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Abstract

Recursive Gaussian filters are more efficient than basic Gaussian filters when its filter window size is large. Since the
computation of a point should start after the computation of its neighborhood points, recursive Gaussian filters are
line oriented. Thus, the degree of parallelism is restricted by the length of the data image. In order to increase the
parallelism of recursive Gaussian filters, we propose a two-way partitioned recursive Gaussian filter. The proposed filter
partitions a line into two lines and a point, which is used for Gaussian blur effect across the two lines. This partition
increases the parallelism because the filter is applied to the two blocks in parallel. Experimental results show that the
process time of the proposed filter is half compared to the time of an one-way parallel recursive Gaussian filter while
the peak signal-to-noise ratio is maintained within an acceptable rate of 26 to 33 dB.

Introduction

A Gaussian blur filter, or Gaussian filter, is one of the fun-
damental and widely used image processing techniques.
A typical use of the filter is denoising. It is also used as a
preprocessing step for down/up sampling, edge detection
[1,2], or scale space representation [3]. Contrast enhance-
ment techniques such as Retinex [4-6] or unsharp filters
[7] are the other uses for Gaussian blur where it approxi-
mates the illumination component of an image at a large
scale.

According to the definition of Gaussian filter, filtered
value of a pixel in a two-dimensional image is computed
using nearby pixel values. The range of the pixels to be
used is determined by filter window size N x N. It is
known that the filtered value of a pixel can be com-
puted by pixels in a horizontal line and a vertical line that
pass through the pixel. Let us call the Gaussian filter that
computes filtered value of a pixel using the crossing two
lines as finite impulse response (FIR) filter. FIR filter has
4N x width x height computation steps if the size of given
image is width x height.

Although FIR filter implements Gaussian blur filter in
the exact discrete way, the processing time of the fil-
ter depends on the filter window size N x N. Recursive
Gaussian filters that implement Gaussian filter are
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developed in order to eliminate effect of the filter window
size. A recursive Gaussian filter computes filtered value of
a pixel using differential values of its neighborhood pix-
els [8]. Since the differential values of neighborhood pixels
contain all approximated data within the range of the fil-
ter window size, the filter window size is not involved in
the number of computation steps. Computation step of
a recursive Gaussian filter proposed by van Vliet et al. is
about 32 x widthxheight. Thus, recursive Gaussian fil-
ters is faster than the FIR filter if a filter window size is
greater than 8. Unfortunately, recursive Gaussian filters
make dependence between pixels and restrict the degree
of parallelism. Pixel p[i] [j] must wait until the filtered
value of pixel p[i — 1] [j] is computed in the row-oriented
step.

As graphic processing unit (GPU) cores can be used
for general purpose computation, many image process-
ing algorithms have been implemented in general pur-
pose GPU (GPGPU). NVIDIA supports Compute Unified
Device Architecture (CUDA) as a GPGPU architec-
ture and a development environment. Since recursive
Gaussian filters make dependencies between pixels, it is
conventional to allocate a line into a thread in a core pro-
cesses. On the other side, the bitmap Gaussian filter can
allocate 1 pixel per 1 thread, which fully utilizes available
cores. Thus, recursive Gaussian filters shows better per-
formance in the restricted area where the number of cores
is small and the filter window size is large.
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We propose a refined recursive Gaussian filter for
GPGPU that partitions working domain into two ways.
The proposed filter combines a recursive Gaussian fil-
ter and FIR filter in order to minimize error rate that
occurs by splitting the working domain. The remainder of
this paper is structured as follows: ‘Problem environment
and related work’ section explains the problem environ-
ment and reviews related work. ‘Proposed filter’ section
gives details of the proposed refined recursive Gaussian
filter. ‘Experimental results’ section gives the experimental
results of the proposed filter. Finally, ‘Conclusions’ section
concludes with future works.

Problem environment and related work

Recursive Gaussian filter

Gaussian blur uses the Gaussian distribution function.
Equation 1 shows a Gaussian distribution function for a
two-dimensional space represented as two-dimensional
array in[x, y] [9]:
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where d = /(x —x.)2 + (y — y)? is the distance of the
neighborhood pixel in[x, y] from the center pixel in[x, y.],
and o denotes the Gaussian half-width [10]. Since discrete
two-dimensional space like image is filtered, integer value
N is used instead of real value . For the simplicity, N is
set to 2 x o, and filter window size N x N is used. Since
a basic Gaussian blur (FIR) filter is a type of a separable
filter [11], the filter computes the filtered pixel out[x, y],
the discrete convolution of pixel in[x, y] with the sampled
Gaussian, as follows:
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where out[ ] is computed after the two-dimensional array
w[ ] is computed. Thus, the time complexity of the basic
Gaussian filter for 1 pixel depends on the filter win-
dow size and is about 2N + 1 additions and 2N + 2
multiplications.

Such computational complexity can be reduced to a
constant if a recursive Gaussian filter is used [8,12]. Young
and van Vliet proposed a recursive Gaussian filter, which
we call it YVRG filter, using an approximation by the
Fourier transform [8]. A recursive Gaussian filtering pro-
cess requires two steps where each step is composed of
two passes as follows:

1. Row-oriented step

(a) Forward pass generates w[ ] using in[ ]
(b) Backward pass generates out[ ] using w| ]

2. Column-oriented step

(c) Downward pass generates w[ ] using out[ ]
(d) Upward pass generates in[ ] using w[ ]

where the two-dimensional array in[ ] stores the input
image, and another two-dimensional array out[ ] stores
the intermediate image after the row-oriented step fin-
ishes. A one-dimensional array w[ ] temporarily stores
the intermediate data during each pass of the lines. After
the filtering finishes, array in[ ] is overwritten by the fil-
tered image. These steps are shown in Figure 1. Since the
column-oriented step is the same as the row-oriented step
except for its direction, only the row-oriented step will
be discussed in the paper as shown in Figure 2. During
a forward pass, input pixels are processed in the forward
direction and the intermediate pixels are stored in a tem-
porary array named w[ ]. During a backward pass, the

*EN/2 pixels in w[ ] are processed in the backward direction. The
wlx, y] = Z infk —x, yl g(k, ), resulting pixels are stored in data array out[ ] and used as
k=x—N/2 input data in the column-oriented step.
y+N/2 Let us show the detailed step of YVRG filter. The
out[x,y] = Z wix, [ —ylg(x, D), (2)  resulting pixel out[x, y] is computed from the following
I=y—N/2 two recursive passes:
(@) (b) (© (d)
Figure 1 Passes of recursive Gaussian filter. Sequence of a recursive Gaussian filter: (a) row-oriented step forward pass, (b) row-oriented step
backward pass, (€) column-oriented step forward pass, and (d) column-oriented step backward pass.
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Figure 2 Line-oriented process of a recursive Gaussian filter. Array w[ ] is used for intermediate storage.

Forward pass:

wlx,y] = B-in[x,y]+ (b1 - wlx — L,y] +by - wlx — 2,y]
+ b3 - wlx —3,y]) /bo, 3)

Backward pass:

out[x,y] = B -wlx,y] + (b1 - out[x + 1, 9]
+ by - out[x + 2,y] +bs - out[x + 3,y]) /bo.
(4)

The precalculated constants are

by = 157825 + 2.44413q + 1.4281¢> + 0.4222054°

by = 2.44413q + 2.85619¢* + 1.266614°
by = —(1.4281¢% + 1.266614°)
b3 = 0.4222054°
B = 1— ((b1 + by + b3)/bo)
0.1147705018520355224609375  if N < 0.5
g = { 3.97156 — 4.14554./1 — 0.26891IN if 0.5 < N < 2.5

0.98711N — 0.96330 otherwise.

Since filter window size N is used to calculate con-
stant g only, it does not affect the time complexity of the
YVRG filter. Equations 3 and 4 show that pixels in a line
are bound by precedence relations. The resulting value of
pixel out[x, y] needs the value of out[x+ 1, y] and the inter-
mediate pixel value wx, y] needs the value of wx — 1,y].
Thus all pixel values in a line are restricted by a linear
precedence order.

While the recursive process needs three previous neigh-
borhood pixels for each pixel according to Equations 3
and 4, there are no sufficient neighborhood pixels near
the image boundaries for the process. For example, pixels
w[—1,y], w[—2,y], and w[—3, y] required by pixel w[0, y]
are not available in the image. Thus, boundary pixels
are duplicated as shown in Figure 3. In the case of a
row-oriented step, in[x, 0] is copied to w([x, —3] through
w(x, —1] and these are used to calculate w[x, 0] through
wlx, 2].

A forward pass uses five multiplications and three addi-
tions per pixel as same as the backward pass does. In
order to compute the filtered value of a pixel, four passes
are required. Thus 20 multiplications and 12 additions are
required per pixel. A recursive Gaussian filter of any fil-
ter window size has a similar time complexity as a basic
Gaussian filter with filter window size seven.

Unfortunately, the precedence relation of YVRG filter
causes a disadvantage if the filter is applied to a small-
sized image on massive parallel computers. For example,
the YVRG filter uses a maximum of 512 processors in
parallel in order to process a 512 x 512 image because
the pixels in a line are bound by precedence relations.
Most high-end NVIDIA graphic processors have more
than 1,000 cores [13], of which about half are idle during
the filtering process. This means that the YVRG filter can-
not fully utilize graphic processors if the number of cores
exceeds the image length. Although the basic Gaussian
filter can fully utilize graphic processors, it requires a

inf ] |

wl ] |

out[ | |

Figure 3 Border process in recursive Gaussian filter. The first element in[0] is duplicated and is used by first four elements of w[ 1.
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massive computation time when the filter window size
is large. In order to solve such a dilemma, we refine the
YVRG filter in order to increase the degree of parallelism
by partitioning each line into three parts: two sub-lines
and a point. The three parts execute in parallel in order to
theoretically reduce process time by half and double the
graphic processor’s utilization.

System environments

Let us consider the hardware systems on which recur-
sive Gaussian filters run. Currently, many types of parallel
computers are available. At the standalone computer level,
openCL based on multiple cores [14] and CUDA using
NVIDIA graphic processors [15] are popular. At the net-
worked computing system level, cluster computing, grid
computing, and cloud computing systems are available
[16]. Since image processing shares a heavy amount of
data between nearby pixels, little communication over-
head is required. Thus, standalone computer systems with
multiple processing cores are preferable to network com-
puting systems.

CUDA is a parallel computing platform. It requires
GPUs produced by NVIDIA. CUDA is provided with
libraries and a compiler called ‘nvcc! CUDA allows a pro-
grammer to make a general-purpose function called a
kernel and run it in a core, a processing unit of an NVIDIA
graphic card. The kernel function is mapped to a process
unit called a thread that runs in a core. A block is com-
posed of multiple threads and is mapped to a streaming
multiprocessor (SM) that is composed of multiple CUDA
cores. Since the number of cores in an SM is static, there
should be a sufficient number of threads in a block to
maximize GPU utilization.

In a traditional parallel computer, an optimal static map-
ping of threads into processors is possible. However, it is
not a good idea to allocate a specific number of threads
to an SM, since the CUDA cores’ configuration in SM is
different for each GPU model. CUDA provides an auto-
matic scheduler for allocating threads to cores. Thus, a
programmer only needs to allocate enough threads in a
block in order to maximize the utilization of CUDA cores
in SMs. The programmer also needs to take care of mak-
ing enough number of blocks in order to keep SMs work
as much as possible. After all, defining domain range per
thread and the amount of threads per block determines
the utilization of a CUDA GPU.

There are four levels of memory in CUDA: constant
memory, local memory, shared memory, and global mem-
ory. Since the size and access times of memory levels are
different, careful variable allocation is required.

Related work
If FIR filter is used in parallel computing systems, an input
image can be partitioned into any types, for example,
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line-oriented, column-oriented, checkerboard-oriented
partition [11,17], or bitwise allocation [2,18], because
there is no precedence dependency between pixels.
Although the FIR filter is highly suitable for parallelism, it
requires large process time for big filter window because
its processing step is linear to the filter window size. Ryu
and Nishimura tried to reduce process time of FIR fil-
ter using a look-up table and integer-only operations [19].
Although the process time of the filter is reduced, the time
complexity is still linear to the filter window size.

Recursive Gaussian filters exploit differences of previous
nearby pixels in order to eliminate effect of filter win-
dow size from process time. Two representative recursive
Gaussian filters are proposed by Deriche [20] and YVRG
filter proposed by van Vliet et al. [12]. Since the filter
window size is used not as an iteration number but as
a parameter for calculating coefficients in the recursive
computation, the filters have steady process time even
if the filter window size becomes large. Process steps of
the two recursive Gaussian filters are almost the same,
except that Deriche’s filter works better if the filter win-
dow size is less that 64 and YVRG filter works better
otherwise [10].

However, the YVRG filter binds all pixels into a line
because of the precedence dependencies of adjacent
pixels. For example, w[x,y] should be computed after
wlx — 1,y] in a forward pass of a row-oriented step,
and out[x, y] should be computed after out[x + 1,y] in a
backward pass.

Because of these dependencies, the parallel version of
recursive Gaussian filters should partition an image into
lines such that each processor computes a output line
from an input line using an intermediate buffer w[ ], as
shown in Figure 2. The degree of parallelism of the YVRG
filter is min(v, #) where the image size is v x h. If the
number of available processors exceeds the degree of par-
allelism, the remainder of the processors become idle. For
example, an NVIDIA graphic processor GTX780 has 2304
CUDA cores. Assume that a filter program processes a
512 x 512 image. While 512 CUDA cores are working,
the other 1792 CUDA cores stay idle, leading to a 22.2%
processor utilization.

A parallel version of a recursive Gaussian filter (one-
way recursive Gaussian filter) is already included in the
CUDA Toolkit. The version is a parallelized implementa-
tion of the YVRG algorithm proposed by Young and van
Vliet [8]. This implementation partitions an image into
lines and allocates each line to a thread. Thus, its par-
allelism is restricted by the height or width of the input
image. Other papers have partitioned image domains in
a similar manner while implementing similar algorithms
[17,21,22].

Gaussian KD-Trees algorithm was proposed for acceler-
ating a broad class of nonlinear filters like bilateral filters
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[23]. It adapts three schemes to achieve less computation.
One is ignoring interactions further than three standard
deviations apart. Another is taking important sampling
in which values are averaged with other values that are
considered nearby. The other is computing the filter at a
lower resolution and then interpolating the result. This
method is superior to the previous grid approach [24] in
terms of memory size and processing time aspects. How-
ever, it has a tree building overload and it is also difficult
to implement tree traversal due to its extremely irregular
algorithm that results in debilitating the advantage of GPU
implementation.

Podlozhnyuk proposed an efficient parallel image con-
volution method that uses shared memory in CUDA [11].
Since values in the boundary pixels of a block should be
exchanged between neighborhood blocks, a careful com-
munication schedule is required. The paper proposes a
schedule that enables data loading and filtering process
concurrently. Although the method works well on FIR fil-
ter, it does not show the same performance if recursive
Gaussian filters are used. Recursive Gaussian filters prefer
temporary memory access. Thus, local memory is more
efficient than shared memory in the case of recursive
filters.

Proposed filter

Two-way partitioning

In order to increase the parallelism of a recursive
Gaussian filter, we propose a two-way recursive Gaussian
filter. The filter partitions an image in line-based orienta-
tion and partitions each line into three blocks again. The
first and third blocks use the recursive Gaussian filter,
while the second block uses a general Gaussian filter.
One major problem is that all pixels in a line are related
by a precedence dependency, as shown in Equations 3
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and 4. However, we note two facts that circumvent the
dependencies in a line:

e When outlx, y] is computed in backward pass,
out[x + 1, y] through out[x + 3, y] are required. Pixels
out[x + 1,y] through out[x + 3, y] are the results of a
row-oriented step. If the pixels have already been
computed using the basic Gaussian filter, out[x, y]
has no precedence dependency on out[x + k, y]
where k > 3.

e There is no priority between forward and backward
passes. Thus, any pass can start in any order.

These facts motivate us to partition a line into the follow-
ing three parts:

e B: the left half of the line from index 0 to width/2—1,
where width is the number of horizontal pixels in the
picture.

e P.: the pixel located at width/2.

e B;: the right half of the line from index width/2 + 1
to width—1.

The proposed filter uses two passes for each step. In
the first pass, the filter in block B; works similarly to
a one-way recursive Gaussian filter. It starts from the
leftmost pixel in[0,y] and generates intermediate data
w[ ] until it arrives at index width/2 — 1, as shown in
Figure 4. The filter for pixel P, computes the horizon-
tal value of the basic Gaussian filter w[width/2,y] for
pixel in[width/2, y] with its filter window size. Thus, the
time complexity of P. is depend on the filter window
size. The filter in block B, works similarly to the fil-
ter in block B; but in the reverse direction. It starts
from the rightmost pixel in[width — 1,y] and generates

0 widthl2

width-1

width/2-1

width/2 4+ 1 ~ width — 1).

/N

width/2+1

Figure 4 Partition to three blocks. Each line is divided into three blocks B, (index range 0 ~ width/2 — 1), P¢ (index width/2), and B; (index range
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intermediate data w[ ] until index width/2 + 1. In other
words, the filter in block B, starts from a backward
pass.

Since forward and backward passes are used to reflect
the left-side and right-side neighborhood pixels, respec-
tively, the execution order of the forward and backward
passes does not affect the filtering results. After fin-
ishing the first pass, that is, computation of w[], each
block starts a reverse directed pass. It is important
to notice the filtering boundary pixels. Boundary pix-
els like w[0,y],w[1,y], and w[2,y] need values w[—3,],
w[—2,y], and w[—1, y]. Since these values are not available,
w([0,y] is used instead. When the direction of compu-
tation is changed, pixel out[width/2 — 1,y] needs value
out[width/2, y], out[width/2 + 1,y], and out[width/2 +
2,y]. Although these indexes have been computed in By,
they are not the same values as in Equation 4 because
those values are generated by the second pass while the
values in B, are generated by the first pass.

In order to solve this mismatch, pixel P, computed by
the basic Gaussian filter, is used as a buffer zone. The com-
puted value of pixel P, that is, out[width/2,y], is used
instead of the three values out[width/2, y], out[width/2 +
1,], and out[width/2 + 2, y] as shown in Figure 5. This is
the reason for computing P, concurrently with the other
two blocks. In addition, block B; uses pixel P in the same
manner but in the inverse order. Figure 6 shows the paral-
lelism of the proposed filter. Three processors can execute
in parallel in the first pass and two processors can execute
in parallel in the second pass.

Algorithm 1 shows the detailed process of row-oriented
step of the proposed two-way filter. Three threads are
assigned to each row calculated in line 1. Thus a block
takes charge of adjacent lines in an image. For example, if
four lines are allocated to each block (blockDim.x = 4), the
third block filters line 12 ~ 15. The three threads are iden-
tified by pre-assigned value threadldx.y. If a thread has
index (blockldx.x = 2, threadldx.x = 2, threadldx.y = 1),
the thread tasks charge of central pixel P. of line 10.
Neighborhood values for boundary pixels are initialized at
line 3,9, 14, and 21. Intermediate array w[row] [] is divided
to two sub arrays w; and w, in order to prevent race
condition in w[row] [width/2 —2] ~ w[row] [width/2+ 2],

width/2-1

B

wl] |

N

L
Figure 5 Start of reverse pass. Pixel out[width/2 — 1]is computed
using pixel wlwidth/2 — 1], out[width/2], out[width/2 4 1], and
out[width/2 + 2] which are copied from Pe.

out[] |
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Bl Pc Br
[ . | [ . |
1t pass | - | | - |
B, B,
L A
[ | [ |
2nd pass | -— | | - |
Figure 6 Parallelism of the row-oriented step. In the first pass, B),
P, and B, are computed in parallel. In the second pass, inverse
directions of blocks B and B, are computed in parallel.

which are overlapped and are accessed concurrently by
two threads.

The time complexity of the proposed filter is deter-
mined by two factors: line width and filter window size.
Assuming that there are enough processors, three proces-
sors are allocated to each line. If /| = max(width, height),
then 3/ processors are required in order to maximize the
performance. A processor for block B; or B, computes
half of the //2 pixels in a pass. Since each pixel requires
eight multiplications and four additions, 6/ operations
are required for each pixel. The center pixel P. requires
3N operations, where N x N is the filter window size.
Thus, max(6/, 3N)+6[ operations are required per step and
max(12/, 6N)+12/ steps are required during the proposed
filter. In short, the process time of the filter is halved or
speedup is doubled compared to those of a one-way recur-
sive Gaussian filter if the number of cores is equal to or
greater than 3/.

Double speedup with the cost of triple cores is
not highly efficient. The proposed two-way recursive
Gaussian filter is useful if lots of small-sized images com-
pared to the number of cores should be processed in
sequence. An typical example is the application that filters
multiple different windows of an image in order to find the
best parameters.

Table 1 Experimental environment

Description
CPU Intel core i5 750 (2.67 GHz)
GPU Geforce GTX 670 (GK104)

Compute capability, 3.0
Number of CUDA cores 1,344
Graphic clock, 915 MHz

Processor clock, 980 MHz

Compiler Visual Studio 2010
Library CUDA 5.0
Image 512 x 512 bitmap

Compile and execution environment.
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Algorithm 1: TWO-WAY RECURSIVE GAUSSIAN FILTER, row-oriented step

Input: An 2-d image array in[ ][ ] with height x width, filter window size N
Output: An filtered 2-d image array out[ ][ ] with the same size of in[ ][ ]

row < blockDim.x * blockldx.x + threadldx.x

if threadldx.y = 0 then
wqlrow] [2], wi[row] [1], wi[row] [0] < in[row] [O]
for i < 3 to width/2 — 1 do

B W N -

else if threadldx.y = 1 then

else

e e NN

10 for i < width — 1 downto width/2 + 1 do

/* left side block B; x/

L wylrow] [i] < B * in[row] [i] + (b1 * wi[row] [i — 1]+ by * wi[row] [i — 2] + b3 * wy[row] [i — 3])/bg

/* center pixel P, x/

‘ wylrow] [width/2], w,[row] [width/2] < bitwiseRowGaussianFilter(in, row, width/2, N)

/% right side block B, x/

wylrow] [width] , w,[row] [width + 1], w,[row] [width + 2] < in[row] [width — 1]

11 L wylrow] [i] <= B * in[row] [i] + (b1 * wy[row] [i + 1] +by * w,[row] [i + 2] +bs * w,[row] [i + 3])/bo

12 synchronize threads
13 if threadldx.y = 0 then

/* left side block B; x/

14 wylrow] [width/2 + 1], wi[row] [width/2 + 2] < w[row] [width/2]

15 for i < width/2 — 1 downto 0 do

out[row] [i] = w2,

18 else if threadldx.y = 1 then
19 ‘ do nothing
20 else

16 L w2i[row] [i] <— B * wi[row] [i] + (by * wi[row] [i + 1] + by x wy[row] [i + 2] + b3 * w;[row] [i + 3])/bg

/* center pixel P, */

/+ right side block B, */

21 wylrow] [width/2 — 1], w,[row] [width/2 — 2] < w,[row] [width/2]

22 for i < width/2 4+ 1 to width — 1 do

23 L w2, [row] [i] <= B * wy[row] [i] +(b1 * wy[row] [i — 1] + by * w,[row] [i — 2] + b3 * wy[row] [i — 3])/bo

Experimental results

The proposed two-way recursive Gaussian filter was
implemented in the C programming language using the
CUDA library. The experimental environment is shown in
Table 1. The experiment used the image commonly known
as Lena, shown in Figure 7. For comparison, a parallel ver-
sion of the one-way recursive Gaussian filter proposed by
Young and van Vliet was also implemented.

Gaussian filters usually have been used to de-noise in
differential operations for image processing or to achieve
image blurring effects. For the differential operations, the
typical filter window size is 3 x 3. To obtain a proper
blurring effect, we should carefully determine the filter
window size according to image sizes. One of the thumb
rules suggests 1%~5% of the image size for the Gaussian
half-width o and two times of o for the filter window size
[25]. If we take 3% of o for a 512 x 512 resolution image,
the filter window size becomes about 30. Bilateral filters
require 10% of o, then the mask size becomes 102 for
the same image resolution. The larger image size requires
much larger mask size. In this paper, we take 3 x 3 and
30 x 30 mask size for Lena image.

Two filter window sizes, 3 and 30, were used, as shown
in Figure 8. Filter window size 3 is the minimum size for

Figure 7 Data image. 512 x 512-sized image.




Lee et al. EURASIP Journal on Image and Video Processing 2014, 2014:33
http://jivp.eurasipjournals.com/content/2014/1/33

Page 8 of 12

(c)

(d)

Figure 8 Filtered images. Comparison of the recursive Gaussian filter and proposed two-way recursive Gaussian filter: (a) the recursive Gaussian
filter with filter window size 3, (b) the proposed two-way recursive Gaussian filter with filter window size 3, (c) the recursive Gaussian filter with filter
window size 30, and (d) the proposed two-way recursive Gaussian filter with filter window size 30.

Gaussian filter because only adjacent pixels are used for
filtering. Hale proposed 64 as a boundary filter window
size for choosing among different two recursive Gaussian
functions: smaller window size for Deriche’s algorithm
[20] and bigger window size for van Vliet et al’s YVRG
algorithm [12]. Since the proposed algorithm is based on
van Vliet et al.’s algorithm, filter window size 30 is chosen
as a medium stable value. The original image was changed
to gray scale in order to analyze the results quantitatively.

Validity of the proposed filter
The peak signal-to-noise ratio (PSNR) was used for quan-
titative analysis. PSNR is computed as follows:

3
-
-

1 ' —
— [1G,)) — K(i,p)]?
0

mn ~
i

MSE =
]’=
MAX?
MSE "’
where MSE is the mean squared error, m is the width of
the images, # is the height of the images, / and J are the
two compared images, and MAX| is the maximum value
of a pixel in image /. Since the images are converted to gray

Il
)

PSNR = 10log, (5)

scale for the comparison, MAX; is 255. The smaller the
difference between the two images is, the smaller the MSE
is. Thus, a large PSNR indicates that the two images are
similar. Table 2 shows the PSNR values between a one-way
recursive, two-way recursive, and basic Gaussian filter. For
image comparison, a tolerable PSNR range is between 30
and 50 dB. It is known that two images are not easy to dis-
tinguish with the naked eye if the PSNR is 30 dB or more.
Although the PSNR between the results of one-way and
two-way recursive Gaussian filters is smaller than 30 dB
when the filter window size is 3, the one-way recursive
Gaussian filter has a worse PSNR value when it is com-
pared to the basic Gaussian filter. The table shows that
the result of a two-way recursive Gaussian filter is closer
to that of the basic Gaussian filter. Thus, the proposed
two-way recursive Gaussian filter is usable in the general
case.

Performance comparison

Measure using cudaEventRecord()

Since the parallel CUDA code runs in a GPU, gen-
eral clock measure functions like gettimeofday () or
clock () cannot measure its process time correctly.
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Table 2 PSNR comparison

Image size  Filter window  One-way vs. FIR vs. FIR vs.
size two-way one-way  two-way
SD 3 294 26.2 29.7
30 31.1 328 314
90 295 334 294
HD 3 330 309 336
30 306 39.7 30.8
90 24.7 33.0 263
Full HD 3 305 266 29.2
30 329 36.7 332
90 30.1 348 314

PSNR between three images: non-recursive Gaussian filter (the basic Gaussian
filter), one-way recursive Gaussian filter, and proposed two-way recursive
Gaussian filter. Unit of the PSNR value is dB (decibel).

CUDA provides the cudaEvent family of functions in
order to measure process time in a GPU.

Before the process times are measured, the allocation of
threads to blocks should be considered in order to max-
imize parallelism. A thread is a logical process unit in
CUDA. The kernel code is a description of a thread and a
block is a set of threads. The maximum number of threads
in a block is 1,024, in the case of the GeForce GTX 670
GPU. However, this does not mean that all 1,024 threads
run concurrently in a block. Although a SM is mapped to a
block in CUDA and each SM contains 32 processing cores
[26], this does not mean that 32 threads in a block will
maximize the parallelism. Because of this uncertainty, we
decided to allocate various numbers of threads to blocks
to find an allocation that minimizes the process time.
Figure 9 shows the process times of different numbers of
allocated threads. The x-axis indicates the number of allo-
cated lines per block, and the y-axis indicates the process
time in the GPU kernel. One-way recursive Gaussian filter
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allocates one thread per line, and the proposed two-way
recursive Gaussian filter allocates three threads per line.
The one-way recursive Gaussian filter has the minimum
process time when the number of threads per block is 8
as shown in Figure 9a. Filter window size N x N does not
affect the process time in the recursive Gaussian filters, as
we expected. Thus, filter window size 30 x 30 is used for
the following experiments.

The proposed two-way recursive Gaussian filter has the
minimum process time when the number of threads per
block is 16 as shown in Figure 9b. In Figure 9a, the process
times increase as the lines per block exceed 8. Figure 9b
shows the similar anomaly from 32 lines per block. The
main reason of the larger process time in the case of the
smaller number of lines per block is that the number of
threads is not sufficient to fully utilize cores allocated to
each block. As the number of lines per block increases,
utilization of cores in each block increases, but the num-
ber of blocks decreases. If the number of blocks is not
sufficient, blocks are not scheduled evenly. If 32 lines of
an image with 512 lines are allocated to each block, 16
blocks should be allocated 7 SMs of NVIDIA GPX670
graphic card. Then a SM runs 2 or 3 blocks, which makes
imbalance between SMs.

From the two process times, the speedup of the pro-
posed two-way filter over the one-way filter is shown in
Figure 10a, where the speedup value is double if the num-
ber of threads per block is greater than or equal to 16.
Also, the figure shows that overheads invoked by sequen-
tial global memory access and FIR filter computation in
the center point P. do not affect performance of the
two-way filter.

Measure using Nsight

Nsight is a development tool provided by NVIDIA and
it tells occupancy of parallel applications in GPU [27].
Thus, Nsight can be used to investigate GPU utilization.
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Figure 9 Process times of recursive Gaussian filters and speedup. Process time measured by cudaEventRecord() function. (a) One-way
recursive Gaussian filter and (b) proposed two-way recursive Gaussian filter.
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Figure 10 Speed up and occupancy comparison of recursive Gaussian filters. (@) Speed up of the proposed two-way recursive Gaussian filter
against one-way recursive Gaussian filter. (b) Occupancies of recursive Gaussian filters.

Occupancy is the percentage of active warps against the
maximum active warps, where a warp means a group of
32 threads. The amount of active warps is decided by the
number of allocated threads per block, amount of avail-
able registers, and amount of shared memory. Allocating
more threads to block increases occupancy.

Figure 10b shows an occupancy comparison between
one-way recursive Gaussian filter and two-way recursive
Gaussian filter. Since the total number of threads is fixed
to data image width or height, that is, 512 in the case of
Lena image, many CUDA cores are idle and it makes the
CUDA occupancy at the low value. On the other side, two-
way recursive Gaussian filter increases its occupancy as
the number of lines per block increases over 16 as shown
in Figure 10b.

Improvement using local memory

Figure 9 shows that performances of recursive Gaussian
filters degrade as the number of lines per block exceeds 16.
The imbalanced block allocation to SMs and sequential
global memory access are assumed to be the main reasons
of the degradation. Since the balanced allocation policy
changes by different graphic card models, finding efficient
memory access is focused in order to improve the pro-
posed filter. CUDA provides following four-level hierar-
chical memory model: constant memory, per-thread local
memory, per-block shared memory, and global memory
[28]. Constant memory is used to store constant values.
Thus, constants in Equations 3 and 4 are stored in con-
stant memory. Image data is stored in the global memory
in order to be accessed by all threads. During a forward
pass, each pixel in array in[ ] is read once or twice accord-
ing to filter window size. Thus it is not highly required
to copy it in shared or local memory. Since array w| ]
is generated and frequently accessed by each thread, it is

good target for locating in local memory. Pixel P, is read
six times by adjacent two threads. Since P, is stored in
cache of the thread after being read, its memory location
does not highly affect the performance of the filtering. As
the result, major variables are located in each memory as
follows:

¢ Constant memory: constants for Equations 3 and 4

e Per-thread local memory: w[ |, temporary memory
for thread

e Global memory:in[ ], out[ ] (including P)

Figure 11 shows the improved process time by moving
temporary array w[ ] from global memory to local
memory. Note that the process time do not increase
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Figure 11 Process time improvement using local memory.
Improved process time by allocating intermediate array variable w[ ]
to local memory. Filter window size is set to 30 x 30. SD sized image is
512 x 512 Lena.bmp file, HD sized image is 1280 x 720 Mountain.omp
file, and Full HD sized image is 1920 x 1080 Lake.bmp file.
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although the number of lines per block increases, which
is a different tendency compared to the case of global
memory access shown in Figure 9. The imbalanced block
allocation to SMs still exists even in the case of the local
memory access. However, local memory can be accessed
in parallel by each thread while global memory should be
accessed sequentially by blocks. As the result, the effect of
imbalance allocation is assumed to be reduced by the local
memory access. In order to prove the assumption, process
time in each thread is analyzed as shown in Table 3. A
process time is mainly composed of data request time on
memory, execution time of instructions, and synchroniza-
tion time. If the data request time is subtracted from the
process time, remaining execution and synchronization
times become similar for both memory access cases.

Figure 11 includes process time of HD and full HD-
sized images. One-way recursive Gaussian filter is also
improved by local memory access. Process times are stabi-
lized after 32 lines per block. Two-way recursive Gaussian
filter has 1.96, 1.90, and 1.98 speedup compared to one-
way recursive Gaussian filter in the case of SD, HD, and
full HD images, respectively. The figure shows the pro-
posed two-way recursive Gaussian filter generates steady
speedup and performance against bigger images.

Figure 12 shows performance comparison between a
CPU-based implementation and the GPU-based imple-
mentation. GPU-based implementation configures the
number of lines per block as 32. Multi-threaded two-way
recursive Gaussian filter is implemented on a PC with
Intel Quad Core i5-750 Processor 2.67 GHz. Although the
CPU-based implementation has better performance on
SD-sized image, the situation is reversed when HD and
full HD-sized image is used.

Conclusions

In this paper, we have noticed that line-oriented recur-
sive Gaussian filter can be partitioned more and proposed
a two-way recursive filter that increases CUDA GPGPU
utilization. The proposed filter divides each line into two
sub-lines and a central point. The central point is used to

Table 3 Kernel process time components

Lines per Process time Data request Execution and
block (ms) percentage sync (ms)
Local Global Local Global Local Global

4 15.2 15.1 1.2% 12.3% 15.0 135
8 84 89 2.9% 25.2% 8.2 6.8
16 5.1 59 6.1% 41.9% 4.8 35
32 49 8.4 10.2% 48.9% 44 43
64 5.1 85 102%  48.9% 44 43

Extraction of execution times and synchronization time among entire processing
time in the case of two-way recursive Gaussian filter: ‘Data request’ means the
percentage of memory access time among the entire filtering process. ‘Execution
and Sync’ means the processing time where memory access time is subtracted.
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Figure 12 Performance comparison between 4 core CPU and
1344 core GPU. The proposed two-way recursive Gaussian filter is
executed. Intel i5 with four cores uses four threads that fully utilize the
multi-core CPU. CUDA configures 64 lines per block.

compensate mismatches occurred by dividing a line into
two parts. PSNR shows that the quality of the filter locates
between non-recursive Gaussian filter and the one-way
line-oriented recursive Gaussian filter. The process time
of the proposed filter is reduced to half by setting the
number of lines per block to the same or greater than 16.

The research can be expanded by considering follow-
ing various concerns. Starting from the proposed two-way
recursive Gaussian filter, a line can be partitioned to three
or more blocks, where quality and speedup are major con-
cerns. Another consideration is the central points. The
central points or boundary points between blocks in the
partitioned line can be designed differently. The central
points are required as boundary points in each block.
If recursive equations are designed carefully, it could be
possible to partition a line without any central point or
boundary point.
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