ⋅DP f þ ρ ⋅DP c ð2Þ

where ρ is the packet loss ratio. D is the estimated
overall distortion. DQ denotes the source distortion due to
the quantization. Dc, DP_f, and DP_c represent the channel
distortion due to the error concealment, error propagation
from the reference frames, and error propagation from
the concealment frames, respectively.
With such a model in Equation 2, the end-to-end dis-

tortion can be individually and independently estimated
by the quantization distortion, error concealment dis-
tortion, and error propagation distortion. This model
is appealing because it is easy to calculate and has clear
physical meanings. However, since the perceptual distor-
tion is dependent on the video content, the individual and
independent objective distortion estimation does not
correspond well with human perceptual characteris-
tics. For instance, as shown in Figure 1, since ten com-
pressed or lossy transmitted videos (Live video quality
database [21,22]) have different perceptual characteristics,
a similar objective distortion may result in different levels
of perceptual quantization distortion or transmission dis-
tortion. Therefore, we aim to propose a perception-based
end-to-end distortion model for more accurate estima-
tion of the overall perceptual distortion in the following
section.
3 SSIM-based end-to-end distortion model
To estimate the overall perceptual distortion of decoded
videos, we adopt the SSIM index [23] as the perceptual
distortion metric due to its best trade-off among simplicity
and efficiency [24]. Three important perceptual compo-
nents, luminance, contrast, and structure, are combined
as an overall similarity measure. For two images x and y,
the SSIM index is defined as follows:



Figure 1 Quality comparison. (a) PSNR results for compressed videos; (b) DMOS results for compressed videos; (c) PSNR results for lossy
transmitted videos; (d) DMOS results for lossy transmitted videos.
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SSIM x; yð Þ ¼ l x; yð Þ ⋅ c x; yð Þ ⋅ s x; yð Þ

¼ 2μxμy þ c1
μ2x þ μ2y þ c1

⋅
2σxy þ c2

σ2x þ σ2y þ c2

ð3Þ

where l(x,y), c(x,y), and s(x,y) represent the luminance,
contrast and structure perceptual components, respect-
ively. μ, σ2, and σxy are the mean, variance, and cross
covariance, respectively. c1 and c2 are used to avoid the
instability when means or variances are close to zero.
Based on the perceptual distortion metric, we develop a

novel end-to-end distortion model as follows. In Figure 2,

b denotes the original block and ~b is the corresponding
reconstruction block at the decoder. r̂ and ~r represent the
prediction block of b at the encoder and at the decoder,
respectively. e denotes the prediction residual and its
reconstruction value is ê. If the block is received correctly,
~b ¼ ~r þ ê . When the block is lost, an error concealment
technique is used to estimate the missing content. Let ĉ
and ~c represent the concealment block of b at the encoder
Figure 2 End-to-end distortion model in lossy transmission channel.
and at the decoder, respectively. In this case, ~b ¼ ~c . For a
given packet loss ratio ρ, the general SSIM-based end-to-
end distortion can be expressed as

DSSIM b; ~b
� � ¼ 1−ρð Þ ⋅E 1−SSIM b; ~r þ êð Þf g

þρ ⋅ E 1−SSIM b;~cð Þf g
ð4Þ

with

E 1−SSIM b; ~r þ êð Þf g ¼ 1−E SSIM b; ~r þ êð Þf g
¼ 1−Φr ⋅E b; r̂ þ êð Þ ð5Þ

E 1−SSIM b;~cð Þf g ¼ 1−E SSIM b;~cð Þf g
¼ 1−Φc⋅SSIM b; ĉð Þ ð6Þ

where E{ } is the expectation operator. Φ is the error
propagation factor. It indicates how the transmission
errors from prediction block or concealment block in-
fluence the quality of current block. SSIM b; ~r þ êð Þ and
SSIM b;~cð Þ denote the quality of prediction coding and
error concealment at the decoder, respectively. SSIM
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b; ~r þ êð Þ and SSIM b; ĉð Þ are the quality of prediction
coding and error concealment at the encoder, respectively.
With this formula, the reconstruction quality SSIM
b; r̂ þ êð Þ and error propagation factor Φ are the key
terms of the SSIM-based end-to-end distortion model.
In the following section, we will make a development of
the two terms based on content dependency.

3.1 Development of reconstruction quality model
In this section, we aim to estimate the content-dependent
reconstruction quality SSIM b; r̂ þ êð Þ at the block level
(the 4 × 4 transform and quantization unit is used
throughout this paper). Since the accurate reconstruc-
tion quality can only be obtained after de-quantization,
the proposed quality estimation reduces the computational
complexity of de-quantization process for each candidate
modes.
According to the SSIM index, the reconstruction quality

is derived as

SSIM b; r̂ þ êð Þ ¼ l b; r̂ þ êð Þ⋅c b; r̂ þ êð Þ⋅s b; r̂ þ êð Þ ð7Þ
with

l b; r̂ þ êð Þ ¼ 2μbμr̂ þ 2μbμê þ c1
μ2b þ μr̂

2 þ μê
2 þ 2μr̂μê þ c1

ð8Þ

c b; r̂ þ êð Þ⋅s b; r̂ þ êð Þ ¼ 2σbr̂ þ 2σbê þ c2

σ2b þ σ r̂
2 þ σ ê

2 þ 2σ r̂ ê þ c2

ð9Þ
From Equations 8 and 9, we can see that the estimation

of content-dependent reconstruction quality is converted
to the estimation problem of three content-independent
parameters: 1) the variance of reconstructed prediction re-
sidual; 2) the cross-covariance between the reconstructed
prediction residual and current block; 3) the cross-
covariance between the reconstructed prediction residual
and prediction block.
It is reported that the DCT coefficients of prediction

residual closely follows a zero-mean Laplacian distribution
[25]. Based on this phenomenon, the work in [26] proved
that the reconstruction distortion from the prediction re-
sidual can be estimated by the Laplacian parameter and
the quantization step. Extending the derivation in [26] into
pixel-domain, we establish the following two estimation
models for above parameters:

σ ê
2

¼ Mvar α;QPð Þ⋅ σ2e ; α ¼
ffiffiffiffiffiffiffiffiffiffi
2=σ2e

q
ð10Þ

σbê ¼ Mcov β;QPð Þ⋅ σbe; β ¼
ffiffiffiffiffiffiffiffiffiffiffi
2=σbe

p
ð11Þ

where α and β denote the Laplacian parameters. QP is
the quantization parameter in H.264/AVC. Mvar and Mcov

indicate the scaling maps, which vary from 0 to 1.
The scaling maps Mvar and Mcov are modeled based
on four video sequences [27]: ‘Crow_run’, ‘In_to_tree’,
‘Ducks_take_off ’, and ‘Old_town_cross’, which have
abundant and various structural information. Each se-
quence is coded as intra-frame (I frame) and inter-frame
(P frame), respectively. To cover various reconstruction
variances, 11 different QP values are tested, ranging from
15 to 45 uniformly with the step size of 3.
Firstly, we calculate the variance of initial and recon-

structed prediction residual with different QP values.
Secondly, we obtain the scaling curve by doing statistics
analysis for each test QP. Finally, we interpolate the eleven
scaling curves to establish the scaling map. Based on the
simulations, the fitted scaling map Mvar and Mcov are
shown in Figure 3, which can be constructed as look-up
tables.
To demonstrate the accuracy of the proposed recon-

struction quality models, 250 frames of each sequence
are coded with constant quantization parameters: 20, 25,
30, and 35, respectively. Table 1 shows the average mean
absolute deviation (MAD) between the actual and esti-
mated variance, cross covariance, and reconstruction
quality. The first two terms denote the accuracy of the
fitted models (10) and (11), respectively. The following
three terms show the accuracy of the final estimated
SSIM scores. It can be seen that the proposed models
are valid to predict the reconstruction quality.

3.2 Development of error propagation model
The error propagation is the key component of the
end-to-end distortion model. Different from the inde-
pendent estimation in conventional MSE-based end-to-
end distortion model, the perceptual error propagation
depends on the source distortion or the concealment dis-
tortion. In this section, our primary goal is to develop the
error propagation models to estimate the overall percep-
tual quality for given transmission errors of prediction
block or concealment block.
The error propagation models are motivated by three

observations. The first observation is related to the impact
of error propagation on the three components of SSIM.
Let Qatt denote the quality attenuation of a given block b
due to the error propagation.

Qatt bð Þ ¼ SSIM b; ~b
� �

=SSIM b; b̂
� �

ð12Þ

To illustrate the fact, Qatt is measured by three different
similarity metrics: 1) luminance component of SSIM, 2)
the contrast and structure components of SSIM, 3) SSIM
index. Figure 4 illustrates an example where the quality
attenuation is calculated by Equation 12 for each frame
suffering from random transmission errors. As shown,
the contrast and structure components have the similar



Figure 3 The scaling maps. (a) For residual variance by intra-coding; (b) for residual variance by inter-coding; (c) for residual cross covariance
by intra-coding; (d) for residual cross covariance by inter-coding.
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changes with SSIM. On the other hand, the impact of
error propagation on the luminance component is limited.
The second observation is made on the relationship fp

between the quality attenuation of block b and the
quality attenuation of its compensation block p. p indi-
cates the compensation block of b, which may contain
the transmission errors. Thus, p can be used to repre-
sent the prediction block r or concealment block c of b.

f p ¼ Qatt bp
� �

=Qatt pð Þ ¼ SSIM b; p̃ð Þ
SSIM b; p̂

� � = SSIM p; p̃ð Þ
SSIM p; p̂

� � ð13Þ

Usually, the quality attenuation of block b correlates
with the quality attenuation of its compensation block
p. In addition, the structural similarity between current
block and its compensation block may be another
factor in estimation of fp. xp is defined as follows to
explore the effect of quality attenuation and structural
similarity on fp.

xp ¼ Qatt pð Þ ⋅ SSIM b; p̂ð Þ ð14Þ

The simulation results are carried out on the same four
sequences as Section 3.1. Each sequence is coded with
Table 1 MAD between actual and estimated scores

Test terms σê
2

σbê l c ⋅ s DSSIM

MAD (Intra-coding) 5.8118 3.4852 0.0001 0.0067 0.0067

MAD (Inter-coding) 2.4700 3.0642 0.00004 0.0056 0.0056
four different QPs: 15, 25, 35, and 45. One I frame
followed by all inter frames (IPPP). To cover various
error propagation, each block is tested with random
transmission errors propagated from prediction block
and concealment block, respectively. Note that the
prediction residuals of block b are not included in this
observation.
Figure 5a displays the simulation results. The mean of

each test frame is recorded as one blue sample, and the
fitted curve of fp (xp) is shown as the red line. It shows
that the quality attenuation of block, in terms of SSIM, is
Figure 4 The quality attenuation due to transmission errors.



Figure 5 Quality attenuation due to error propagation. (a) The
relationship between fp and xp; (b) the relationship between fe
and xe.

Table 2 MAD between actual and estimated SSIM

Test sequences Error propagation from
concealment block

Error propagation
from prediction block

Crow_run 0.0213 0.0238

In_to_tree 0.0112 0.0137

Ducks_take_off 0.0126 0.0140

Old_town_cross 0.0153 0.0173

Average 0.0151 0.0172
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related with the quality attenuation of its compensation
block and the structural similarity. Moreover, it demon-
strates that less quality attenuation of compensation block
or less structural similarity between current block and
compensation block leads to less quality attenuation.
The third observation is related to the impact of pre-

diction residual on the decoded quality. Let Qenh denote
the quality enhancement of a given block b due to its
prediction residuals e. fe represents the relationship
between the quality attenuation of block b with and
without the prediction residual.

Qenh bp;e
� � ¼ SSIM b; pþ eð Þ=SSIM b; pð Þ ð15Þ

f e ¼ Qatt bp;e
� �

=Qatt bp
� �att ¼ SSIM b; p̃þ ê

� �

SSIM b; p̂ þ ê
� � = SSIM b; p̃ð Þ

SSIM b; p̂
� �

ð16Þ

In this observation, the quality attenuation of block b
may link with the quality attenuation of its compensation
block p and the quality enhancement of its prediction
residuals e. xe is defined as follows to explore the effect of
quality attenuation and quality enhancement on fp:

xe ¼ Qatt bp
� �

=Qenh bp̂;ê
� � ð17Þ

The simulation set-up is the same as that in the second
observation. In this observation, each block including the
prediction residuals is tested with random transmission
errors propagated from its prediction blocks. Figure 5b
shows the simulation results. The mean of each test frame
is recorded as one blue sample, and the fitted curve of
fe (xe) is shown as the red line. The results show that a
larger prediction residual leads to a better decoded quality
of current block, and the influence of error propagation
from prediction blocks will be smaller.
According to Equations 13 and 16, the effective ap-

proximation of SSIM b;~r þ êð Þ and SSIM b;~cð Þ can be de-
veloped as

SSIM b; ~r þ êð Þ≈f e xeð Þ⋅SSIM b; r̂ þ êð Þ⋅ SSIM b; ~rð Þ
SSIM b; r̂ð Þ

≈f e xeð Þ⋅SSIM b; r̂ þ êð Þ⋅f p xrð Þ⋅ SSIM r; ~rð Þ
SSIM r; r̂ð Þ

≈Qatt rð Þ⋅f e xeð Þ⋅f p xrð Þ⋅SSIM b; r̂ þ êð Þ
ð18Þ

SSIM b;~cð Þ≈f p xcð Þ⋅SSIM b; ĉð Þ⋅ SSIM c;~cð Þ
SSIM c; ĉð Þ

≈Qatt cð Þ⋅f p xcð Þ⋅SSIM b; ĉð Þ
ð19Þ

Where SSIM r; ~rð Þ and SSIM c;~cð Þ represent the end-to-
end distortion of prediction block and concealment block,
respectively. The approximations used in the equations
represent the estimation of fp and fe.
Based on Equations 18 and 19, the error propagation

factors in Equations 5 and 6 can be obtained by

Φr ¼ Qatt rð Þ⋅f p xrð Þ⋅f e xeð Þ ð20Þ
Φc ¼ Qatt cð Þ⋅f p xcð Þ ð21Þ

To better demonstrate the accuracy of the proposed
error propagation models, Table 2 shows the average
MAD between the actual and estimated SSIM of the
four test sequences. It indicates that video quality at the



Table 3 MAD between actual and estimated end-to-end
distortion

Test sequences [16] [19] Proposed

Park_joy 0.15784 0.01182 0.00880

Blue sky 0.09282 0.00779 0.00780

Mobile calendar 0.12679 0.01444 0.01209

Pedestrian area 0.24684 0.02055 0.01561

Park run 0.19973 0.02865 0.04162

River bed 0.09601 0.00797 0.00560

Rush hour 0.14633 0.01719 0.00762

Sunflower 0.17936 0.01888 0.01078

Shields 0.10850 0.01320 0.00790

Station 0.18221 0.02256 0.01231

Average 0.153643 0.016305 0.013013
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decoder, in terms of SSIM, can be approximately calcu-
lated by the fitted models (20) and (21) at the encoder.

4 Error-resilient video coding
It is widely recognized that intra-update is an effective
approach for error-resilient video coding because decoding
of an intra-coding block does not require information from
its previous frames. To better evaluate the performance
of our proposed model, we incorporate the proposed
Table 4 Detail information of the test sequences

Test sequences Resolution Frame rate (fps)

Flower 352 × 288 30

Football 352 × 288 30

Mobile 352 × 288 30

Stefan 352 × 288 30

Bus 352 × 288 30

Crow_run 640 × 360 25

Park_joy 640 × 360 25

Ducks_take_off 640 × 360 25

In_to_tree 640 × 360 25

Old_town_cross 640 × 360 25

Blue sky 768 × 432 25

Mobile calendar 768 × 432 50

Pedestrian area 768 × 432 25

Park run 768 × 432 50

River bed 768 × 432 25

Rush hour 768 × 432 25

Sunflower 768 × 432 25

Shields 768 × 432 50

Station 768 × 432 25

Tractor 768 × 432 25
SSIM-based end-to-end distortion model into the mode
selection to improve the RD performance over packet-
switched networks. Thus, the optimization problem in
Equation 1 can be converted to the problem of mode
selection between intra-coding and inter-coding as follows:

min J modeð Þf g ¼ minfDSSIMðmodejρ;QPÞ
þλSSIM⋅R mode QPÞgjð

ð22Þ

where DSSIM and R denote the end-to-end distortion
and bit-rate of current coding block. ρ is the packet loss
ratio. mode denotes the coding mode. QP is the
quantization parameter, which is determined by the tar-
get bit rate. According to [8,28,29], the Lagrange multi-
plier λSSIM is determined as follows:

λSSIM ¼ 1−ρð Þ⋅DSSIM
―

⋅ f RTð Þ ð23Þ
where DSSIM

―
denotes the average distortion of previous

coding units. f (RT) is an look-up experimental function
[20], which is inversely proportional to the target bit rate
RT.

5 Experimental results
5.1 Evaluation of end-to-end distortion model
To validate the effectiveness of our proposed models,
the end-to-end distortion models proposed in [16] and
[19] are used as comparison. In [17], the SSIM-based
Target bit rates (Kbps)

2,000 1,300 700 400

1,400 840 500 300

2,800 1,600 800 380

1,700 1,000 500 270

1,700 1,000 560 310

7,500 4,500 2,500 1,500

8,000 5,000 2,600 1,500

7,000 4,500 2,400 1,200

1,000 480 220 120

1,400 620 270 140

2,800 1,400 630 320

7,400 3,400 1,300 560

1,800 1,100 600 400

15,200 8,800 4,600 2,400

8,700 5,500 3,200 1,800

1,500 850 470 280

1,200 650 380 220

5,000 2,400 1,100 560

850 440 250 160

4,100 2,200 1,200 690



Figure 6 Comparison of Rate-SSIM performance. (a) ‘Ducks_take_off’ by with 5% packet loss. (b) ‘Football’ by with 10% packet loss. (c) ‘Park
run’ by with 10% packet loss. (d) ‘Shields’ by with 20% packet loss.
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estimation model is not suitable for a block given different
coding modes. Thus, we did not compare the performance
with the proposed model in [17].
We performed the simulation with ten LIVE sequences

[21,22]. First 100 frames of each sequence are encoded by
Table 5 Simulation results of SSIM again with different packe

Test sequences
Packet loss ratio: 20%

[19] Proposed [

Flower 0.0234 0.0255 0.0

Football 0.0093 0.0171 0.0

Mobile 0.0185 0.0210 0.0

Stefan 0.0192 0.0294 0.0

Bus 0.0312 0.0319 0.0

Crow_run 0.0134 0.0174 0.0

Park_joy 0.0229 0.0241 0.0

Ducks_take_off 0.0056 0.0042 0.0

In_to_tree 0.0200 0.0280 0.0

Old_town_cross 0.0072 0.0170 0.0

Blue sky 0.0131 0.0309 0.0

Mobile calendar 0.0272 0.0239 0.0

Pedestrian area 0.0040 −0.0029 0.0

Park run 0.0318 0.0375 0.0

River bed 0.0069 0.0062 0.0

Rush hour 0.0083 0.0043 0.0

Sunflower 0.0363 0.0554 0.0

Shields 0.0262 0.0589 0.0

Station 0.0039 0.0097 −0

Tractor 0.0147 0.0179 0.0

Average 0.01715 0.02287 0.0
four different QPs: 24, 28, 32, and 36, respectively.
Random packet losses (10% and 20%) are used. Each
experiment is repeated 200 times and the results are
averaged. Table 3 shows the average MAD between the
actual and estimated end-to-end distortion, in terms of
t loss ratios and bit rates

Packet loss ratio: 10% Packet loss ratio: 5%

19] Proposed [19] Proposed

143 0.0182 0.0054 0.0154

132 0.0167 0.0173 0.0174

128 0.0279 0.0112 0.0198

233 0.0334 0.0220 0.0299

387 0.0428 0.0384 0.0447

109 0.0168 0.0091 0.0141

212 0.0240 0.0148 0.0213

001 0.0039 −0.0038 0.0026

163 0.0266 0.0129 0.0248

038 0.0142 0.0026 0.0120

197 0.0366 0.0121 0.0311

222 0.0138 0.0231 0.0125

055 −0.0025 0.0060 0.0013

242 0.0332 0.0129 0.0213

058 0.0065 0.0049 0.0061

062 0.0046 0.0050 0.0045

258 0.0560 0.0292 0.0566

295 0.0512 0.0278 0.0313

.0004 0.0076 0.0007 0.0198

088 0.0166 0.0037 0.0157

1509 0.02240 0.01276 0.02011



Figure 7 Subjective quality comparison of one CIF sequence. (a) Original frame of ‘Stefan’; (b) ‘Stefan’ by ‘MSE-ER’ (SSIM 0.913); (c) ‘Stefan’ by
SSIM-ER [19] (SSIM 0.917); (d) ‘Stefan’ by our proposed (SSIM 0.929).
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SSIM. It is obvious that our proposed model achieves
better performance for most sequences.

5.2 Evaluation of RD performance
To validate the RD performance of error-resilient
video coding, the MSE-based error resilient video
Figure 8 Subjective quality comparison of one 640 × 360 sequence. (a
(c) ‘In_to_tree’ by SSIM-ER [19] (SSIM 0.860); (d) ‘In_to_tree’ by our propose
coding scheme (MSE-ER) and the SSIM-based error-
resilient video coding scheme (SSIM-ER) in [19] are
used as the comparison schemes. For MSE-ER, the
end-to-end distortion is estimated by the ROPE
model [3], which is well studied and regarded as an
advanced MSE-based distortion model, and the
) Original frame of ‘In_to_tree’; (b) ‘In_to_tree’ by MSE-ER (SSIM 0.833);
d (SSIM 0.873).



Figure 9 Subjective quality comparison of one LIVE sequence. (a) Original frame of ‘Station’; (b) ‘Station’ by MSE-ER (SSIM 0.826); (c) ‘Station’
by SSIM-ER [19] (SSIM 0.851); (d) ‘Station’ by our proposed (SSIM 0.869).
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Lagrange multiplier is calculated by the model pre-
sented in [8].
We evaluate the performance on the platform of JM

15.1 [30], in which the SSIM index is adopted as an opti-
mal quality metric. Five CIF sequences [27], five 640 × 360
sequences [27] and ten LIVE sequences [21,22] are tested
in the experiments. The first frame is coded as I frame
and the rest are coded as P frames. The rate control is
turned on. Table 4 shows the detail information of target
bit rates for test sequences. Corresponding to four differ-
ent target bit rates, the initial QP is equal to 24, 28, 32,
and 36 for the first I frame and P frame. Frames are parti-
tioned into one or more slices (each slice contains no
more than 1,200 bytes), and the slices are organized in
packets for transmission where each slice is packed into
one packet. The test sequences are encoded with 5%, 10%,
and 20% random packet loss ratio, respectively. For each
packet loss ratio, four different target bit rates are tested
in the experiments. Each experiment is repeated by 200
Table 6 Average encoding time ratio of SSIM-ER [19] and pro

Test sequences [19] Proposed

Flower 2.77% 4.63%

Football 3.70% 4.99%

Mobile 4.37% 6.95%

Stefan 3.60% 4.78%

Bus 5.33% 7.13%

Crow_run 1.39% 3.98%

Park_joy 2.24% 3.22%

Ducks_take_off 2.40% 2.76%

In_to_tree 1.91% 6.57%

Old_town_cross 3.45% 6.90%

Average 3.12% 5.19%
times, and the results are averaged, which are used as the
final result.
Figure 6 illustrates the results of Rate-SSIM perform-

ance comparison for four test sequences. Moreover, we
choose the MSE-ER scheme as the baseline and calculate
all the simulation results of average SSIM gain with dif-
ferent bit rates and packet loss ratios, which are tabu-
lated in Table 5.
It can be seen that the proposed model yields con-

sistent gains over the MSE-ER for all sequences except
‘Pedestrian area’. Our proposed scheme achieves an
average SSIM gain of 0.0218 or equivalently a bit rate
saving of 15.7%. Comparing to the SSIM-ER [19], our
proposed scheme has better performance of most se-
quences and obtains an average gain of 0.0068. For
some sequences, such as ‘Mobile calendar’ and ‘Pedestrian
area’, although our proposed scheme cannot achieve
the best performance, the quality of the two SSIM-ER
schemes is similar.
posed scheme to MSE-ER, respectively

Test sequences [19] Proposed

Blue sky 4.09% 6.97%

Mobile calendar 6.23% 9.77%

Pedestrian area 3.89% 3.66%

Park run 2.72% 4.85%

River bed 2.64% 2.21%

Rush hour 3.99% 4.46%

Sunflower 6.33% 7.54%

Shields 5.19% 7.43%

Station 3.70% 7.70%

Tractor 2.98% 5.23%

- 4.18% 5.98%
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5.3 Evaluation of subjective quality
Finally, we show the visual quality comparison of recon-
structed images by different error-resilient video coding
schemes. Figure 7 compares the subjective quality of the
25th frame of ‘Stefan’ encoded at 1.7 Mbps with 10%
packet loss. Figure 8 shows the comparison on visual qual-
ity of the 38th frame of ‘In_to_tree’ encoded at 1 Mbps
with 20% packet loss. Figure 9 represents the visual quality
of the 29th frame of ‘Station’ encoded at 0.85 Mbps with
5% packet loss.
For the similar bit rate, the reconstructed images based

on the SSIM-based error-resilient video coding can
provide a better visual quality due to more image details
being protected from transmission errors. On the other
side, the reconstructed images based on the conventional
MSE-based error-resilient video coding suffer from larger
perceptual distortion. Compared to SSIM-ER [19], our
proposed scheme obtains similar or better visual quality.

5.4 Evaluation of coding complexity
Our proposed SSIM-based error resilient video coding
scheme improves the RD performance for lossy transmis-
sion over packet-switched network. However, the computa-
tional complexity of codec is increased due to SSIM-based
distortion calculation and mode selection.
We compare the coding efficiency with different bit

rates and packet loss ratios. Table 6 shows the average
encoding time ratio of SSIM-ER [19] and proposed
scheme to MSE-ER, respectively. The experiments are
performed on a laptop with 3.4 GHz Intel Core i7-3770
CPU and 4G memory running on Microsoft Windows
7 professional platform. Each experiment is repeated 100
times and the results are averaged.
Comparing to MSE-ER, the average computation of

SSIM-ER [19] and proposed scheme increase by 3.65%
and 5.58%, respectively. In addition, different sequences
have inconsistent degree of encoding time, as can be seen
in Table 6. That is because the computation complexity is
also affected by the characteristics of video content and
the results of mode selection. The SSIM-based schemes
may take more time to code the image details, such as
‘Sunflower’ and ‘Mobile’.

6 Conclusions
In this paper, we propose an SSIM-based end-to-end
distortion model for H.264/AVC video coding over
packet-switched networks. This model is useful to esti-
mate the content-dependent perceptual distortion of
quantization, error concealment, and error propagation.
We integrate the proposed end-to-end distortion model
into the error-resilient video coding framework to opti-
mally select the coding mode. Simulation results show
that the proposed scheme outperforms the state-of-the-art
schemes in terms of SSIM.
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