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Abstract

In this paper, we study the potential of the quaternionic wavelet transform for the analysis and processing of
multispectral images with strong structural information. This new representation gives a very good division of the
coefficients in terms of magnitude and three-phase angles and generalizes better the concept of analytic signal to
image. Furthermore, it retains the property of shift invariant and directivity. We show an application of this transform in
satellite image denoising. The proposed approach relies on the adaptation of thresholding procedures based on the
dependency between magnitude quaternionic coefficients in local neighborhoods and phase regularization. In
addition a non-marginal aspect of multispectral representation is introduced. Thanks to coherent analysis provided by
the quaternionic wavelet transformation, the results obtained indicate the potential of this multispectral representation
with magnitude thresholding and phase smoothing in noise reduction and edge preservation compared with classical
wavelet thresholding methods that do not use phase or multiband information.
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Structural similarity measure

1 Introduction

Wavelet transform have shown great success in diverse
fields such as pattern recognition, image denoising,
image compression, and computer graphics. The wavelet
methods tend to give a good compromise for images
containing such a mixture of discontinuities and texture.
Previously, most researchers used the discrete wavelet
transform (DWT) for image processing [1,2]. However,
in many applications, it reaches its limitations, such as
oscillations of coefficients at a singularity, lack of directional
selectivity in higher dimensions, aliasing, and consequent
shift variance. To overcome these problems, Bamberger
and Smith [3] had proposed an effective filter bank for the
directional decomposition of images. This filter has the
important property that it can be critically sampled while
achieving perfect reconstruction. Later, the undecimated
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wavelet transform [4] was used in noise reduction
and provides a shift invariant transformation, but at
the cost of high redundancy.

More recently, the complex discrete wavelet transform
(CDWT)* and the new quaternionic wavelet transform
(QWT) employ analytic filters and propose magnitude-
phase representations, shift invariance, and no aliasing.
Several authors have studied the CDWT and its application
to image denoising. Kingsbury [5-7] introduced a very
elegant computational structure, the dual-tree complex
wavelet transform (DT-CDWT), and incorporates it into
the image restoration and enhancement. The DT-CDWT
overcomes two drawbacks of the DWT. First is that the
real and imaginary parts of CDWT associated with
the pair of the Hilbert transforms are in quadrature;
their magnitudes are almost shift invariant and redundancy
is limited (factor 2 to compare with the undecimated
wavelet transform ratio). Second, the complex phase
encodes the signal location. However, in 2D, the com-
plex representation by dual tree is not a satisfactory
generalization of the analytic wavelet [8]. It has poor
directional selectivity: its single phase can lead to ambiguity
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when translating the image in two directions. Recently,
the concept of generalizing complex wavelets to quaternion
algebra has gained a lot of popularity [8-11]. The
quaternionic wavelet transform has solved the problem of
2D localization. The phase of the QWT is represented by
three angles: the first two encode horizontal and vertical
orientations, while the third encodes texture information
and edge. For the first application, QWT is used for
multiscale image flow estimation [11]. Recently, Soulard
studied the QWT [12] and its application in texture
classification [13]. Gai et al. [14] used the dual-tree
QWT (DT-QWT) in mono-spectral image denoising.

For denoising by classical DWT, Donoho and Johnstone
have introduced the point-wise thresholding method [1,2].
In this scheme, all the wavelet coefficients below a certain
value are set to zero, while the remaining ones were
kept either unchanged (hardshrink) or reduced by the
threshold value (softshrink). This approach offers the
advantages of smoothness and adaptation. After that,
several approaches which consider the influence of
other wavelet coefficients on the current coefficient to
be thresholded have been successively introduced. Cai
and Silverman [15] proposed a thresholding algorithm
by taking into account the neighboring coefficients.
Their experimental results showed apparent advantages
over the traditional term-by-term wavelet denoising. Chen
and Bui [16] extended this idea to the multiwavelet case.
They claimed that multiwavelet denoising outperforms
the neighbor single-wavelet denoising for some standard
test signals. Hailiang et al. [17] proved the efficacy of the
multiwavelet coefficient dependency in the fault diagnosis
of rolling bearings. Chinna Rao and Madhavi Latha [18]
and Chen et al. [19] considered the relationship between
the selective wavelet coefficients in a neighboring square
window localized on the same scale. Experimental results
show that these two methods produce better results
in extended image denoising.

In addition to considering neighbor dependency in
the same wavelet sub-band, Sendur and Selesnick [20]
initiated the approach which takes into account the
parent-child dependency. This idea was taken by Gai et al.
[14]. For thresholding, they applied the bivariate shrinkage
function to model the dependencies between current
QWT coefficients and their corresponding parents. This
method is based on a probabilistic estimator that seeks
the relationship between the coefficients of two successive
scales. They use a marginal approach applied on the real
and imaginary parts of the wavelet coefficients, but the
structural information (magnitude and phase) is not taken
into account. In addition, only the real part is used in
noise estimation.

In another work, the Bayes least squares-Gaussian scale
mixture (BLS-GSM) method [21] is used for distributing
visual artifacts in images during denoising. The intuition
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of this method is the following: the neighborhoods of
coefficients at the adjacent positions and scales are
modeled as the Gaussian scale mixture. The wavelet
coefficients are updated by the Bayesian least squares
estimation. The contributions of this method are twofold:
the full optimal BLS solution is computed for estimating
coefficients, and the covariance between signal and noise is
defined by the vectorial form of the linear least square
(LLS). The pyramidal representation in the local model for
spatial neighbors makes this algorithm efficient. However,
the BLS-GSM approach requires an accurate estimation of
the original signal spectrum density which makes this
algorithm not adaptive. Later, new denoising algorithms
based on the transforms are introduced. Dabov et al. [22]
proposed a block matching and 3D filtering (BM3D)
method inspired by the BLS-GSM and the non-local filters.
2D noisy image patches are separated in 3D data groups.
In each group, patches have similar local structures. The
3D transform includes the 2D transform (discrete cosine
transform, discrete Fourier transform, or periodized
wavelet) within a group, and the 1D Haar transform in
spatial dimensions which is applied to the matched 2D
transformed groups. Shrinkage is done in two separate
steps. In the first, hard thresholding is employed, and
in the second, Wiener filter. BM3D exploits similarity
between overlapping patches and the correlation of wavelet
coefficients and have had optimal performances. But, when
there are a few similar patches in the image, the method
produces suboptimal results.

The local pixel grouping-principal component analysis
(LPG-PCA) denoising procedure [23] has a similar struc-
ture to the BM3D. The difference is in the basis transform.
Each pixel and his neighborhood are grouped into vector
variables (LPG). This vector is PCA transformed, and the
noise is removed by two shrinkage stages. The input of the
second stage is filtered coefficients of the first. LPG-PCA is
based on the local adaptive basis function and preserves
the fine edges, whereas the previous BM3D method uses
the fixed basis function which is less adapted to the local
geometry of the image.

Satellite imaging has an important role in gathering
information about the earth's surface. However, thermal
effects, sensor saturation, quantization errors, and trans-
mission errors generate a noise that deteriorates the quality
and creates a bad effect on image analysis [24]. In [24,25],
the parameters of noise in remote sensing imagery
are estimated. The characteristics of the noise depend
on the type of the image to be processed and on the
system of acquisition. The radar remote sensing systems,
such as a Synthetic Aperture Radar (SAR), are affected by
multiplicative noise in addition to additive noise. In optical
remote sensing multispectral imagery (the images used in
our work), the noise is typically independent of the data
and it is generally additive in nature. This type of noise
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can be represented as a normal distribution (Gaussian),
zero-mean random process. Ultimately, noise reduces
the performances of important techniques of image
processing such as detection, segmentation, and
classification. These processes are performed by assuming
that the noise is an integral part of the process. We can
find some works where image denoising is made as a
pretreatment. However, these approaches are not specified
for satellite imaging. They are an extension of color
image denoising. Luisier and Blu [26] proposed a new
SURE-LET approach to image denoising. In [27], the
authors extend this method to multichannel images.
They used the parent-child coefficient relationship for
thresholding. The efficiency of SURE-LET algorithm was
demonstrated for color and satellite image processing. In
[28], Saeedi et al. use the inter-channel relationship and
dual-tree discrete wavelet shrinkage algorithm based on
fuzzy logic. The authors have focused their work on the
thresholding strategy, but they use a discrete wavelet
transform which has a lack of shift variant. Chaux et al.
[29] proposes a multichannel image denoising algorithm
based on Stein's unbiased risk estimator [30] and on the
discrete wavelet transform. A non-linear spatial estimator
is proposed where this multivariate procedure operates by
cleaning all components (spatial correlations are taken
into account), but an inter-scale relationship is not
considered. To conclude, it is interesting to note that
for these three methods, the phase information is absent
as in the case of the classical denoising approach. In our
work, as we will see later, we propose to introduce this
structural information into the denoising process.

The goal of this paper is not the comparison of different
denoising method categories. More precisely, the com-
parison of new methods such as BM3D or LPG-PCA,
which are based on bloc matching, distances us from the
context of this work. We aim to show the contribution of
analytic dimension and denoising based on regularization
of coefficients depending on the local neighborhood and
phase. At the same time, we introduce the concept of
non-marginal processing in multiband case: due to the
presence of potentially strong common information
between the various bands, we developed a denoising
method based on dual-tree quaternionic transform that
supports all spectral bands simultaneously. Most of
the existing algorithms apply the linear non-optimal
processing separately or marginally in each band.

Another important point considered in our work is
phase information. In most analytical wavelet denoising
methods, only the magnitude of the wavelet is thresholded
because the energy from the image is directed into a
limited number of magnitude coefficients which ‘stand
out’ from the noise. However, one quantity that appears to
be very important in the human perception of images is
phase as illustrated in [31]. The authors took the Fourier
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transforms of two images and used the magnitude infor-
mation from one image and phase information from the
other to construct a new synthetic Fourier transform which
was then back-transformed to produce a new image. The
features seen in such an image, while somewhat scrambled,
clearly correspond to those in the image from which the
phase data was obtained (see Figure 1). This idea is pre-
served in wavelet domain mainly for quaternionic wavelets
where the phase is encoded in three angles. Regularization
of this phase can greatly increase denoising results.

In this paper, we combine non-marginal DT-QWT,
spatial and multiband neighboring thresholding, and
phase regularization, adapted to satellite images, hence
its originality.

The remainder of this article is organized as followed.
The next section summarizes the theory of analytic signal
and of the quaternionic wavelet transform. Section 3
explains how we can incorporate neighboring wavelet
coefficients and phase regularization into image denoising.
In Section 4, we propose a new algorithm by DT-QWT and
neighborhood shrinkage/phase regularization function
adapted to multiband or multichannel images. In Section 5,
experimental results are provided, illustrating the potential
of our approach for the class of real images. Finally, Section
6 is devoted to conclusions.

2 Summary of the quaternionic wavelet theory

In this section, we give the theoretical properties of the
quaternionic wavelet transform which is based on the
generalization of the analytic signal to image. Bulow [8]
provided a strong 2D description of the analytic signal.
He showed that complex algebra is only adapted to 1D
signals, and 2D signal-like images are best described by
quaternion algebra H.

The quaternion algebra is an extension of complex num-
bers to four-dimension (4D) algebra. Every element of H is
a linear combination of a real scalar and three imaginary
units i, j, k with real coefficients, as shown in [8]:

H={q=qy+iq +jq,+kasl9y .9, .95 ,q3€R},
(1)
with i* =2 =1 =ijk=-1, ij=—ji=k, jk=-kj=i, and
ki =—ik=j.
In a polar form, a quaternion is defined by module
and three angles which encode the phase, such as

q = |qle’e’e? (2)

(6, v, @) are computed by the following formulas (for ¢
normalized, i.e., |¢g| =1) [10]:

1 2
6 = — arctan (72%%;_ 6121%2) ) (3)
2 9 + 419293
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phase of (b) appears in the right image.

Figure 1 Importance of phase in image processing. Sample images (a, b). Second row: the phase of (a) appears in the left image and the

2(q0q: + %513)) (4)

1
Y= arctan(
2 9%-41 + 695

1 .
@ = 3 arcsin(2(q,95-914,)) (5)

Each quaternion phase angle is uniquely defined within
the range (6, v, @) €[-m,n] x [-Z,%] x [-Z,Z].

For the complex case, the analytic signal f5(¢) is con-
structed by adding to its associate 1D real signal f(¢) its
Hilbert transform Hf(t) in imaginary part. fy and its
spectrum are given by

ifw<0

0
Falt) = £(0) + P HF (6o Fr(0) ={ Fo) ifo—0  (6)
2F(w) if @ > 0.

The modulus and the argument of fy can be inter-
preted as the instantaneous magnitude and phase.
Strong oscillation around one point of interest is a high
magnitude, and phase indicates the relative location of
this point. For generalization to 2D, Bulow introduced a
definition of the quaternionic bidimensional analytic sig-
nal based on the quaternionic Fourier transform (QFT).
The 2D quaternionic analytic signal for real signal f is
defined as [8]

f?\(X) :f(X) + iinl(X) +jf]-[iz(X) +kai(X) ’ (7)

where X = (x,y).

The functions (fyy .fyy,./1,) are, respectfully, the
total Hilbert transformation and the partial Hilbert
transformations, such as

5()

SuiX) = f(X) = *n%xy’fml(x) =f(X) xx—+,

X
inz(X) =f(X) **

d(x) ’
T
d(x) and J(y) are 2D Dirac distributions along the y-axis
and x-axis, respectively; and ** denotes 2D convolution.

For each spatial position of the 2D analytical signal, the
polar form of Equation 7 provides 2D local magnitude
and phase that can be used to analyze 2D signals.

In order to obtain 2D analytical multiresolution repre-
sentation, the construction of the quaternionic wavelet
transform is based on the generalization of the DT scheme
proposed by Kingsbury [5]. We obtain a 2D analytic
wavelet and its associated quaternionic wavelet transform
by organizing the four quadrature components of a 2D
wavelet (real wavelet and its three Hilbert transformations:
one total and two partial) as a quaternion [11].

To compute the QWT coefficients [12], we can use a
separable 2D implementation of the dual-tree filter bank
shown in Figure 2. During each stage of filtering, we
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Figure 2 Separable implementation of dual-tree filterbank. The four 2D filterbanks give two interpretations: (1) decomposition by three
quaternionic wavelets oriented in horizontal, vertical, and diagonal directions. The sub-bands are A + /B + jC + kD. (2) Decomposition by six complex
Gabor-type wavelets oriented in nri/6 directions. The sub-bands are (A+ D) +i (B—C) and (A—D) +/ (C—B).

Reconstruction

independently apply the two sets of & and g filters, two
Hilbert pairs, to each dimension (x and y) of a 2D image.
Therefore, the resulting 2D dual-tree implementation
comprises four independent filter banks (kh, hg, gh, and
g9) applied to each dimension and operating on the same
2D image. We combine the wavelet coefficients of the
same sub-band from the output of each filter bank using
quaternion algebra to obtain the QWT coefficients. These
coefficients allow us to have a multiscale representation
of analytic signal with module and phase information
(see Equations 1 and 2).

3 Incorporating selective neighboring wavelet
coefficients and phase regularization in image
denoising

3.1 Thresholding by selective neighboring magnitude
coefficients

From the 2D quaternionic wavelet transform, at every
decomposition level, we get magnitude (module) of four
frequency sub-bands, corresponding to an approximation

part and three detail parts. The principle is the same as
that of the classical wavelets. Thresholding is applied to
the coefficients of successive scales and the low-pass
approximation is unchanged. Due to the linearity of
the wavelet transform, the additive noise model in the
image domain remains additive in the wavelet domain
[18] as well as

wii(%,5) = ¥, (%,9) + mca(x, ), (8)

where wy (x,9), yr(xy), and n (x,y) denote noisy, noise-
free wavelet coefficients, and noise components of scale
k and orientation /, respectively.

As explained in Section 1, the noise is assumed Gaussian
and additive. The probabilistic model adapted to the
magnitude of noisy quaternionic wavelet coefficients
is the Rayleigh distribution. The Rayleigh model is a
function of the Gaussian estimation of the squared
real part added to the Gaussian estimation of the
squared imaginary part of noisy coefficients.
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To define the denoising method, it is necessary to
introduce a thresholding strategy adapted to the QWT.
The basic motivation of neighbor thresholding is that if the
current coefficient contains information, it is likely that the
neighbor coefficients also do. (Wavelet coefficients are
correlated in a small neighborhood.) We choose local
windows around every coefficient of our interest, and we
threshold it by using the coefficients in this neighborhood.
The size of the window is predefined as a function of the
image size. We shrink the magnitude of the noisy wavelet
coefficients according to the following formula [18]:

|Wk,l(x7y)’ = |Wk,l(xay)| X T(xvy) (9)

T(x,y) is the shrinkage factor defined as

A,Z
T(x,y) =1- 5 — (10)
S]’ (xay)
T(x,y) if 1> < S?
TMJ):{O s s
]7

) is the universal threshold, with 1% = 20210gb2; o is the
standard deviation of corrupted coefficients; and b* is
the size of local neighborhood window.

In Equation 10, sz is the summation of squared coeffi-

cients in the local window defined as in [19]:

S = almpal s b= b-j. (D)
where j is the level of decomposition and by is a constant
defined according to the size of noisy image and the
support of the wavelet filter. (p,q) varies in the neigh-
boring window centered on the coefficient w (x).
The window size b* varies depending on the level of
decomposition because the correlation between coeffi-
cients varies in successive scales. Figure 3 illustrates a vari-
able size neighborhood window centered at the wavelet
coefficient to be thresholded. The choice of a larger
size decreases the correlation between neighboring
coefficients, while a smaller size brings us back to the
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term-by-term (the
neglected).

The shrinkage factor T of Equation 10 is a function of
the adaptive sum S; and universal threshold . S; depends
on the neighboring window size b”. For each wavelet
coefficient candidate to thresholding, T is calculated
by comparing the sum of neighboring coefficients to
A. Then, the wavelet coefficient is either reduced or
set to zero. Neighboring shrinkage is a generalization
of the term-by-term thresholding.

A recent method proposed by Luisier and Blu [26],
which is based on Stein's unbiased risk estimator [30],
can be used to perform denoising in wavelet domain.
Authors parameterize the denoising process as a sum of
elementary non-linear processes with unknown weight.
They minimize an estimate of the mean-squared error
between the clean image and the denoised one based on
the noisy data alone. However, the neighboring strategy
adopted in our work is based on the direct thresholding
of the coefficients. We want to place our approach
among those using the same concept, but they differ in
the adopted wavelet transform. We can see later that
this strategy is more adapted to combination with the
following phase regularization.

In some applications of image denoising, the value of the
input noise variance ¢* is known or can be measured based
on the information other than the corrupted data. If this
information is not available, one has to estimate it from the
input data, eliminating the input of the actual signal. All
frequency sub-bands of the decomposition are used in the
noise estimation [1,2]. For estimating the Gaussian noise
variance in real and in imaginary parts of noisy wavelet
coefficients, we use the mean absolute deviation relation
proposed by Donoho and Johnstone [2] that is denoted as

2 (median|W| )2

case neighbor dependency is

= 12
o 0.6745 (12)

where median |W] is the median of neighboring coef-
ficients in the local window centered on the coeffi-
cient w(x,y).

b2=7%7
b=5*5
0O0QOOO0OO0000
oJeoJolelololololeolo)e) 2o3e
oo oo0oO0O0doo 0O0O0QOoOooOOo Y33
OO0OPOOOO0OgOO 00000OQOO
S8R0 e33938 358383888
qa

eJolololololeoleoleeoXe) OOOO.8 80 OQOO0O
O0POO0OOO0OgOO O0OOCOdOO o o
OO0 OOOOOAdCO O0POOOJOoOO opego
leJeololeolololelololele) O000COO0O0OO0O0O o @]
OO0CO0OO0OO0OO0OO0O0000O O000O0O0OO0O00 O [o)e]
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Figure 3 Neighborhood window size selection.
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Then, the noise variance according to the Rayleigh
distribution [24] is given by

4-7
2 2
o’ = - o,

(13)
To conclude, the algorithm described in this section is the
adaptation of the method called NeighShrink based on the
squared sum of all the processed magnitude wavelet coeffi-
cients with variable neighborhood window sizes. These sizes
are in function of decomposition levels. The adaptive
threshold value selected according to neighborhood pro-
vides a powerful thresholding procedure greater than the
term-by-term shrinkage approach (experimental proofs
for real wavelet are proposed in [18,19]).

3.2 Phase regularization

In addition to the image denoising by thresholding the
magnitude of the quaternionic wavelet transform, it is
important that the phase of this transform is not
excluded from the process. The three quaternion phase
angles (6, ¥, @) for Equations 3, 4, and 5 are separable.
The first two encode the shift and the third encodes the
textures. More precisely, Bulow [8] defined a shift the-
orem for the quaternionic Fourier transform such as a
shift of the image is an equivalent of an offsite of the two
first terms 6 and y of the phase.

The shift theorem for the QFT [8] approximately
holds for the QWT that conducts a local QFT analysis.
When a shift of image fiX) to AX - d) occurs, the QFT
phase undergoes the following changes:

(6(w), y(u), @(w)) — (0(u) - 277ud,, y(u) - 21vd,, G(w)),

where u = (4,v) are the axes of the 2D QFT domain. d =
(d1do).

Note that the 1D shift is equivalent to the structural
information, but the 2D structure (e.g., corners, T-junctions)
may be more complex than lines or edges and cannot
be described by the shift of the first two angles. The
author observed that when the third angle @ is around + 7,
the codec structure is a line or an edge oriented
along a diagonal. The angle @ can be interpreted as
the relative amplitude of signal energy along the 1D
which manifolds in two orthogonal directions.

Chan et al. [11] demonstrated the importance of the
quaternionic wavelet transform phase in image processing
and analysis. Chan and his co-authors also developed a
multiscale flow/motion estimation algorithm that com-
putes a disparity flow map between two images with
respect to local object motion [32]. Soulard and Carré
have developed an efficient method for texture classifica-
tion, thanks to coherent multiscale analysis brought by the
magnitude and phase of the quaternionic wavelet
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transform [13]. In their approach, the authors used a glo-
bal measure of energy from the magnitude, and they com-
bine it with the weighted standard deviation of the third-
angle quaternionic phase. They observed that this last
measure phase contains structural information that con-
tributed to improving the classification.

From those analyses, we observed that the combination
of QWT magnitude and phase is effective in several image
processing tools. In our algorithm, by adjusting only @& of
the quaternionic sub-band coefficients, a potential interest-
ing change can be observed in image quality, and therefore,
we can improve denoising performance. In our knowledge,
there are very few methods that use phase in the process of
denoising. With analytical decomposition, the only propos-
ition is the Miller and Kingsbury approach [33]. They have
modeled discontinuities in image by using wavelet coeffi-
cients derotated by twice the phase in local scale and the
next coarser scale at the same spatial location. In our work,
we propose a regularization of the phase information. This
approach is sufficient if we want to reduce complexity. We
use a typical first-order regularizer R(@)=C@ to enforce
spatial smoothness [34]. From this concept, quaternionic
wavelet coefficients become

wia(,9) = (weale, )| )eeeke (14)
where |wy (x, y)|r is the thresholded magnitude coefficient
from the NeighShrink method.

We want to extract unique value that defines the global
direction in a sub-band and has structural information at the
same time. For this, the finite matrix C is chosen as a simple
median filter with variant size. The size of smoothing matrix
C changes according to the scale. It should be noted that the
regularization of the phase by median filter is applied to the
thresholded magnitude coefficients; consequently, the phase
regularization is controlled by the value of the magnitude.

To conclude, we note that the denoising method does
not increase the computational cost dramatically. If a real
wavelet transform spends N operations, the construction
of QWT would need 4 N operations. Moreover, denoising-
based real wavelet requires the estimation of the threshold
and the thresholding operation for each coefficient, with
the quaternionic transform. This process is applied for two
informations: magnitude and phase. Finally, the new
operation is the polar conversion.

The process of denoising is illustrated in Figure 4. The
experimental efficiency of phase regularization is shown
in Section 5.

4 Multispectral image denoising by the DT-QWT
and the NeighShrink/phase regularization
algorithm

In the previous sections, we defined the quaternionic
wavelet transform and the thresholding/regularization
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Figure 4 Principle of the dual-tree quaternionic wavelet
denoising.

_

strategy for mono-spectral image. In multispectral image,
different bands are correlated: an image discontinuity
from one band is most likely to occur in at least some of
the remaining bands. It should be noted that in order to
avoid confusion between the spectral bands of the wavelet
transform and the multiband image, the second is called
multichannel.

For denoising, there are two main conceivable strategies:
the first one consists of marginally applying a denoising
process; the second is to devise specific non-separable
multichannel denoising algorithms. Our interest is focused
on the latter strategy. Therefore, we defined a non-linear
method which generalizes a mono-channel approach by
taking into account the relationship between channels
(it is not a marginal approach).
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The ‘clean’ multichannel wavelet coefficients contain
M e N* components y" with m € [1, ..., M]. Typically, M
is equal to three in RGB images. It might be larger for
satellite images. Therefore, the multichannel noisy ob-
servation in the wavelet domain is as follows:

(15)

, y(M)) is the noise-free wavelet vector,
, w™)

Wk,l(xay) = Yk,l(xay) +Nk,l(x,y) 3

where Y2 (Y, ...
N2 (1Y, ..., 1™ is the noise vector, and W2 (W', ...
is the noisy wavelet vector. (x,y) are the coordinates of the
coefficient in the corresponding sub-band, and & and [ are
scale and orientation, respectively.

We see that each coefficient located in position (x, )
and scale k is taken in the vector W (vectors Y, N) with
the coefficients of the remaining channels according to
the same position and the same scale.

In color imaging, it is important to treat pixels as color
components, not as three separate RGB colors. When
only the separate channels are considered, more artifacts
are introduced. For thresholding in the mth channel, the
wavelet coefficient w}’;(x, y) must be modified according to

its spatial neighboring but also depending on the corre-
sponding coefficients of the same scale in the remaining
channels. For this, we propose to combine multichannel
information and spatial information. As in single channel
thresholding, the intra-scale/inter-channel shrinkage factor
T is a function of squared summation S/2 and universal

threshold A* (return to Equation 10). These parameters are
defined in a multichannel case according to the proposed
formulas:

2 _ (m)
S] (x7y) - Z(pg)ehz w] (pa q)

i=1]

+ Zi::m ‘wj(x7y)‘
In Equation 16, we sum neighboring coefficients inside a
window of size b” in scale j and channel m. This first re-
sult is added to the sum of coefficients in the same pos-
ition (x,y) but of all M channels. The threshold is
defined such that A* = 2¢”logh® and the noise variance
o is given by

’ 2

2

(16)

o 4-1 (median|Wc| + median| W, | )2 o
2 0.6745

where median |W,| and median |W,,| are the median of

neighboring coefficients in the same channel 7 and the

median of coefficients of all channels in the same spatial

position, respectively.

In Equations 16 and 17, we give a new formulation of the
parameters that allows us to calculate the multichannel
threshold value T. The first term specified an intra-scale re-
lationship (spatial), and the second defined an inter-channel
correlation. We note that in the second term of S].2 and ¢,
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the sum and the median, respectively, are made on all
channels. When the number of channels is very high, e.g.,
for hyperspectral images, we can define two approaches:
First, only the adjacent correlated channels are considered.
However, when the correlated channels are not adjacent,
we can search correlated bands with a block matching
approach [22]. The proposed algorithm can be adapted to
this second case but with an increase of complexity.

Previous multichannel magnitude thresholding is com-
bined with linear phase regularization. It is important to
notice that the multichannel phases are smoothed separ-
ately following the mono-channel strategy (median filter).
Indeed, inter-correlation between the phases of different
channels is not known, and the formulation of this rela-
tionship is not yet established (this work is in progress).

Proposed multichannel denoising process by the dual tree
quaternionic wavelet transform and the NeighShrink/phase
regularization algorithm is shown in Figure 5 (we
considered a multispectral image with three channels
and decomposed it into three scales).

5 Results and discussion

Different tests are accomplished to rate the effectiveness
of the proposed algorithm in reducing noise and compare
it with known techniques. In the following section, we
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present the denoising results in both single-channel and
multichannel cases. This section is intended to illustrate
the contribution of the quaternionic wavelet transform,
the multiband information in spectral and spatial
thresholding, and the phase smoothing compared to the
methods based on classical real neighboring coefficient
regularization.

5.1 Single-channel denoising
We compare neighborhood thresholding and the
phase regularization method (proposed algorithm called
NeighShrink/phase-smooth) with different thresholding
techniques (soft shrinkage [2], neighboring shrinkage with-
out phase regularization [18], and bivariate shrinkage [14],
called VisuShrink, NeighShrink, and BiShrink, respectively).
For implementation software of the bivariate thresholding
method, we refer to the homepage [35], thanks to Shihua
Cai and Keyong Li. We note that in single-channel denois-
ing, analysis and synthesis of images over all denoising
processes are made by the same dual-tree quaternionic
wavelet transform with five levels of decomposition. We
change only the thresholding methods listed above.

The images used in our experimentation are the
second green band (left image), the first red band
(middle image), and the fourth infrared band (right

| _}_
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S | e | s
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Figure 5 Global scheme multispectral image denoising by DT-QWT and NeighShrink/phase regularization method. The phase smoothed
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image) of satellite images [36]. The first one covers
the area called Sebkha, part of Oran City in western
Algeria, the second is one band of satellite image that
covers part of Mouhammadia City in Algeria, and the
last represents another area of Oran City (Figure 6).
In mono-channel experiments, we have chosen three
independent bands. There is no correlation between
those data, and they are derived from three different
areas. This choice will allow us to see the potential of our
method to denoise various structures in the images. These
single-channel images have the same size of 400 x 400.
Following the model of Equation 8, normally distributed,
uncorrelated, and zero-mean additive noise was generated
for six levels. Then, each band is contaminated with
computer-generated additive Gaussian noise (0, Gf,) to
simulate a noisy image. Inherent low-level noise in the ori-
ginal image was considered as a part of a data. More de-
tails on multispectral images are given in the next section.

The proposed approach has been evaluated using
visual analysis and objective peak signal-to-noise ratio
(PSNR), a criterion which is commonly used as a
measure of noise suppression:

2552NM

S y)-1x)”

(18)

PSNR = 10log,,

where I and I are noisy and denoised images, respectively.
N x M is the size of the images.

The PSNR is simple to calculate, and it is mathematically
convenient in the context of optimization. However,
this objective metric is not very well matched to perceived
visual quality. The structural similarity index (SSIM)
is a very powerful tool which is based on structural
information of distorted images and converges in the
same results as the visual perception. This measure was
highly adapted in our algorithm. It takes into account the
structural dependencies between neighboring pixels when
the PSNR based on the MSE is calculated pixel by pixel.
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The SSIM [37] between reference image I and processed
image I is given by

SSIM(x, y) = U(x,y)c(x, y)s(x, y)

The term [I(x;y) stands for the luminance comparison
function, c(x,y) for the contrast comparison function,
and s(x,y) for the structure comparison.

These functions are given by the following formulas:

(19)

241 + C

@)+ (@) + C

2 01.0} + Cg
_ 21
C(xay) 0_12 +O'j2 + C2 ( )

O'Ii + Cg
s(x,y) =————— 22
( y) (T].O'j + C3 ( )
with C; = (LK})? C, = (LK>)? and

Cy = (LK,)* (23)

where /1, and yi; are the mean intensities of / and 1, respect-
ively. o; and o; are the standard deviations used in the esti-
mation of image contrast, and o,; corresponds to the
covariance between the two images. L is the dynamic range
of luminance (usually the maximum gray level). K; and K,
are two constant parameters to adjust the metric variation
(the Matlab implementation by the authors in [37] used the
values of 0.01 and 0.03, respectively).

Tables 1 and 2 summarize the obtained results in PSNR
(dB) and SSIM (%). In Table 3, we give the average gain of
the two various metric comparisons.

Several conclusions can be drawn from these experiments:

1. VisuShrink does not have any denoising power or
very low performance when the noise level is low
(noise variance: 15, 20).

2. The effect of using only the magnitude neighboring
thresholding (NeighShrink) for the three images is
generally a considerable PSNR and SSIM gain
compared to classical VisuShrink thresholding.

processing gives these images false color (green, red...).

Figure 6 Test images used in the single-channel denoising experiments. Images referred to as image 1 to image 3 (left to right). Red
squares represent the parts displayed in Figures 7 and 8. The images corresponding to different spectral bands are captured in gray. Additional
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Table 1 Comparison of various denoising methods by
PSNR (dB)
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Table 2 Comparison of various denoising methods by
SSIM (%)

Methods Noise variance Methods Noise variance
15 20 25 30 40 50 15 20 25 30 40 50
Image 1 Image 1
Noisy image 2487 2240 2078 1819 1669 1491 Noisy image 8396 7670 7103 6024 5326 4457
VisuShrink 2293 2151 2149 1971 1990 1790 VisuShrink 8463 6596 6645 5319 5587 3655
NeighShrink 2523 2343 2289 2193 2063 1958 NeighShrink 7340 7650 7466 7138 6247 5813
BiShrink 2532 2448 2319 2358 2243 2193 BiShrink 83.09 8157 7671 8885 7204 7451
Proposed algorithm 2624 2565 2502 2436 2312 2299 Proposed algorithm 8653 8557 8361 9280 7493 7578
Image 2 Image 2
Noisy image 2490 2242 2076 1818 1664 1482 Noisy image 8928 8284 7725 6608 5824 4822
VisuShrink 2428 2172 2168 2082 2001 1965 VisuShrink 8387 7032 7047 6497 5880 5756
NeighShrink 2737 2495 2402 2231 1980 23.12 NeighShrink 9252 8706 8467 7973 7156 8286
BiShrink 2674 2547 2501 2048 2340 2353 BiShrink 9153 8823 8827 7559 8388 8215
Proposed algorithm ~ 27.74 2534 2490 2395 2336 2263 Proposed algorithm 9381 9002 8841 8783 8660 86.26
Image 3 Image 3
Noisy image 2507 2258 2090 1823 1663 1481 Noisy image 7012 5994 5242 3991 3268 2497
VisuShrink 2425 2229 2504 2292 2265 2187 VisuShrink 6130 5384 6896 5223 5175 4807
NeighShrink 2732 2626 2545 2259 2246 1913 NeighShrink 8080 7550 7196 56,63 5479 5236
BiShrink 2822 2737 2515 2329 2326 2321 BiShrink 83.92 8093 7337 6472 6455 5946
Proposed algorithm 2802 2842 2655 2502 2503 2492 Proposed algorithm 8436 8462 7741 6967 7401 6802

Wavelet transform: dual-tree quaternionic wavelet transform with five levels.

3. NeighShrink is not efficient as opposed to the
bivariate denoising method in all cases.

4. The addition of phase smoothing to the magnitude
neighboring shrinkage mostly outperforms other
approaches with fixed wavelet. In Table 3, the
comparison for image 1 shows that the average
PSNR and SSIM improvement gained by the
proposed method over NeighShrink (without phase
smoothing) are 2.45 dB and 13.78%, respectively.
When our method is compared to BiShrink, we gain
1.07 dB and 3.73%.

5. For high levels of noise (40, 50), PSNR comparisons
for image 2 and image 3 are not adequate with these
conclusions. However, for the same noise variance
values, the SSIM gives a better result which
corresponds to visual observations. In image 1
(Figure 6), the edges of the squared vegetation are
naturally very disenable over other structures. PSNR
and SSIM are perfectly adapted with this image and
allow very good comparisons. But, image 2 and image
3 (see Figure 6) have mixed structures and in some
noise levels, only the SSIM, which is a structural
metric, gives results that correspond to visual analysis.

For visual evaluation, there are two important criteria:
the visibility of processing artifacts and preserving image
edges. Figures 7 and 8 illustrate denoising results of

Wavelet transform: dual-tree quaternionic wavelet transform with five levels.

single-channel image 1 and image 3, respectively,
from different methods. For a better visualization of the
details and differences between denoising results, only
partial parts of the images are displayed (see red square in
Figure 6). The NeighShrink approach surpasses classical
VisuShrink thresholding for the two images, but the noise
is still present (Figures 7c,d and 8c,d).

The bivariate shrinkage reduces the noise more effectively
than the NeighShrink but details are very smooth

Table 3 Average PSNR and SSIM differences between
denoising algorithms for the three images

PSNR (dB)  SSIM (%)
NeighShrink/VisuShrink Image 1 1.33 898
Image 2 2.23 154
Image 3 0.69 9.31
BiShrink/NeighShrink Image 1 1.20 10.03
Image 2 0.51 1.87
Image 3 1.22 581
Proposed algorithm/NeighShrink  Image 1 245 13.78
Image 2 1.05 575
Image 3 245 11.00
Proposed algorithm/BiShrink Image 1 1.07 3.73
Image 2 0.39 3.88
Image 3 1.24 5.19
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L
Figure 7 Single-channel denoising comparison results in PSNR/SSIM of image 1. (a) Partial noise-free image, (b) noisy image 18.19 dB/60.24%,
(c) VisuShrink 19.71 dB/53.19%, (d) NeighShrink 21.93 dB/71.38%, (e) BiShrink 23.58 dB/88.85%, and (f) proposed algorithm 24.36 dB/92.80%.

¥ (Vo

(see Figures 7e and 8e). Better results are obtained
with the NeighShrink/PhaseSmooth algorithm which
can effectively distinguish the regions of interest from
noise (square vegetation edges in Figure 7f and bottom
structures in Figure 8f enclosed in red circles are
more contrasted), meaning the correction of the third
quaternionic angle is key to realizing the full potential
of the algorithm (Figure 7f).

5.2 Multichannel satellite image denoising

We propose in this section to study the adaptation of the
single-channel algorithm to multispectral satellite images.
There are several sources of noise in optical satellite
images (photonic, electronic, quantization error, etc.), and
the additive zero-mean Gaussian noise model is a realistic
approximation as shown in [24,25].

We perform the multichannel algorithm based on the
DT-QWT and the NeighShrink/PhaseSmooth denoising
strategy where a non-marginal aspect is highlighted. In
order to compare different possible wavelet choices, the
experimental results are derived from the DWT and the
DT-CWT (for these representations, the thresholding
approach is NeighShrink). Phase smoothing cannot be
applied to the DWT (no phase) and the DT-CWT
(the unique phase of this transform is a location informa-
tion and phase smoothing adds nothing to denoising). In
addition, the proposed algorithm is compared to the
DT-QWT-Neighboring shrinkage and the DT-QWT-
Bivariate shrinkage. We specify that the non-separable
denoising is only done by our method. In all other

approaches, the analysis/thresholding/synthesis scheme is
marginally (linearly) performed channel by channel.

The experiments in this section have been carried out
on two seven-band satellite images shown in Figures 9
and 10, which represent two regions called Sebkha and
Sea, parts of Oran City in western Algeria [36]. The first
Thematic Mapper image contains a lake and vegetation
with several roads. The second includes sea and moun-
tains. The coverage areas are 30 x 30 km with resolution of
30 m and size of 400 x 400 x 7. We note that for our com-
parison, denoising methods are applied to the seven bands
of the satellite images. However, only three channels are
used in the display of visual results (red, blue, and infrared
for the Sebkha image and red, blue, and green for the Sea
image; these bands allow differentiation between soil, vege-
tation species, coastal areas, sea, and biomass). This choice
is justified by the fact that these denoising results are sub-
sequently used in the following processes such as segmen-
tation or compression or simply a visual interpretation of
information contained in the images. In this case, we will
need only three bands which correspond to areas of our
interest (vegetation, lakes, sea, mountains, roads, etc.).

We measured the experimental results by the PSNR,
objectively, which is an extension of the definition given
by Equation 18 as

2552NMC

S (O w1 y))

(24)

PSNR = 10log,,

where C is the number of channels.
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Figure 8 Single-channel denoising comparison results in PSNR/SSIM of image 3. (a) Partial noise-free image, (b) noisy image 14.81 dB/24.94%,
(c) VisuShrink 21.87 dB/48.07%, (d) NeighShrink 19.13 dB/52.36%, (e) BiShrink 23.21 dB/59.46%, and (f) proposed algorithm 24.92 dB/68.02%.
.

Table 4 summarizes the obtained results. We observe (average gain 1.14 and 1.06 dB for image Sebkha
the following: and Sea, respectively).
2. DT-QWT and DT-CWT have very close results.
1. Quaternionic and complex wavelet transforms 3. As in the single-channel experiment, the bivariate
outperform the discrete wavelet transform when the shrinkage is more efficient than the neighboring
thresholding strategy (NeighShrink) is the same shrinkage without phase smoothing.

Figure 9 Multichannel Sebkha satellite image denoising. (a) Noise-free image. (b) Noisy image 21.26 dB. (c) Results of DWT and NeighShrink
22.18 dB. (d) Results of DT-CWT and NeighShrink 23.32 dB. (e) Results of DT-QWT and NeighShrink 23.36 dB. (f) Results of DT-QWT and BiShrink
24.57 dB. (g) Results of DT-QWT and NeighShrink/PhaseSmooth 26.14 dB.
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19.21 dB. (g) Results of DT-QWT and NeighShrink/PhaseSmooth 20.87 dB.

Figure 10 Multichannel Sea satellite image denoising. (a) Noise-free image. (b) Noisy image 15.28 dB. (c) Results of DWT and NeighShrink
16.12 dB. (d) Results of DT-CWT and NeighShrink 17.17 dB. (e) Results of DT-QWT and NeighShrink 17.17 dB. (f) Results of DT-QWT and BiShrink

4. Compared to the DT-QWT with neighboring
channel-by-channel shrinkage, the proposed
inter-channels DT-QWT NeighShrink/PhaseSmooth
achieves an improved performance and yields a
larger total PSNR gain (average 2.79 and 3.03 dB for
the two images, respectively). The PSNR gain values

Table 4 PSNR (dB) comparison of multichannel image
denoising algorithms

Methods Noise variance
15 20 25 30 40 50

Sebkha
Noisy image 2514 2289 2126 1873 1706 1556
DWT (NeighShrink) 2609 2379 2218 1963 1794 1645
DT-CWT (NeighShrink) ~ 27.25 2495 2332 2077 1906 1757
DT-QWT (NeighShrink) 2729 2498 2336 2079 19.06 17.57
DT-QWT (BiShrink) 2850 2619 2457 2199 2025 1875

DT-QWT (NeighShrink/ 3009 2777 2614 2355 2180 2029
PhaseSmooth)

Sea
Noisy image 2587 2316 2118 1891 1714 1528
DWT (NeighShrink) 2674 2403 2204 1976 1797 1612
DT-CWT (NeighShrink) ~ 27.81 2510 23.11 2082 1902 17.17
DT-QWT (NeighShrink) 2786 2515 23.17 2083 1902 17.17
DT-QWT (BiShrink) 29.09 2638 2439 2207 2026 1921

DT-QWT (NeighShrink/  30.77 2806 2604 2374 2192 2087
PhaseSmooth)

are greater than the results obtained in
Section 5.1 (2.45 dB).

5. When we compare our method to the DT-QWT
with bivariate shrinkage, we gain 1.06 and 1.66 dB
for the Sebkha and Sea images, respectively. Again,
the multichannel algorithm gives better results than
the single channel (1.24 dB) for the second image.

Figures 9 and 10 illustrate the comparative results
among different multichannel denoising methods and
proposed algorithm applied to the two images. In Figures 9¢c
and 10c (discrete wavelet transform), the noise is very
present. Noise is reduced in Figures 9d,e,f and 10d,e,f), but
these three methods have the tendency to smooth discon-
tinuities. We note that the quaternionic wavelet transform
is greater than the DWT and very close to the CWT, while
the thresholding strategy is only the neighboring shrinkage.
The proposed methods preserve the edges of each structure
near the discontinuities. This is demonstrated in Figures 9g
and 10g where the algorithm incorporating inter-channel
thresholding and linear phase smoothing produces a
sharper image than the DT-QWT with bivariate shrinkage
and neighboring shrinkage for both the Sebkha and Sea
images. Vegetation and squares are identified in Figure 9g,
and lines of mountains are shown in Figure 10g. In most
cases, noise is not entirely removed by our method, but it is
significantly reduced and the edges are sharper.

To conclude, we can say that the new formulation of the
threshold factor of the quaternionic magnitude coefficients,
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the estimation of noise variance based both on spatial and
multichannel dependencies and the multiplication of the
third-angle quaternionic phase by smoothing matrix have a
great impact on satellite image denoising compared to the
classical methods and advanced methods which do
not use the information contained in the phase. All
these experimentations demonstrate that a coherent
analysis is associated with the quaternionic wavelet
transformation and the potential of this multispectral
representation with magnitude thresholding and phase
smoothing for noise reduction and features preservation.

6 Conclusions

In this article, we introduce the 2D multiscale quaternionic
wavelet transform for satellite image denoising application.
We reintroduce the fact that this new representation is
particularly efficient for the description of image features
and more efficient for the detail representation than the
discrete wavelet transform or the complex wavelet trans-
form. As we have reviewed, quaternionic transformation
generalizes 1D complex wavelet to higher dimensions and
offers more information: a phase feature associated with
‘texture’ characteristics. Redundancy brought by the QWT
phase adds complete structural information about local
features of images contrary to the undecimated wavelet
transform that is only associated with the translation
invariance property.

The QWT is not straightforward to interpret, but here,
we gave an application study crossing the gap between
that framework and the way to use this tool by showing
its superiority over standard wavelets in a denoising con-
text. For this, a denoising method based on the DT-QWT
with single-channel and multichannel selective neighboring
coefficient thresholding and linear phase smoothing is
presented. The proposed algorithm applied both in separate
bands and multispectral satellite images reduces noise and
keeps the edges sharp.

The obtained results confirm the efficacy of intra-channel
and inter-channel dependency in thresholding and the
phase regularization in comparison to the term-by-term
classical shrinkage algorithm and the bivariate approach. A
non-marginal strategy developed in our work outperforms
existing methods, both from computational and from a
quality point of view. This improvement is due to the shift
invariance of the QWT magnitude together with the use of
the QWT phase that contains useful structural information
for image analysis. The proposed multichannel model has
the potential to be extended to hyperspectral images and to
introduce more information about phase.

Another question that should be investigated in a future
work is the ability of the proposed method to exploit the
parent-child relationship or inter-scale dependencies in
addition to neighboring intra-scale and inter-channel
correlations. Also, it may be possible to use a non-linear
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dependency of phase and study the relationship between
successive phases on different scales.

Endnotes

“In this article, we only analyze the invertible discrete
representation in order to build a denoising method.
For this, the complex continuous wavelet representation
(for example, complex Morlet) is not described.
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