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Abstract

Segmentation of vasculature in retinal fundus image by level set methods employing classical edge detection
methodologies is a tedious task. In this study, a revised level set-based retinal vasculature segmentation approach is
proposed. During preprocessing, intensity inhomogeneity on the green channel of input image is corrected by
utilizing all image channels, generating more efficient results compared to methods utilizing only one (green)
channel. A structure-based level set method employing a modified phase map is introduced to obtain accurate
skeletonization and segmentation of the retinal vasculature. The seed points around vessels are selected and the
level sets are initialized automatically. Furthermore, the proposed method introduces an improved zero-level
contour regularization term which is more appropriate than the ones introduced by other methods for vasculature
structures. We conducted the experiments on our own dataset, as well as two publicly available datasets. The results
show that the proposed method segments retinal vessels accurately and its performance is comparable to state-of-the-art
supervised/unsupervised segmentation techniques.

Keywords: Color retinal fundus images; Phase map; Segmentation of retinal vasculature; Structure and texture parts of
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1 Introduction
Published ophthalmology studies reveal that there are
often significant differences in clinical diagnosis of ret-
inal diseases among medical experts [1]. Some of these
approaches involve tedious processes. Manual segmenta-
tion has become more and more time consuming with
the increasing amount of patient data. An automatic retinal
vasculature segmentation method may become an integral
part of a computer-based image analysis and diagnosis sys-
tems with improved accuracy and consistency [2].
Considering the conducted research, literature is full

of examples [3-10] on vasculature segmentation, detec-
tion, and other kinds of analysis employing especially su-
pervised/unsupervised classification of pixels in retinal
fundus images [11-19]. Marin et al. [14] and Soares et al.
[15] presented two different supervised methods for
segmentation of retinal vasculature by using moment
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invariant-based features and 2-D Gabor filters, respectively.
Staal et al. [16] proposed a retinal vasculature segmentation
method using centerlines of a vessel base that are extracted
by using image ridges. Budai et al. [17] presented an im-
proved approach using Frangi’s method [18]. Other studies
have employed centerline tracing methods and principal
curves [19,20]. The reader may refer to [21] for more re-
lated studies in the literature.
Level set-based methods have been widely used for

image segmentation [22-34]. In general, these methods
can be classified under two categories: (i) edge-based
[22-30] and (ii) region-based [31-34] methods. However,
level set-based methods have not been extensively
employed in retinal vasculature segmentation. To the
best of our knowledge, there have been only a few stud-
ies in the literature proposing methods based on level
sets to trace vasculature in retinal fundus images. This is
due to challenges of vessel shapes in level set-based
image segmentation methods [24]. Major challenges
posed by the very thin and elongated structure of retinal
vessels are further compounded by poor contrast in
regions of interest for level set-based segmentation
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methods. In one of those studies [24], the level set-based
method is applied only on a selected region of images by
implementing a non-automatic initialization of zero-level
contours. These regions do not have any non-uniform
intensity values. The method in [24] also employs
edge information based on phase map and uses a re-
initialization process to regularize the level set function,
which is a problem in level set-based framework [25].
Moreover, this process requires complex discretization
especially for re-initialization of the level set function.
In addition, the method employs fixed filter coefficients
to generate image features such as edges by using the
log-Gabor filter, which does not generate a proper out-
put to trace extremely thin retinal vessels in fundus im-
ages smoothly. The level set segmentation method [26]
proposed by Pang et al. requires the selection of initial
contour in the form of long strips in the vertical direc-
tion, and this is not an optimal selection. This selection
leads to an increase in the number of iterations to gen-
erate the results. According to the accuracy metric, the
method produces poor results quantitatively on a non-
pathological fundus image. Although they claim to
present a fully automated method, the system requires
mask images from the user. There are other level set ap-
proaches [27-29,31-34] that focus on segmenting other
vasculature structures in different image modalities
such as ultrasound images and magnetic resonance im-
ages (MRIs). However, these region-based methods
[32,33] cannot be used extensively in segmentation of
retinal fundus images due to the form of vascular struc-
tures. Another method presented for retinal vessel seg-
mentation [34] employs region-based level sets and
region growing approaches, simultaneously.
In this paper, we present an improved and automatic

level set-based method for retinal vasculature segmenta-
tion. The presented method utilizes a robust phase map
to determine image structures and seed points around
the vessels in the initialization of the level set function.
The performed tests on pathological and non-pathological
fundus images demonstrate that the proposed method
performs better than the existing approaches based on
level sets.
The organization of the paper is structured as follows.

‘Section 2’ introduces the general information about
retinal fundus images and level set-based methods
developed for segmentation. ‘Section 3’ explains the
proposed method and compares it with the existing ap-
proaches in the literature. Experimental results are given
in ‘Section 4.’ Finally, ‘Section 5’ presents a conclusion and
possible future work in the field.

2 Background
Let I: Ω→ℝ3 be a color image defined on domain Ω→
ℝ2, and let Ii: Ω→ℝ represent the ith color channel of
the image I. Let p = (x, y) ∈ Ω, denote any point in Ω.
Digital images have two additive components: structure
part and texture part. These can be visualized as the car-
toon version with sharp edges and noisy/textured ver-
sion of the original image, respectively [35-37].

2.1 Characteristics of retinal fundus images
Retinal fundus images can be generated in color or gray-
scale format in digital media. The pixels of a retinal fun-
dus image are represented as color values in RGB color
space as seen in Figure 1a,b. In terms of representation
of retinal vessels, these images have mostly structure in-
formation but also a texture part (noise, defects, etc.).
The retinal fundus images can be split into two categor-
ies, namely the pathological retinal fundus images and
the non-pathological ones. The aim of segmentation
methods for retinal fundus images is to separate vascula-
tures from other regions as can be seen in Figure 1c,d.
However, due to the structure of the optic disk and mac-
ula, segmentation of blood vessels of retinal images is
difficult. These regions have a more prominent intensity
inhomogeneity compared to other parts of retinal im-
ages. Furthermore, pathological images may contain de-
fects and disorders such as drusen, geographic atrophy
(GA), and non-uniform intensities. Such disorders also
make the process of segmentation complicated.
As shown in Figure 2, each color channel in RGB color

space can be separated and treated as an independent
grayscale image. Considering those channels, the green
channel component of the retinal image gives the best
structure information to be processed [15,19] even
though some regions such as the optic disk and macula
in this channel component have non-uniform intensity
levels. Let us use I instead of I2 to represent the green
channel component of the given image. In this case, the
model would be as in I = bJ + noise (defects) [33], where
bJ and noise are considered as the structure component
and the texture component, respectively. The green
channel of the given image has some noises but no de-
fects such as drusen, GA, etc.; the noise can be reduced
using a convolution with a Gaussian filter Gσ of standard
deviation σ. In the above equation, J is the true image,
which consists of almost all constant values in an image
region such as the optic disk, and b is referred to as the
intensity inhomogeneity (shading artifact), which changes
slowly throughout that image region.

2.2 Edge-based level set segmentation approach
In this section, we give brief information about segmen-
tation of object and background using edge-based level
set methods. Let C be a closed subset of Ω, that is, the
union of a finite set of smooth Jordan curves Ci. Let Ωi

be the connected regions of Ω\C bounded by Ci. C can
be expressed as the zero-level contour of some scalar
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Figure 1 Sample retinal fundus images and manual segmentations. A pathological image (of size 640 × 480 pixels) from our own dataset
([2,19]) given in (a), a non-pathological image (of size 565 × 584 pixels) from the DRIVE dataset ([3]) given in (b), the manual segmentation image
of (a) given in (c), and the manual segmentation image of (b) given in (d).
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Lipschitz continuous function Φ: Ω→ℝ [22]. The level
set evolution equation of the curve C with the speed
function F is as given in Equation 1:

∂Φ
∂t

¼ F ∇Φj jj jð Þ⋅ ð1Þ

Iterations of level set evolution are adversely affected
by numerical errors and other factors that cause irregu-
larities. Therefore, a frequent re-initialization process,
formulated as ∂Φ/∂t = sign(Φ0) (1 − ||∇Φ||), could be
included to restore the regularity of the level set func-
tion, establishing a stable level set evolution. Here, Φ0
Figure 2 Color channel components of the non-pathological retinal fu
(c) channel components.
is the level set function to be re-initialized and sign(.)
stands for signum function. Re-initialization is per-
formed by interrupting the evolution periodically and
correcting irregularities of the level set function using a
signed distance function. Even with a re-initialization
process, in most of the level set methods such as the
geodesic active counters (GAC) model [23], irregular-
ities can still emerge [25]. Therefore, Li et al. intro-
duced a new energy term called level set function
regularization [25].
Image segmentation based on level set methods typic-

ally consists of two additively combined energy terms,
which are the length regularization term and the speed
ndus image presented in Figure 1b. Red (a), green (b), and blue
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term related to the weighted area. The model is defined
as E(Φ) = μR(Φ) + ϑL(Φ) + αA(Φ), where R(.), L(.), and
A(.) are the level set function regularization term, the
Figure 3 Level set evolutions of the GAC, DRSLE, and ARLS models [2
DRSLE (a), initial level set function with a signed distance function (b), fina
level set function with a binary function (d), final zero-level contour of the
constant function (f), and final zero-level contour of the given image for th
the level set function is re-initialized properly for the GAC model.
zero-level contour regularization term, and the term
adjusting the speed of motion to zero-level contour, re-
spectively. Here, μ, ϑ, and α are weighting parameters.
3,25,28]. Initial zero-level contours of the given image for GAC and
l zero-level contour of the given image for the GAC model (c), initial
given image for the DRSLE model (e), initial level set function with a
e ARLS model (g). Note that the given image can be segmented, if



Figure 4 Flowchart of the proposed segmentation algorithm.
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The level set function can be initialized in three differ-
ent ways. In order to demonstrate the effect to the seg-
mentation results, instead of a retinal fundus image, we
employ a synthetic image that comprises artificially simi-
lar vessels and defects (Figure 3).

1. Initialization with a signed distance function, d(.)
(GAC model [23]) (Figure 3a,b,c):

Φ initial pð Þ ¼
−d p;Cð Þ in Ω0

0 on C
d p;Cð Þ in Ω jΩ0

where Ω0 ðmarked by the
user or selected automaticallyÞ
is an initial region in Ω:

8<
:

2. Initialization with a binary function (distance
regularized level set evolution (DRLSE) model [25])

(Figure 3a,d,e): Φinitial ¼ −c0 in Ω0

c0 in Ω jΩ0

�
, where c0

is a small valued constant.
3. Initialization with a constant function (adaptive

regularized level set (ARLS) model [28]) (Figure 3f,g):
Φinitial = ∓ c0 in Ω.

Edge-based level set methods have some drawbacks.
Sometimes, a global minimum cannot be found and the
methods tend to be slower than other segmentation
methods. The global minimum can be correctly obtained
if the initial contour is set properly. Level set-based
methods also run faster when a narrow band approach
is employed in the segmentation process.

3 The proposed method
Our method can be considered in three main steps as
outlined in Figure 4:

1. Preprocessing
2. Modified phase map estimation
3. Structure-based level set segmentation

More details about these steps are given in the follow-
ing subsections of 3.1, 3.2, and 3.3.

3.1 Preprocessing for correction of non-uniform intensity
A preprocessing step is employed for the correction of
intensity inhomogeneity of retinal fundus images. Firstly,
we apply a trace-based method to reduce noise and then
a shock filter is applied to sharpen the image. Both filters
work based on color information and give more robust
results compared to the scalar approaches presented in
[19,38]. Secondly, the green channel of the filtered image
is extracted. Thirdly, two different images are generated
by applying adaptive histogram equalization on the
green channel image and then by applying a classical
median filter on the equalized histogram image [19].
Lastly, depending on the case (intensity inhomogeneity),
one of the following is executed to produce the cor-
rected image:

1. If the input image does not have intensity
inhomogeneity, only the histogram-equalized
green channel image in the previous step is
taken into account as a corrected image.

2. Otherwise, the corrected image is produced by
division of those generated images.

To apply the trace-based method on color images, the
local geometry for the color image I is obtained by com-
puting the field K of geometry tensors. K is the gradient of

I; K ¼
X

3
i¼1∇Ii∇Ii

T ; where ∇Ii ¼ ∂Ii=∂x; ∂Ii=∂y½ �T .

Moreover, K is expressed as the following for I in RGB
color space [39]:

K ¼ k11 k12
k21 k22

� �
¼ R2

x þ G2
x þ B2

x RxRy þ GxGy þ BxBy

RyRx þ GyGx þ ByBx R2
y þ G2

y þ B2
y

� �
; where

Rx ¼ ∂I1=∂x; Gx ¼ ∂I2=∂x and Bx ¼ ∂I3=∂x
Ry ¼ ∂I1=∂y; Gy ¼ ∂I2=∂y and By ¼ ∂I3=∂y

⋅



Image contour
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Figure 5 Color image with vector geometries. Graphical representation of two orthogonal eigenvectors on a current point p (a). Some two

orthogonal eigenvectors depicted (b), vector edge indicator function g = (1 + λ+λ−)−1 (c), vector gradient norm calculated by
ffiffiffiffiffi
λþ

p
(d), vector

gradient norm calculated by
ffiffiffiffiffiffiffiffiffiffiffiffi
λþ−λ−

p
(e), and vector gradient norm calculated by jj∇Ijj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

trace Kð Þp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

3
i¼1jj∇Ii j

q
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λþ þ λ−

p
(f).
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The positive eigenvalues λ± and the orthogonal eigen-
vectors φ± of K are calculated as

λ� ¼ k11 þ k22 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k11−k22ð Þ2 þ 4k212

q� �
=2; and

φ� ¼ 2k12 ; k22−k11 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k11−k22ð Þ2 þ 4k212

qh iT
:

I

Figure 6 Vector edge enhancement (solid lines) based on vector shoc
without blurring artifact.
Kσ =K * Gσ is obtained by eliminating noise via the
Gaussian filter Gσ, and a more stable geometry is gener-
ated. Here, * is the convolution operator. Kσ is a good pre-
dictor of the local geometry of I. The spectral elements of
Kσ give the color-valued variations such as edge strength
by means of the eigenvalues λ±, and they also give the
k filter. Each image channel smoothed (dashed lines) is sharpened



Figure 7 Image features of the green channel components for retinal fundus images in Figure 1. Edges from phase map [24] (a, b). Note
that extremely slim vessel could not be smoothly estimated.
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corners and edge directions of the local image structures
by means of the eigenvectors φ− ⊥ φ+ (Figure 5). More
clearly, eigenvalues λ± give some information about the
active point as follows:

1. If λ+ ≅ λ− ≅ 0, then the point may be in a homogenous
region.
Figure 8 Features of the green channel components for retinal fundu
shown in (b) and (e), and structures from our modified phase map approa
applied on these test images.
2. If λ+≫ λ−, then the point may be on an edge.
3. If λ+ ≅ λ−≫ 0, then the point may be on a corner.

Tschumperlé et al. [39] suggested designing a particu-
lar field T: Ω→ P(2) of diffusion tensors to define the
specification of the local smoothing method for the
regularization process. It should be noticed that T,
s images in Figure 1. Image edges are shown in (a) and (d), lines are
ch are shown in (c) and (f). Note that our preprocessing step is not
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depended on the local geometry of I, can be defined in
terms of the spectral elements λ± and φ± of Kσ.

T ¼ s− λþ; λ−
� 	

φ−φ−T þ sþ λþ; λ−
� 	

φþφþT
:

(a) (b)

(e) (f)

(i)

Figure 9 Level set evolution. Synthetic image (a), initialization of the level
level contour (c), image edges from modified phase map (d), final level set co
(e), and its level set function (f), final level set contours based on the propose
after 451 iterations (h), slope of final level set function in a band region with s
[25] using the potential function P2 and set by a negative-valued α (j) and a p
shrunk and expanded automatically to match the boundary of vessels. With t
set function in (b) is regularized using the regularization functional R(.), and th
Here, s±: ℝ2→ℝ are smoothing functions (along φ±),
and they change depending on the type of application.
Sample functions for image smoothing are proposed
in [39] as s− λþ; λ−

� 	 ¼ 1þ λþ þ λ−
� 	−a1 and sþ λþ; λ−

� 	 ¼
(c)

(g)

(j) (k)

(d)

(h)

set function with a binary function using c0 = 5 (b), and its initial zero-
ntours based on the proposed method using the potential function P1
d method using the potential function P2 (g), and its level set function
ize of 2c0 (i), final zero-level contours of the given image based on DRLSE
ositive-valued α (k). In (g), with area functional A(.), the initial contour is
he length functional L(.), this fitting has become smooth. The initial level
e final, regularized level set function in (h) is obtained.
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1þ λþ þ λ−
� 	−a2 ; where a1 < a2 . The goals of smooth-
ing operation are

1. To process pixels on image edges along the φ−

direction (anisotropic smoothing)
2. To process pixels on homogeneous regions on all

possible directions (isotropic smoothing). In this
case, T ≅ identity matrix and then the method
behaves as a heat equation

The regularization approach presented by Tschumperlé
et al. [39] is used to obtain the local smoothing geometry
T, based on the trace operator:

∂I=∂t ¼ ∂Ii=∂t ¼ trace THið Þ ð2Þ
where Hi is the Hessian matrix of Ii: Hi ¼
∂2Ii=∂x2 ∂2Ii=∂x∂y
∂2Ii=∂y∂x ∂2Ii=∂y2

� �
:

To sharpen the color images, the shock filter is applied
on each image channel Ii only in one direction φ+ of the
vector discontinuities [39]. Moreover, a weighting function
is added to enhance color image structure without chan-
ging the flat regions. As depicted in Figure 6, such a filter
is formulized as follows [39]:

∂Ii=∂t ¼ sþ λþ; λ−
� 	

−1
� 	

sign φþTHiφþ

 �

Ii φþð Þ

��� ��� ; where
Ii φþð Þ ¼ φ−E− þ φþEþ;

E− ¼

(
0 if

∂Ii bð Þ
∂x

� ∂Ii fð Þ
∂x

< 0

min
∂Ii bð Þ
∂x

;
∂Ii fð Þ
∂x

� �
else

Eþ ¼
0 if

∂Ii bð Þ
∂y

� ∂Ii fð Þ
∂y

< 0

min
∂Ii bð Þ
∂y

;
∂Ii fð Þ
∂y

� �
else

8>><
>>:

ð3Þ
Figure 10 Failure of the proposed method. The level set function is init
level set contours based on the proposed method using heat equation as
method using the potential function P2 without preprocessing (b), binary m
contours based on the proposed method using the potential function P2 (
Here, s+: ℝ2→ℝ, s+(.) = (1 + λ+ + λ−)−0.5 is a decreasing
function, and sub-indexes b and f stand for backward
and forward finite differences, respectively.
The methods based on color information are com-

patible with all local geometric properties expressed
above: I(t + 1) = I(t) + τ1∂I(t)/∂t, where τ1 is an adapting
time step. The adapting time step τ1 is set by the fol-
lowing inequality: τ1 ≤ 20/max(maxp(∂I(t)(p)/∂t), minp
(∂I(t)(p)/∂t)).
3.2 Modified phase map estimation
Another important step followed in preprocessing retinal
fundus images is developing an efficient method for esti-
mation of the image structures in cases, for instance,
where retinal vessel network contains slim and lengthy
vessels with weak edge intensities. According to our ex-
periment, edge-based level set image segmentation
methods give the best results on images that have only
structure information in the segmented regions. Al-
though the method [25] described above could segment
objects in MRIs and other common medical image for-
mats with reasonable success, it may fail to segment ret-
inal vasculature successfully, due to vessels with weak
edge properties. Therefore, an alternative image struc-
ture based on the phase map of the image is employed.
It should be noted that neither the phase congruency-
based method [40] nor the phase map-based approach
[24] (see Figure 7) generates adequate structure informa-
tion for segmentation of vasculature in fundus images
[30]. Therefore, we combine these two methods as de-
scribed below to improve the phase map.
The log-Gabor filter can efficiently extract image fea-

tures such as edges and corners without missing any weak
object boundaries. This filter, generated in frequency do-
main, is a version of logarithmic transformation of the
ialized using the function in Figure 8 for the first two images. Final
a potential function (a), final level set contours based on the proposed
ask for initialization of the level set function (c), and final level set

d).



Table 1 Formulas of some variational image segmentation methods

Group Method Formula

Edge-based GAC [23] ϑ ∇Φk kdiv g ∇Φ
∇Φk k


 �
þ αg ∇Φk k

PBLS [24] ϑjj∇Φjjdiv ∇Φ
∇Φj jj j


 �
−αjj∇Φjjℜ q̂PBLSð Þ

DRLSE [25] μdiv D ∇Φj jj jð Þ∇Φð Þ þ ϑδε Φð Þdiv g ∇Φ
∇Φj jj j


 �
þ αgδε Φð Þ

ARLS [28] μ ∇2Φ−div ∇Φ
∇Φk k


 �
 �
þ ϑδε Φð Þdiv ∇Φk ks ∇ I�Gσð Þð Þ−2∇Φ


 �
þ αδε Φð Þ∇2 I � Gσð Þ

Region-based RBLSE [33] μdiv D ∇Φj jj jð Þ∇Φð Þ þ ϑδε Φð Þdiv ∇Φ
∇Φj jj j


 �
−αδε Φð Þ e1−e2ð Þ;

where ei is the data fitting function of/in region Ωi. See [33] for more details.
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Gabor filter [4], and it has no DC component. In polar co-
ordinates, the filter consists of two components, the radial
part and the angular part. These two components are
combined to create the log-Gabor filter, which is the
transfer function formulated as follows [40]:

Gl r; θð Þ ¼ exp −
log r=f 0ð Þð Þ2

2σr2
−

θ−θ0ð Þ2
2σθ2

 !
:

Here, (r, θ) stands for the polar coordinates, f0 is the
center frequency, θ0 is the orientation angle (direction),
σr = log(υ/f0) defines the scale bandwidth, and σθ defines
the angular bandwidth. In order to keep the shape ratio
of the filter constant, the term υ/f0 must also be kept
constant for varying f0 [40].
The log-Gabor filter can be efficiently used to generate

the phase map instead of the gradient norm in image
segmentation [24,40]. The image is filtered at different
scales in at least three uniformly distributed directions
to grab the poor contrast and vasculature with varying
width [24]. The filter output is complex in the time do-
main, where real and imaginary parts consist of line and
edge information, respectively. Filter responses in each
scale for all directions must be combined to obtain a ro-
tationally invariant phase map. The absolute value of the
imaginary parts is taken to avoid an elimination [24].
Table 2 Parameter values of the methods

Method P

Proposed preprocessing A
τ1
in

Log-Gabor filter [40] and modified phase map f
σ

GAC [23] τ

PBLS [24] τ2

DRLSE [25] τ2

ARLS [28] τ2

Proposed segmentation τ2

RBLSE [33] τ2
With these in mind, the modified phase map q is ob-
tained as in Equation 4:

q ¼
XO

k¼1

XS

l¼1
jj�qk;ljjβ�qk;lXO

k¼1

XS

l¼1
jj�qk;ljjβ

: ð4Þ

Here, �qk;l ¼ ℜ qk;l

 �

þ ℑ qk;l

 ���� ��� ffiffiffiffiffiffi−1

p
, O is the number

of the orientation angles, S is the number of the scales, �qk;l

is the filter response based on the corrected phase, and β
is a weighting parameter. The normalization q̂ ¼ qjjqjj=
jjq2 þ σq2
� 	

is also used to regularize the phase map. Here,
σq stands for a threshold used to reduce noise effect [24].
Since edges align with the zero crossings of the real part of
the phase map, the function ℜ q̂ð Þ can be used to estimate
image edges as in [24]. Moreover, ℑ q̂ð Þ gives image lines,
and the norm of the filter response, formulated as jjq̂jj ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℜ q̂ð Þ2 þ ℑ q̂ð Þ2
q

, gives the strength of the image struc-

ture. So, the image structures of the green channel of ret-
inal fundus images are estimated efficiently and correctly
by using the log-Gabor filter as seen in Figure 8.

3.3 Structure-based level set segmentation method
A novel structure-based variational method is proposed in
this study in order to trace retinal vasculature. The level set
function in [25] can be discretized more easily compared to
arameters

mplitude of the trace-based filter is 30, amplitude of the shock filter is 45,
= updated at each iteration, other parameters of these filters are kept as
the related study [39], and kernel size of median filter is 25 × 25.

0 xð Þ ¼ 3� 2:1 x−1ð Þ� 	−1
; 1≤x≤S ¼ 3 ; σr ¼ log 0:55ð Þ;

θ ¼ 1:2; θ0 xð Þ; 1≤x≤O ¼ 8 ; β ¼ 1 ; and σq ¼ 3⋅

2 ¼ 0:2; ϑ ¼ 1; andα ¼ 0:3

= updated at each iteration, ϑ = 0.07, and α = 1

= 5, σ = 1.5, μ = 0.04, ϑ = 5, α = ± 1.5, and c0 = 2

= 5, σ = 1.4, μ = 0.04, ϑ = 2.7, α = ± 1, and c0 = ±1

= 1, μ = 0.2, ϑ = 0.6, α = 3, and c0 = {2, 5}

= 0.1, σ = 4, μ = 1, ϑ = 0.01 × 2552, and c0 = 1
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other methods in the literature since it has a level set
regularization term. The discretization process uses cen-
ter/forward difference model instead of other complex
discretization schemes [23,24]. For instance, in the GAC
model in [23], the upwind method is used for the calcula-
tion of the gradient norm of the level set function Φ, and
for the re-initialization of the level set function Φ, essen-
tially non-oscillatory (ENO) scheme is employed. There-
fore, the same level set function regularization term of the
DRLSE method [25] is used in the proposed method.
In the DRLSE method [25], the formulas of R(Φ) = ∫Ω

P(Φ)dp, L(Φ) = ∫Ω gδε(Φ)||∇Φ||dp and A(Φ) = ∫Ω
gHε(−Φ)dp are employed for segmentation. Here, P(.) is
a potential function. The length functional L(.) smoothes
the zero-level contour. The area functional A(.) helps ac-
celerate the level set evolution when the initial contour
is located far away from the object boundaries. For dem-
onstration, see Figure 9.
In edge-based level set approaches, a smooth edge

indicator function is generally obtained from the gra-
dient norm of the Gaussian-filtered image. One choice
is g = (1 + ||∇(Gσ * I)||

2)−1. The edge indicator function
(a) (b)

(d) (e)
Figure 11 Preprocessing step and segmentation of non-pathological
image using the scalar approach [19,38] (a), the image generated by subtra
the sharpened image (c), the estimated intensity inhomogeneity image ob
segmented image using the proposed structure-based level set segmentat
g carries key information to locate the zero-level con-
tour. Hε andδε ¼ H

0
ε are finite-width approximations

of the Heaviside function and Dirac-delta for ε:

Hε xð Þ ¼

(
1
2

1þ π

ε
þ 1
π
sin

πx
ε


 �� �
; xj j≤ε

1; x > ε
0; x < −ε

and

δε xð Þ ¼
1
2ε

1þ cos
πx
ε


 �h i
; xj j≤ε

0; xj j > ε

(

where, in general, the parameter ε is set to 1.5.
The level set function regularization term should

have a minimum to maintain the signed distance
property of ||∇Φ|| = 1 in a band region around the
zero-level contour as depicted in Figure 9i, instead of
the heat equation [25] that enforces ||∇Φ|| = 0, even-
tually. So, the solution, based on the potential function
P1(||∇Φ||) = 0.5(||∇Φ|| − 1)2, is formulated as follows
[25]:
(c)

(f)
retinal fundus image obtained from DRIVE dataset. The smoothed
cting the original green channel image from the smoothed one (b),
tained by using the median filter (d), the corrected image (e), and
ion method after 61 iterations (f).
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∂ΦR

∂t
¼ μdiv D ∇Φj jj jð Þ∇Φð Þ ¼ μ ∇2Φ−div

∇Φ
∇Φj jj j

� ���
ð5Þ

The sign of D(||∇Φ||) = 1 − (1/||∇Φ||), where D(x) = x−1

∂P(x)/∂x indicates the property of the diffusion term
Figure 12 Preprocessing step and segmentation of non-pathological
image using the trace-based approach [39] (a), the image generated by su
(b), the sharpened image [39] (c), the estimated intensity inhomogeneity im
based on our approach (e), segmented image using the proposed structur
only green channel of the given image based on the proposed structure-b
segmented result using only green channel of the histogram-equalized given
method without preprocessing after 61 iterations (h).
based on anisotropic regularization in the following two
cases [25]:

1. For ||∇Φ|| > 1, the diffusion rate μD(.) is positive and
the diffusion is forward, which decreases the term
||∇Φ||
retinal fundus image obtained from DRIVE dataset. The smoothed
btracting the original green channel image from the smoothed one
age obtained by using the median filter (d), the corrected image

e-based level set segmentation method (f), segmented result using
ased level set segmentation method without preprocessing (g), and
image based on the proposed structure-based level set segmentation
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2. For ||∇Φ|| < 1, the diffusion is backward, which
increases the term ||∇Φ||

However, this regularization term may cause an unsatis-
factory result on the level set function when ||∇Φ|| is
close to 0 outside the band region as shown in Figure 9e,f.
So, as given in Figure 9g,h, a corrected potential function
is given as follows [25]:

P2 xð Þ ¼
1

2πð Þ2 1− cos 2πxð Þð Þ if x≤1
1
2

x−1ð Þ2 if x≥1⋅

8><
>:

In the proposed method, the initial contours have to
be set automatically around vessels in order to find the
global minimum in a segmented image correctly.
Sometimes, there is a risk of getting stuck in a local
minimum due to the fact that retinal fundus images
include defects such as drusen, GA, etc. So, seed
points should be chosen around vessel regions to gen-
erate a desirable result. Note that the seed points can
be set in or out of vessel areas, but they should be
very close to the vessel structures (compare Figures 9
and 10). There is another approach, called the ARLS
method [28] in the literature, utilizing automatic initial
contours based on Laplacian of Gaussian (LoG) filter.
This method is not proper for segmenting retinal vas-
culature, as the filter is very sensitive to noise, and
there is a risk in the automatic initial contours if the
retinal fundus image contains pathological regions. On
the contrary, in the proposed method, the real part of
the modified phase map has zero-crossing boundaries,
and the method ensures to find the global minimum if
the initial contour is selected around vasculature
(a) (b
Figure 13 Level set evolution with setting parameter values for a non
α = 1.5 (a), ϑ = 0.8 and α = 2.5 (b), and ϑ = 1 and α = 3 (c).
regions (Figure 9a,b,c,d,e,f,g,h). Therefore, we improve
the speed term based on the area functional A(.) as
follows:

∂ΦA

∂t
¼ −αδε Φð Þℜ q̂ð Þ⋅ ð6Þ

In our method, iso-contours automatically shrink
when the contour is outside the object due to the func-
tional of A(.) returning a positive contribution, or they
automatically expand with a negative value in A(.) when
the contour is inside, regardless of the sign of α values
as in the existing method [25] (Figure 9j,k).
To eliminate staircasing effect [41] and not to miss weak

object boundaries [28], a potential function based on
weighted total variation (WTV) model is used as P3 Φð Þ ¼
∇s ∇ I�Gσð Þð Þ
s ∇ I�Gσð Þð Þ . Here, s: ℝ→ [1,2) is a monotonically decreasing

function [27,28,41]. Such a function used in the ARSL
method [28] is not capable of regularizing zero-level con-
tours because of the smoothed gradient norm which can-
not generate image structure. Furthermore, the total
variation (TV) model, presented in the PBLS method [24],
will not smooth zero-level contours completely, generat-
ing unsatisfactory results. Therefore, we suggest a modi-
fied oriented Laplacian flow as in Equation 7, originally
employed in image denoising [39,42], in order to
regularize the zero-level contour:

∂ΦL

∂t
¼ ϑδε Φð Þ Φξξ þ s q̂k kð ÞΦηη

� 	 ð7Þ

where s q̂j jj jð Þ ¼ 1þ jjq̂jj2� 	−1
, Φζζ = ζTHζ, Φηη = ηTHη,

and H is the Hessian of Φ. The unit vectors η and ζ are
represented by the gradient direction and the tangential
) (c)
-pathological image obtained from DRIVE dataset. ϑ = 0.4 and
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(its orthogonal) direction, respectively. Here, η =∇Φ/
||∇Φ|| and ζ = η⊥. s(.) depends on the value of the
strength of the image structure jjq̂jj, which is generated
from phase map. So, along the zero-level contour, the
oriented Laplacian flow has a strong smoothing effect.
As a result, our approach is more efficient compared to
the PBLS method [24] to regularize zero-level contours.
(a) (b)

(d) (e)

(g) (h)
Figure 14 Segmentation processes of a non-pathological retinal fundus
obtained using the proposed phase map (b), image structure obtained using
thresholding [43] (d), skeletonized version of (d) after eliminating outliers (e),
after 2 iterations (g), segmented image using the proposed method after 51
3.4 Proposed segmentation method
The proposed method accepts a retinal fundus image in
RGB color space as input. Firstly, a simple mask is ob-
tained to exclude the exterior parts of the fundus where
the color is in the 0-U interval in all three channels
(generally very dark regions). Also, an iterated erosion op-
erator whose structure element is B ¼ 0; 1; 0; 1 ; 1; 1;½
(c)

(f)

(i)
image obtained from DRIVE dataset. Mask image (a), image edge
the phase map (c), binary image obtained from (b) using Otsu
dilated version of (e) (f), segmented image using the proposed method
iterations (h), and the level set function after 61 iterations (i).
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0; 1; 0�T is applied on the mask for proper execution.
Secondly, a preprocessing step is employed to obtain a
corrected image in terms of intensity inhomogeneity.
Thirdly, we compute the phase map by using the cor-
rected image as input. Afterwards, to eliminate some small
non-blood vessels region, Otsu’s method [43] is applied on
the processed image. As a result of these processes, a
skeleton-based image giving the centerlines of the vascula-
ture is generated with the following steps: (i) remove dis-
connected pixels, (ii) obtain skeleton-based image, (iii)
find junctions, (iv) trace lines (centerlines) and label them,
and (v) clean short lines. Here, a threshold value is used to
eliminate tiny little short lines called artifacts.
In order to set the optimum initialization of the zero-

level contour, seed points have to be selected around the
vasculature according to the centerline obtained based on
phase map properties. Here, a morphological dilation op-
erator whose structure element is B ¼ 1; 1; 1; 1 ; 1; 1;½
1; 1; 1�T , is performed on the centerlines to generate a
proper initial contour. Finally, the proposed method cre-
ates the output by using the structure-based level set
method. Our level set function is minimized by using
Euler Lagrange and the iterative gradient descent proced-
ure as follows:

∂Φ
∂t

¼ μdiv D ∇Φj jj jð Þ∇Φð Þ þ ϑδε Φð Þ
� Φζζ þ s q̂j jj jð ÞΦηη

� 	
− αδε Φð Þℜ q̂ð Þ⋅ ð8Þ
Figure 15 Preprocessing step and segmentation of a non-pathologica
of the given image in Figure 1a (a), estimated intensity inhomogeneity ima
image that is obtained by our method (c).
Note that values of the edge indicator function g, used
in [25], are in the [0,1] interval. In the proposed method,
the sign of the coefficient α in the level set energy func-
tional can always remain positive in contrast to the earlier
method [25] since the function ℜ q̂ð Þ obtained from the
phase map has a different sign around object boundaries.
The proposed level set evolution equation culminates in

Φ(t + 1) =Φ(t) + τ2∂Φ(t)/∂t where τ2 is a time step, which is
set by τ2 ≤ (4 μ)

−1 based on Courant-Friedrichs-Lewy
(CFL) condition with 4-neighbor connectivity [25,44].
The initialization of level set function is important. If

the seed points are selected away from the vessel centers
and close to pathological regions, the proposed method
can fail (wrongly segmenting the pathological region, as
well) as shown in Figure 10d.

4 Experimental results
The proposed method is tested on DRIVE [3], STARE
[11], and our own datasets [2,19] for this study. Our 34
wide-angle fundus images are grabbed from premature
infants supplied by the RetCam II camera and delineated
by medical experts. The images from different experts
are combined to create one ground truth image for each
one of the fundus image [1,2]. Some methods used in
this study are summarized in Table 1. The chosen pa-
rameters of the algorithm are given in Table 2. Eight
uniformly distributed angle directions and three image
re-sampling scales for the log-Gabor filter are used in
the method. The maximum number of iterations for the
l retinal fundus image obtained from our dataset. Green channel
ge that is obtained by using the median filter (b), and the corrected
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main algorithm depends on the radii of the vessel, and
for this study, it is experimentally set as 60 + 1 (extra
regularization of the zero-level contour via level set evo-
lution with α = 0). The threshold values of U for creating
mask images are set to 40, 40, and 45, for DRIVE data-
set, our dataset, and STARE dataset, respectively. More-
over, small gaps in the created mask image for STARE
dataset are filled using a morphological closing operator
whose structure element is a disk of radius 10. In order
to eliminate the out of fundus image region, the num-
bers of iterated erosion operator are set to 8, 8, and 2
for DRIVE dataset, our dataset, and STARE dataset, re-
spectively. The threshold values of short line length are
set as 15, 35, and 15 for DRIVE dataset, our dataset, and
STARE dataset, respectively. c0 values for initializing of
level set functions are set to 5, 5, and 2 for DRIVE
Figure 16 Segmentation processes of a non-pathological retinal fund
obtained using the proposed phase map (b), image structure obtained usi
thresholding [43] (d), skeletonized version of (d) after eliminating outliers (e
of the given image based on the proposed structure-based level set segm
the proposed method (h), and the level set function after 61 iterations (i).
dataset, our dataset, and STARE dataset, respectively.
Here, in all cases except for the 20th image from STARE
dataset, second selection is used for preprocessing. First
selection is used for preprocessing on 20th image from
STARE dataset because this image does not have inten-
sity inhomogeneity. The Neumann boundary condition
is employed [25] to solve Equation 8.
The results of the preprocessing step for some test im-

ages from DRIVE dataset are seen in Figures 11 and 12.
Using the segmented image, on which a scalar approach
[19,38] is applied for the preprocessing step, the vascula-
ture cannot be traced truly. This does not happen in our
method because we use a trace-based method to
smoothen and then a shock filter to sharpen the given
image. Both filters work based on the color information
unlike the ones in the scalar approach presented in
us image obtained from our dataset. Mask image (a), image edge
ng the phase map (c), binary image obtained from (b) using Otsu
), dilated version of (e) (f), segmented result using only green channel
entation method without preprocessing (g), segmented image using
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[19,38]. Therefore, the image, obtained by our method,
is denoised more efficiently and segmented more cor-
rectly. While our method produces promising results,
we should also indicate that there are still missed retinal
vessels. Those missed vessels are very thin with weak
edge properties. There are regular retinal vessels with
normal dimensions wholly missed with the preprocess-
ing step presented in [19]. Such a region is marked with
a blue circle as shown in Figure 11f. In Figure 12b, a dif-
ference image between input color image and smoothed
version of the input image is shown. The blue channel
Figure 17 Segmentation processes of a 700 × 605-pixel non-patholog
image (a), manual segmentation (first observer) (b), mask image (c), image
obtained using the phase map (e), binary image obtained from (d) using O
outliers (g), dilated version of (g) (h), segmented image using the propose
has noise and seems to contain higher frequencies com-
pared to Figure 11b. Furthermore, images that could not
be segmented using the proposed structure-based level
set segmentation method without preprocessing are
shown in Figure 12g,h.
Figure 13 demonstrates the results of the level set

function evolution based on setting the coefficient values
ϑ and α used in the length term regularizing zero-level
contour and the speed term accelerating the level set
function evolution. ϑ is set to 0.4, 0.8, and 1, and α is set
to 1.5, 2.5, and 3, respectively, as shown Figure 13a,b,c.
ical retinal fundus image obtained from STARE dataset. Input
edge obtained using the proposed phase map (d), image structure
tsu thresholding [43] (f), skeletonized version of (f) after eliminating
d method after 61 iterations (i).
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However, some retinal vessels (marked with a blue cir-
cle) are still not connected. Therefore, in order to gener-
ate a good result as seen in Figure 12f, ϑ and α are set to
0.6 and 3, respectively.
Our segmentation process illustrated in Figure 14 em-

ploys the skeletonized version of the input image on
(a) (b

(d) (e)

(g) (h)
Figure 18 Vessel segmentation results for 565 × 584-pixel pathologic
Pathological image (a), non-pathological image (b), and another non-path
(row 2). Segmented images (row 3).
which a morphological dilation operator is performed
only once to initialize the level set function. The pro-
posed method generates good results; some very thin
retinal vessels with poor contrast are still missed due to
the fact that our method is unable to produce a proper
phase map. However, unlike previous works [24,25], the
) (c)

(f)

(i)
al and non-pathological images obtained from DRIVE dataset.
ological image (c) (row 1). Manual segmentations of images in row 1
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method can trace retinal vessels efficiently, since the
structure-based level set segmentation method is able to
shrink or expand automatically as displayed in Figure 14h
where the level set function is initialized inside the vessels
in some regions and outside the vessels in some regions.
The test results of preprocessing operations on our

dataset are shown Figure 15. The non-uniform intensities
in the given image are estimated and corrected properly.
A sample vessel segmentation result for a non-

pathological fundus image from our dataset is shown in
Figure 16. Here, the approach cannot trace some vessels
with poor contrasts as seen in Figure 16h. Also, the
image could not be segmented employing the proposed
segmentation method without preprocessing as depicted
in Figure 16g.
(a)

(c)

(e)
Figure 19 Vessel segmentation results for 640 × 480-pixel non-pathol
Non-pathological image (a), and pathological image (b) (row 1). Manual se
Another sample vessel segmentation result for a non-
pathological fundus image from STARE dataset is
depicted in Figure 17. Here, the vessels can be traced
properly using the method.
The results of other test images in DRIVE, our im-

ages, and STARE datasets are given in Figures 18, 19
and 20. Some segmentation results for pathological im-
ages include artifact, and they are marked with blue cir-
cles. These regions have also poor contrast, and retinal
vessels in these regions are very thin.
Figure 21 depicts another case, for which both

methods described in earlier work [24,25] failed espe-
cially at regions with poor contrast. However, the pro-
posed method is able to properly track the vessels in
those regions as shown in Figure 21e. Although the
(b)

(d)

(f)
ogical and pathological images obtained from our dataset.
gmentations of images in row 1 (row 2). Segmented images (row 3).
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PBLS method presented in [24] runs faster than ours
since it employs a narrow band implementation, that
faster method is unable to trace retinal vessels properly
due to the fact that the phase map of the method is not
estimated correctly in the regions with thin vessels and
poor contrasts. Also, the DRLSE method proposed in
[25] does not expand the vessels if the initialization
starts inside the vessel. On the other hand, if
initialization starts outside the vessel and the image is in
(a)

(c)

(e)
Figure 20 Vessel segmentation results for 700 × 605-pixel non-pathol
Non-pathological image (a), and pathological image (b) (row 1). Manual se
segmented images (row 3).
poor contrast, the DRLSE method over-segments the
vessels because it uses the image gradient instead of the

phase map. Instead of a TV approach, ∂ΦL=∂t ¼ ϑδε Φð Þ
div g ∇Φ

∇Φj jj j

 �

; if an oriented Laplacian flow approach,

∂ΦL/∂t = ϑδε(Φ)(Φζζ + gΦηη), proposed in our work, is
employed in the DRLSE method to smooth zero-level
contours, the results may visually seem to be like over-
smoothing as displayed in Figure 21b,c. But, as depicted
(b)

(d)

(f)
ogical and pathological images obtained from STARE dataset.
gmentations of images (first observer) in row 1 (row 2), and



(d) (e)

(a) (b) (c)

Figure 21 Vessel segmentation results for the non-pathological fundus image. The PBLS method [24] after 51 iterations (a), the DRLSE
method [25] based on TV approach after 201 iterations (b), the DRLSE method [25] based on oriented Laplacian flow approach after 201
iterations (c), the proposed method based on modified TV approach after 501 iterations (d), and the proposed method based on modified
oriented Laplacian flow approach after 501 iterations (e).
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in Figure 21e, this disadvantage turns into an advantage
if the modified oriented Laplacian flow approach, ∂ΦL=∂
t ¼ ϑδε Φð Þ Φηη þ s q̂j jj jð Þ�

ΦηηÞ , is employed in our
method, since it eliminates the expansion of segmented
vessel areas. As shown in Figure 21d, the expansion is
not completely eliminated if a modified TV approach, ∂
ΦL=∂t ¼ ϑδε Φð Þdiv s q̂j jj jð Þ∇Φ=ð jj∇ΦjjÞ , is used in our
method. Also, the vessels could be traced more properly
in the proposed method, if the iteration number is in-
creased, but this increases the cost. The result of our
method seems to be more efficient compared to the
existing methods [24,25] in the literature since it has a
novel zero-level contour regularization term and it em-
ploys a modified phase map.
Lastly, the segmentation results of the non-pathological

image generated by the region-based level set evolution
method (RBLSE) [33] are given in Figure 22. The most im-
portant advantage of this method is that the initialization
may start on any region of the fundus image instead of
around vessels by a simple selection. The segmentation of
vessels can be done in the fundus images without poor
contrast in the initialization phase. After that, while some
segmented vessels are combined, some gradually disap-
peared in later iterations. But surprisingly, after the 42nd
iteration, all segmented vessels are gone and only the
boundary of the retina remains as segmented as presented
in Figure 22c.

Quantitative results are obtained for both datasets
where manual vessel segmentation labeling was per-
formed and verified by medical experts. Comparing the
results with manual delineations, we obtain overall stat-
istical quality metrics such as sensitivity Se, specificity



Figure 22 Vessel segmentation results obtained by the RBLSE method [33] for the non-pathological fundus image. After 2 iterations (a),
after 10 iterations (b), and after 42 iterations (c).
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Sp, positive predictive value Ppv, negative predictive
value Npv, accuracy Acc [14], and kappa κ [45]. These
measures are given as follows:

Se ¼ TP
TPþ FN

; Sp ¼ TN
TNþ FP

; Ppv ¼ TP
TPþ FP

;

Npv ¼ TN
TNþ FN

; Acc ¼ TPþ TN
TPþ FPþ TNþ FN

;

and κ ¼ 2 TP� TN−FP � FNð Þ
TPþ FPð Þ FPþ TNð Þ þ TPþ FNð Þ FNþ TNð Þ :

ð9Þ

Here, TP refers to a pixel labeled as vessel by both the
algorithm and the medical experts’ ground truth data,
while TN refers to a pixel that is deemed to be non-
vessel by both. FN refers to pixels of vessels (according
to ground truth data) missed by the algorithm, and FP
refers to pixels falsely categorized by the algorithm as
vessel. In order to compare the proposed method, the
same statistical metrics for supervised and unsupervised
methods [11,14-17] on DRIVE dataset, our dataset, and
STARE dataset are also reported in Tables 3, 4, 5, and 6.
Here, it should be addressed that, although vascular seg-
mentation has been achieved in countless studies, some
of which even have better results in the literature, it has
not been done so far using structure-based level set ap-
proach. In addition, for instance, while the unsupervised
method [17] has good accuracy metric results, it gener-
ates occasional artifacts, such as false vessels, next to the
optic disks. The results of our method are promising
due to the fact that the method does not use any train-
ing algorithm compared to the supervised methods pre-
sented in [14-17]. As can be seen in Table 6 from the
Acc and κ metrics, for instance, when compared with
PBLS method, our method fairs better quantitatively.
The methods are implemented using MATLAB R2010a.

The programs are executed on a laptop with a Pentium
2.20-GHz processor and a 2-GB RAM. The segmentation
of the retinal fundus image with a size of 565 × 584 pixels,
as depicted in Figure 12f, lasts 61 iterations and 92.69 s.
Note that the run time of the program may vary according
to structure and size of the retinal fundus image.

5 Conclusions
We present a structure-based level set method with
automatic seed point selection for segmentation of ret-
inal vasculature in fundus images. Extensive experiments
employing the proposed algorithms using datasets indi-
cate that the algorithm performs well and favorably
compared to the already existing level set-based methods
in the literature. Developing strategies to improve incon-
sistencies in clinical diagnosis is an important challenge
in ophthalmology. The segmentation methods described
in this study may provide a basis for the development of
computer-based image analysis algorithms. Future work
will involve quantitative feature extraction from seg-
mented retinal vessels, followed by implementation of
these image analysis algorithms for image-based diag-
nostic assistance.
We plan to extend the study in order to improve the

results especially for pathological regions such as drusen,
GA, etc. Moreover, we will investigate how to use all
color channels of the given image interactively in an effi-
cient manner in order to trace retinal vasculature more
properly. In addition to this, we plan to do a narrow
band implementation in order to accelerate the run time
of the proposed method.



Table 4 Statistical results of our method for test images of 1 to 20 from our dataset

Dataset Image number Se Sp Ppv Npv Acc κ

Ours 1 0.4821 0.9905 0.7483 0.9702 0.9623 0.5676

2 0.3471 0.9887 0.6680 0.9586 0.9494 0.4330

3 0.5745 0.9786 0.5802 0.9781 0.9589 0.5557

4 0.5617 0.9695 0.5911 0.9657 0.9398 0.5437

5 0.5699 0.9872 0.7537 0.9708 0.9602 0.6284

6 0.3527 0.9879 0.6416 0.9613 0.9511 0.4318

7 0.8109 0.9566 0.5234 0.9885 0.9485 0.6098

8 0.3134 0.9887 0.6280 0.9594 0.9499 0.3950

9 0.3966 0.9857 0.5666 0.9719 0.9591 0.4461

10 0.4290 0.9878 0.5958 0.9764 0.9654 0.4814

11 0.2789 0.9901 0.6119 0.9607 0.9523 0.3619

12 0.5497 0.9840 0.6101 0.9796 0.9651 0.5602

13 0.6942 0.9783 0.6056 0.9852 0.9653 0.6288

14 0.4028 0.9844 0.5128 0.9759 0.9616 0.4316

15 0.5848 0.9849 0.5977 0.9840 0.9700 0.5756

16 0.3300 0.9877 0.6573 0.9539 0.9440 0.4133

17 0.7426 0.9731 0.5785 0.9870 0.9622 0.6308

18 0.5550 0.9762 0.5149 0.9797 0.9578 0.5122

19 0.7238 0.9712 0.6101 0.9826 0.9567 0.6392

20 0.6576 0.9680 0.4891 0.9838 0.9542 0.5373

Table 3 Statistical results of our method for test images of 1 to 20 from DRIVE dataset

Dataset Image number Se Sp Ppv Npv Acc κ

DRIVE 1 0.8182 0.9581 0.7461 0.9723 0.9398 0.7457

2 0.7764 0.9654 0.7982 0.9608 0.9371 0.7502

3 0.7387 0.9513 0.7218 0.9551 0.9202 0.6834

4 0.7456 0.9677 0.7826 0.9607 0.9378 0.7279

5 0.7419 0.9682 0.7878 0.9593 0.9371 0.7279

6 0.7142 0.9726 0.8126 0.9534 0.9358 0.7233

7 0.7507 0.9466 0.6846 0.9609 0.9204 0.6699

8 0.7285 0.9619 0.7332 0.9610 0.9325 0.6923

9 0.7223 0.9738 0.7880 0.9630 0.9439 0.7221

10 0.7535 0.9656 0.7507 0.9661 0.9400 0.7179

11 0.7456 0.9512 0.6972 0.9613 0.9243 0.6768

12 0.7932 0.9594 0.7391 0.9697 0.9383 0.7297

13 0.7165 0.9665 0.7811 0.9533 0.9307 0.7073

14 0.7940 0.9573 0.7130 0.9720 0.9380 0.7160

15 0.7867 0.9463 0.6321 0.9742 0.9296 0.6616

16 0.7880 0.9697 0.7989 0.9677 0.9457 0.7621

17 0.7581 0.9715 0.7900 0.9660 0.9451 0.7425

18 0.8407 0.9517 0.6965 0.9784 0.9388 0.7271

19 0.8696 0.9599 0.7504 0.9815 0.9489 0.7764

20 0.8254 0.9604 0.7162 0.9785 0.9458 0.7364
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Table 6 Statistical average results for test images of 1 to 20 from the datasets

Dataset Method Se Sp Ppv Npv Acc κ

DRIVE Unsupervised PBLS [24] 0.7754 0.9348 0.6403 0.9655 0.9140 0.6494

Jiang et al. [12] - - - - 0.9212 -

Martinez-Perez et al. [13] 0.7246 0.9655 - - 0.9344 -

Proposed 0.7704 0.9613 0.7460 0.9658 0.9365 0.7198

Budai et al. [17] 0.6440 0.9870 - - 0.9572 -

Supervised Staal et al. [16] 0.7194 0.9773 - - 0.9442 -

Marin et al. [14] 0.7067 0.9801 0.8433 0.9582 0.9452 -

Soares et al. [15] 0.7283 0.9788 - - 0.9466 -

Ours Unsupervised PBLS [24] 0.6600 0.9482 0.4380 0.9804 0.9328 0.4754

Proposed 0.5179 0.9810 0.6042 0.9737 0.9567 0.5192

STARE Unsupervised PBLS [24] 0.8268 0.9117 0.5227 0.9803 0.9035 0.5822

Hoover et al. [11] 0.6751 0.9567 - - 0.9267 -

Martinez-Perez et al. [13] 0.7506 0.9569 - - 0.9410 -

Proposed 0.6926 0.9726 0.7633 0.9656 0.9441 0.6779

Supervised Soares et al. [15] 0.7103 0.9737 - - 0.9480 -

Staal et al. [16] 0.6970 0.9810 - - 0.9516 -

Marin et al. [14] 0.6944 0.9819 - - 0.9526 -

Table 5 Statistical results of our method for test images of 1 to 20 from STARE dataset

Dataset Image number Se Sp Ppv Npv Acc κ

STARE 1 0.6449 0.9731 0.7455 0.9574 0.9374 0.6570

2 0.5754 0.9836 0.7795 0.9584 0.9464 0.6336

3 0.8036 0.9519 0.5973 0.9820 0.9398 0.6527

4 0.3117 0.9972 0.9275 0.9271 0.9271 0.4376

5 0.8084 0.9466 0.6803 0.9723 0.9296 0.6985

6 0.7759 0.9666 0.6912 0.9781 0.9498 0.7035

7 0.8567 0.9631 0.7412 0.9820 0.9514 0.7674

8 0.7758 0.9644 0.7125 0.9742 0.9451 0.7121

9 0.7814 0.9698 0.7569 0.9736 0.9495 0.7406

10 0.7568 0.9722 0.7711 0.9700 0.9485 0.7349

11 0.8000 0.9629 0.7004 0.9780 0.9470 0.7175

12 0.8446 0.9665 0.7490 0.9814 0.9537 0.7679

13 0.7743 0.9710 0.7881 0.9687 0.9470 0.7510

14 0.7611 0.9739 0.8055 0.9663 0.9474 0.7528

15 0.6239 0.9796 0.8031 0.9512 0.9376 0.6680

16 0.4445 0.9916 0.8961 0.9165 0.9150 0.5528

17 0.7238 0.9803 0.8372 0.9621 0.9488 0.7477

18 0.5669 0.9931 0.8594 0.9685 0.9635 0.6647

19 0.4183 0.9934 0.8001 0.9646 0.9595 0.5304

20 0.8035 0.9512 0.6234 0.9797 0.9377 0.6679
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