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Abstract

Characteristics of noise (type, statistics, spatial correlation) are nowadays exploited in many image denoising and
enhancement methods. However, these characteristics are often unknown, and they have to be extracted from an image
at hand. There are many powerful and accurate blind methods for noise variance estimation for the cases of additive and
multiplicative noise models. However, more complicated noise models containing a mixture of signal-independent (SI)
and signal-dependent (SD) components are often more adequate in practice. Parameters of both components have to
be automatically estimated to be used in image enhancement. This paper addresses a question of required accuracy of
such estimation. Analysis is carried out for color images processed by a filter based on discrete cosine transform. The
influence of errors in mixed noise parameters estimation is studied in terms of filtering efficiency. This efficiency is
characterized by the conventional criterion peak signal-to-noise ratio (PSNR) and two visual quality metrics, PSNR human
visual system masking (PSNR-HVS-M) and multi-scale structural similarity (MSSIM). If a reduction of filtering efficiency
exceeds 0.5 dB (in terms of PSNR and PSNR-HVS-M) or 0.005 (in terms of MSSIM), mixed noise parameters estimation is
assumed to be unacceptable. As the result, it is shown that SI and SD noise parameters have to be estimated with a
relative error not exceeding 20%…30%.
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1. Introduction
Imaging systems (sensors) are widely used in various
applications such as remote sensing, non-destructive
control, medical diagnostics, photography, etc. [1].
Some acquired images need a special pre-processing
(e.g., denoising, deblurring, edge detection, compression
[2-4], etc.) for further exploitation (e.g., object recognition,
visual inspection, diagnostics, etc.). In order to enhance an
image using, e.g., modern image denoising methods based
on wavelets [5-7] or discrete cosine transform (DCT) [8,9]
transforms, one has to know a noise type and its basic
characteristics such as probability density function (PDF),
variance, or two-dimensional (2D) spatial correlation
function (if the observed noise is not independent and
identically distributed (i.i.d.)). Proper thresholds in edge
detection and image segmentation depend on noise
statistics as well [1,10]. In lossy image compression, a
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quantization step has to be adaptively adjusted de-
pending on noise variance [11].
A practical problem is that a priori information on noise

type and basic characteristics is not always available. Al-
though there are such applications as synthetic aperture
radar (SAR) imaging with known number of looks and
image forming mode for which speckle characteristics can
be accurately predicted [10], it appears a more practical
situation when noise characteristics are fully or partly un-
known (unavailable). For example, for color images ac-
quired by digital cameras, noise properties are determined
by camera settings, illumination conditions, and other
factors [9,11-13]. Similarly, noise characteristics might be
considerably different in sub-band images of multi- and
hyperspectral remote sensing data acquired from airborne
and space-borne platforms [14-16].
Then, a task of blind estimation of noise characteristics

for each particular image subject to further processing, in
particular, denoising [9,11,12] becomes of prime impor-
tance. General requirements to the methods intended for
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blind (automatic) estimation of additive and multi-
plicative noise variance can be found in [8,17]. Clearly,
it is desirable to provide almost unbiased estimates
with estimation variance as small as possible. It is also
needed to ensure applicability of a method to images
of different content (including highly textural ones)
and different noise levels (intensities) including non-
intensive noise. A blind estimation method is practical
if it is fast enough.
Moreover, for the methods of pure additive or multi-

plicative noise variance estimation, it has been established
that the estimation relative error in practice should not be
larger than ±20% [8,18]. If an obtained variance estimate is
outside this limit, under- or oversmoothing takes place in
image denoising based on blind estimation result.
With a new generation of sensors, signal-dependent

noise models have become more popular since they
describe noise statistics better [8,9,11-13,15,16,19,20].
There is an essential interest in design and testing the
methods for blind estimation of mixed noise parameters
[9,12,15,16,21,22]. However, to our best knowledge, it
has not been studied yet how accurate have to be these
estimates. It is worth mentioning that dependence of
noise variance on signal (local mean in images) can be
set parametrically, i.e., by some polynomial [9,12,15,22].
To avoid difficulties of polynomial order choice, we con-
sider below a simplest case of mixed noise where SD
and SI components are characterized by one parameter
each. This model is typical in raw data in digital photos
[9,11], sub-band images of hyperspectral remote sensing
data [15,16] and radar images formed by multi-look
SARs and side-look aperture radars [21,22].
Being applied at the first stage of image processing chain

[8,9,11,12], blind estimation of noise parameters provides
data for next stages. Therefore, accuracy of blind estima-
tion has to be analyzed in the combination with efficiency
of further image processing. Since image filtering is one of
the most common operations (stages) of image processing
chain, we have decided to carry out our analysis just from
the viewpoint of filtering efficiency. We consider estima-
tion accuracy acceptable if estimation errors that always
happen in practice do not produce essential reduction of
image denoising efficiency. In the next sections of the
paper, we give quantitative definition of what is essential.
We characterize image filtering efficiency not only by the
conventional criteria, such as peak signal-to-noise ratio
(PSNR) (or mean square error (MSE)), but also using met-
rics that describe image visual quality [23]. This is impor-
tant since for many considered applications, visual quality
of filtered images has a great importance (e.g., digital
photography, medical imaging). The main goal of this
paper is to give practical recommendations (requirements)
on accuracy of mixed noise parameters estimation to
ensure efficient image filtering.
2. Noise models and estimated parameters
In general, noise is considered signal-dependent if its
statistical characteristics (variance, PDF) depend upon
information signal (image). A typical example of signal-
dependent noise is Poisson noise for which variance is
equal to the true value of image pixel σ2sd ¼ Itr and noise
PDF changes. It is close to Gaussian for large true values
but considerably differs from Gaussian if Itr is small
(less than 12). Other examples of signal-dependent
noise are film-grain noise and speckle [24,25]. For all
these cases, a dependence of signal-dependent noise
variance on true value σ2sd ¼ f Itrð Þ is monotonically
increasing (although other character of this dependence
is, in general, possible).
The aforementioned examples relate to the cases when

there is a single source of noise. However, noise can ori-
ginate from several different sources, for example, image
pixel generation (photon counting, coherent processing
of registered signals) and circuitry (thermal) noise [19].
Then, one deals with a mixed noise, such as mixed addi-
tive and impulse noise [26,27] where impulse noise usu-
ally originates from coding/decoding errors at image
transmission via communication channels. However,
here, we address another type of mixed noise that has SI
and SD components. A prominent example is noise in
modern imaging sensors namely dark noise, thermal
noise, and photon-counting noise [19].
Here, we assume that noise sources are independent,

and consider two typical models of the mixed noise
consisting of two components, SI and SD. For the
first model, noise variance depends on image true
value as

σ2sd ¼ σ2si þ kItr; ð1Þ

where σ2si is variance of SI noise, e.g., of dark current
noise and k is a proportionality factor for SD component
[9,15]. The model is valid for raw images acquired by
digital cameras and sub-band images formed by hyper-
spectral sensors.
For the second model, typical for radar images [28],

one has

σ2sd ¼ σ2si þ k Itrð Þ2: ð2Þ

In both cases, we have dependencies that are fully de-
scribed by two parameters, σ2si and k, that have to be es-
timated in a blind manner and used in filtering (we
assume that we know a priori which model, (1) or (2),
fits the data). Moreover, in both cases, it is possible to
find such Itrt that for Itr > Itrt the SD component is dom-
inant and vice versa. It is also possible to determine
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which component is dominant for an entire considered
test image. For this purpose, one has to calculate

MSEinp ¼ σ2si þ k
XIIM
i¼1

XJ IM
j¼1

Itrij = IIMJ IMð Þ ð3Þ

for the model (1) and

MSEinp ¼ σ2si þ k
XIIM
i¼1

XJ IM
j¼1

Itrij
� �2

= IIMJ IMð Þ ð4Þ

for the model (2), where IIM, JIM define image size. If
MSEinp is twice larger than σ2si , the impact of SD noise
can be considered prevailing (the SD noise is considered
dominant) and vice versa. Note that MSEinp can be also
treated as equivalent variance of the noise in original images.
Such preliminary analysis can be useful since both sit-

uations can be met in practice. For example, SI noise is
usually assumed to be dominant for sub-band images
formed by old generation sensors, e.g., AVIRIS [14,15]
while SI is prevailing for new generation sensors [15,16].
Thus, it is desirable to study both situations in our
further analysis.
It is also supposed that noise is spatially uncorrelated.

Although this is often not true in practice, this assumption
simplifies our analysis. In the future, we plan to carry out
similar analysis for spatially correlated noise as well.

3. Denoising method and quantitative criteria
There is a great number of denoising methods, especially
for processing color images (note that just color image
case for which enhancement is of great value will be an-
alyzed below) [27,29,30]. However, here, we are not in-
terested in image denoising methods that do not exploit
information on noise type and statistics in their ope-
ration. Instead, we have to focus on filtering methods
able to adapt to quite complex types of signal-dependent
noise [8,9,31] described by the models (1) and (2).
Then, there are two possible approaches. The first one

is to apply a variance-stabilizing transformation [32,33]
that converts an image corrupted by a given type of
signal-dependent noise to an image corrupted by an
additive noise and then to apply a filter designed to sup-
press an additive noise. For the model (1), this can be
done by, e.g., generalized Anscombe transformation [33].
The second possibility is to apply denoising methods

that can be adapted to signal-dependent nature of the
noise. Since the DCT-based filtering allows to do this
easily [34,35], we concentrate below on this method of
denoising. The DCT-based filtering [34,35] is carried out
in blocks of a limited support, usually 8 × 8 pixels. This
feature of the DCT-based filtering allows easy adaptation
to non-stationary (signal-dependent) properties of the
noise. Direct DCT is performed in each block. Then, a
thresholding of DCT coefficients (hard, soft, or com-
bined [36]) is performed for all coefficients except DC.
Here, we focus on hard thresholding since it is simple
and the most efficient in terms of provided output PSNR
[36].
For signal-dependent noise, absolute values of DCT

coefficients in an 8 × 8 block, D(n, m, q, s), have to be

compared with a threshold T n;mð Þ ¼ β
ffiffiffiffiffiffiffiffiffiffiffiffiffi
f �I nmð Þ

p
, where

indices n,m define a block upper left corner, q = 0,..,7,
s = 0,…,7 are indices of DCT coefficients in 8 × 8 blocks,
�I nm is nm-th block local mean, and β is a constant. Hard
thresholding operation is resulting in assigning to zero
those coefficients (D(n, m, q, s), q = 0,…,7, s = 0,…,7 (ex-
cept DC component with q = 0 and s = 0) which absolute
value is below the threshold: |D(n, m, q, s)| < T(n, m),
and keeping all others unchanged (for each possible pos-
ition of a block). After this, an inverse DCT is applied to
the thresholded DCT coefficients in each block. Here,
we consider the DCT-based filtering with full overlap-
ping (shifting by one position to the next window), thus,
multiple denoised (filtered) values are obtained for each
image pixel (except those ones placed at the image cor-
ners). These multiple denoised values of the same pixel
coming from different windows are averaged. This pro-
cedure is similar to a translation invariant wavelet
shrinkage, where instead of block DCTs, wavelet trans-
form of an image and all possible shifted version of it
are performed. This allows to improve a denoising per-
formance and to diminish blocking artifacts with respect
to the case of filtering performed in non-overlapping
blocks. Note also, that in the case of fully overlapping
blocks, DCT-based filtering efficiency is close to that of
the state-of-the-art filters [23] such as, e.g., BM3D [37].
This is one more reason why the DCT-based filtering
was selected in our analysis.
Usually, the value of β recommended in hard thres-

holding is 2.6 [36] although one can find slightly diffe-
rent recommendations [38] which we will discuss later.
Then, for the spatially uncorrelated signal-dependent

noise models (1) and (2), one gets

T n;mð Þ ¼ 2:6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2si þ k�I nm

q
ð5Þ

and

T n;mð Þ ¼ 2:6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2si þ k�I 2nm

q
; ð6Þ

respectively. In practice, if σ2si and k are estimated, the
obtained estimates of these parameters are to be used in
(5) and (6).
A traditional approach to filter efficiency charac-

terization and comparison to other filters is to calculate
and analyze output MSE or PSNR. In this paper, we
mainly consider R component of RGB color image.
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Figure 1 Noise-free color images in TID2008.
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Results for other color components are in good agree-
ment with those for the R component denoising (this
will be shown by particular examples).
Since we deal with color images (and their compo-

nents) that are usually intended for visual inspection,
Figure 2 Dependences of optimal β on image index in the TID2008 d
metrics PSNR (a) and MSSIM (b).
visual quality of processed images is of a value.
Thus, alongside with the conventional output PSNR
(PSNR = 10 log 10(255

2/MSEout) where MSEout de-
notes MSE after denoising), it is worth using visual
quality metrics.
atabase. For three sets of mixed noise parameters according to the
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In our analysis, we have used two quality metrics in-
spired by human visual system (HVS). A first one is the
recently proposed metric PSNR human visual system
masking (PSNR-HVS-M) [39] (available at [40] and de-
fined as PSNR-HVS-M = 10 log 10(255

2/MSEout
HVS), where

MSEout
HVS is a specific MSE determined in DCT domain

that takes into account such peculiarities of human vi-
sion system as different sensitivity to distortions in dif-
ferent spatial frequencies and masking effects). This
metric is among the best in characterizing visual quality
of images corrupted by a noise as well as images with
distortions due to filtering and compression [41]. PSNR-
HVS-M is intended to assess visual quality of both gray-
scale and color images. Similarly to the conventional
PSNR, the metric PSNR-HVS-M is expressed in decibels
and larger values correspond to better visual quality. If
PSNR-HVS-M exceeds 40 dB, distortions can be hardly
noticed [42].
Another widely used HVS metric is multi-scale struc-

tural similarity (MSSIM) [43]. It takes into account
human’s ability to adapt to a structural similarity at dif-
ferent scales and HVS sensitivity to distortions of lumi-
nance and contrast. The metric values vary from 0
(extremely bad quality) to 1 (perfect or ideal quality). As
a

PSNR = 30.99; PSNR-HVS-M = 35.42;  
MSSIM = 0.931 

c
Figure 3 The fragment of noise-free test image #13 and filtered resul
test image #13 (a), its noisy (k = 0.2; σ2si = 50) (b) version for red componen
erroneous estimates (δV = 0.4; δk = 0.3) (d) of the noise parameters.
it is seen, this metric has another range of variation
where the value 0.99 corresponds to practical invisibility
of distortions if they are spread over entire image [42].
While PSNR-HVS-M exploits discrete cosine transform
in blocks for its calculation, MSSIM is based on wave-
lets. Thus, we can expect that if analysis of both metrics
leads to drawing similar conclusions, then these conclu-
sions will be well grounded.
Note that performance analysis of filtering effi-

ciency is usually carried out under an assumption
that noise characteristics are known in advance (or
accurately pre-estimated) and filter parameters are
set according to certain recommendations [6,9,31]. Recall
that, in our case, the thresholds for blocks are set to

T n;mð Þ ¼ β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ̂ 2
si þ k̂�I nm

q
or T n;mð Þ ¼ β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ̂ 2
si þ k̂�I 2nm

q

depending on the considered model where σ̂ 2
si and k̂ are

model parameter estimates obtained by some technique.

Thus, all three parameters, β, σ̂ 2
si and k̂ , can influence filter

performance. Besides, image properties have also an
impact on efficiency of filtering.
Assume that statistical characteristics of the noise are

not known in advance. Properties of image signal com-
ponent (for example, its spatial spectrum in DCT or
b

PSNR = 30.53; PSNR-HVS-M = 34.93;  
MSSIM = 0.927 

d
ts for accurate and erroneous estimates. The fragment of noise-free
t and filtered results for accurate estimates (δV = 0; δk = 0) (c) and for
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wavelet domain) are also unknown since an observed
image is noisy. Thus, to partly simplify the situation, we
have, at least, to set the parameter β fixed. Let us de-
monstrate that setting β equal to 2.6 is a good choice for
the considered hard threshold DCT filter with full over-
lapping of blocks.
To demonstrate this, we have considered several sets

(combinations) of the parameters σ2si and k for the model
(1) to simulate the cases of dominant additive noise
and dominant signal-dependent noise with different
intensities. Besides, we have carried out tests for 25
color images from the database TID2008 [41]. It con-
tains noise-free images where there are 24 images of
natural scenes (Kodak images) and one (the 25th) is ar-
tificially created (see Figure 1). This allows simulating
noisy images with pre-determined statistical characte-
ristics of the mixed noise described by the considered
models (1) and (2) easily.
The optimal values of β that provide minimal output

MSE (maximal output PSNR) for the red component are
presented for three sets of the parameters σ2si and k for
the model (1) in Figure 2a (the corresponding depen-
dences for other color components are very similar).
a

PSNR = 34.53; PSNR-HVS-M = 34.67;  
MSSIM = 0.956 

c
Figure 4 The fragment of noise-free test image #03 and filtered resul
test image #03 (a), its noisy (k = 1.0; σ2si = 30) (b) version for red componen
erroneous estimates (δV = −0.5; δk = −0.2) (d) of the noise parameters.
The model parameters are set so that either additive
noise is prevailing (k = 0.2; σ2si = 50), or signal-dependent
noise is dominant (k = 1; σ2

si = 30), or impact of both
noise components is comparable (k = 0.2, σ2si = 10).
The observed tendencies are the following. First, the

average value of β is really about 2.6 for all three sets of
the noise parameters. Second, there are complex struc-
ture images (e.g., the test images #1 and #13) for which
optimal β are slightly smaller than 2.6. There are also
simple structure images (#3, 7, 20, 23, 25) for which the
optimal β can be slightly larger than 2.6, especially if
noise is quite intensive (e.g., k = 1 and σ2si = 30).
Dependences for the metric MSSIM (Figure 2b) are

very similar. The only difference is that optimal values of
β are by about 3% smaller than for the corresponding
cases in Figure 2a. This tendency has been earlier ob-
served in [38]. It can be explained by the fact that by set-
ting a slightly smaller β one provides better edge/detail/
texture preservation while noise suppression in homo-
geneous image regions becomes worse. This is just the
case when a filtered image is perceived as having better
visual quality. Dependences of optimal β for another
HVS metric, PSNR-HVS-M (not presented in the paper),
b

PSNR = 33.94; PSNR-HVS-M = 34.39;  
MSSIM = 0.952 

d
ts for accurate and erroneous estimates. The fragment of noise-free
t and filtered results for accurate estimates (δV = 0; δk = 0) (c) and for



Table 1 Simulation data for the test image #3, noise model
(1), PSNR metric
k σ2

si MSEinp PSNR (δV =
−1, δk = −1)

PSNR (δV =
−0, δk = −0)

maxPSNR δVmax δkmax

0.2 10 32.66 32.99 38.64 38.65 0.3 −0.1

0.2 50 72.62 29.52 36.58 36.62 0.4 −0.7

1.0 30 144.01 26.55 34.52 34.57 1 −0.2

cba

Figure 5 Dependences of PSNR on δV and δk for the test image #3. For different noise cases: k = 0.2; σ2si = 10 (a), k = 0.2; σ2si = 50 (b), and
k = 1; σ2si = 30 (c).
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are similar to those ones for PSNR. The difference is
again in smaller optimal β similarly to MSSIM.
For more detailed analysis, we have further concen-

trated on two color images from the database TID2008
[41], namely the test image #3 (one of the simplest) and
the test image #13 (the most complex one) (see Figure 1)
since, according to our previous experience [17,18], just
these marginal cases determine basic requirements. The
test image #25 has not been chosen since it is artificial
and we are more interested in enhancing natural scene
images. The test image #20 has not been used for the
analysis since clipping (overexposure) effects occur for it
in bright upper region that corresponds to sky.
Our idea is that a joint analysis of filtering efficiency

for these two images carried out for different noise pa-
rameters’ sets can produce initial insight on basic re-
quirements to an accuracy of blind estimation of noise
parameters σ2si and k. We assume that these require-
ments will be correct for the majority of real-life images.
At the end of the paper, we will check validity of these
requirements for two extreme cases and for entire data-
base of images corrupted by mixed noise with different
sets of parameters.
Thus, we assume that the DCT-based filter parameter

β is set to be equal to 2.6 but the estimates of σ2si and k
obtained by some technique and then used in filtering
can be erroneous. To characterize these estimates, let us
use the parameters

δV ¼ ⌢σ 2
si−σ

2
si

� �
=σ2si and δk ¼

⌢

k−k
� �

=k ; ð7Þ

where σ̂ 2
si and k are estimates of σ2

si and k, respectively.
Then, δV = 0 and δk = 0 correspond to true values of σ2si
and k; δV = − 1 relates to the case when the additive
noise component is absent. Similarly, δk = −1 corre-
sponds to assumption that the signal-dependent noise
component is absent and the present noise is pure addi-
tive. The case δV = −1 and δk = −1 relates to the case of
no filtering applied, i.e., to a noisy image.
In our experiments, we have analyzed δV and δk ran-
ging from −1 to +1 (from −100% to +100%), that is for
δV = 1 and/or δk = 1, it is assumed that the estimates of

σ̂ 2
si and k̂ are twice (by 100%) larger than the true values

of these parameters. According to our experience [22],
practical estimates are rarely outside these limits.
An important question is what is considerable (essential)

impact of errors in parameter estimation on filtering
efficiency? Our proposition is to consider that impact
is essential if PSNR or PSNR-HVS-M reduction is more
than 0.5 dB compared to PSNR or PSNR-HVS-M observed
for δV = 0 and δk = 0, i.e., for perfect (recommended)
settings. The value 0.5 dB is selected since such a dif-
ference in output PSNR or PSNR-HVS-M is notice-
able if filtered images are visually inspected together
(compared). This statement follows from our experi-
ence in creation and exploitation of the database
TID2008 [41] (e.g., the difference equal to 3 dB for a
given filtered image is easily recognized by any observer).
To partly prove this, Figure 3 presents a fragment of the
noise-free color image #13 (Figure 3a), its noisy version
for the red components (model (1), σ2si = 50 and k = 0.2,
Figure 3b), the filtered image fragment under assump-
tion that one has accurate estimates of the noise pa-
rameters (δV = 0 and δk = 0, Figure 3c) and the same
fragment in the case of erroneous estimates (δV = 0.4
and δk = 0.3, i.e., noise parameters are both overesti-
mated, Figure 3d). For the latter two images, the values
of all three metrics are presented. Reduction of PSNR
and PSNR-HVS-M for the image in Figure 3d com-
pared to the image in Figure 3c is about 0.5 dB. Due to



Table 2 Simulation data for the test image #3, noise
model (1), PSNR-HVS-M metric
k σ2

si MSEinp PSNR-HVS-M
(δV = −1,
δk = −1)

PSNR-HVS-M
(δV = −0,
δk = −0)

maxPSNR−
HVS−M

δVmaxvis δkmaxvis

0.2 10 32.66 36.32 40.29 40.30 0.2 −0.1

0.2 50 72.62 32.45 37.45 37.47 0.2 −0.5

1.0 30 144.01 29.22 34.67 34.68 0.7 −0.2

Figure 6 Dependences of PSNR-HVS-M on δV and δk for the test image #3. For different noise cases: k = 0.2; σ2si = 10 (a), k = 0.2; σ2si = 50 (b),
and k = 1; σ2si = 30 (c).
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overestimation of both parameters of the mixed noise,
oversmoothing is observed. It mainly appears itself in
smearing low contrast texture (bushes) in the central
part of the picture in Figure 3d. The reduction of the
metric MSSIM is observed as well. For the case consi-
dered in Figure 3, reduction is equal to 0.004.
Besides, Figure 4 represents images for another case.

The simple structure image #3 (its noise-free color ver-
sion is presented in Figure 4a) is corrupted by rather in-
tensive signal-dependent noise with σ2si = 30 and k = 1.0
(Figure 4b, red component). Noise is well visible, espe-
cially in image homogeneous regions. Figure 4c presents
the denoised image under assumption that mixed noise
parameters are estimated absolutely accurately. Mean-
while, Figure 4d represents the output image obtained in
the case of underestimation of mixed noise parameters.
As it is seen, underestimation leads to residual noise that
appears itself clearly in image homogeneous regions.
Again, reduction of PSNR and PSNR-HVS-M is close to
0.5 dB while decrease of MSSIM is close to 0.005.
Thus, both underestimation and overestimation of the

mixed noise parameters are undesirable. Underestima-
tion is crucial for simple structure images and overesti-
mation is undesired for complex structure images.
We have checked other test images and other noise par-

ameter sets. Analysis carried out for all images in TID2008
has shown that reduction of PSNR and PSNR-HVS-M by
about 0.5 dB approximately corresponds to MSSIM reduc-
tion by 0.005. Note that all three dependences are non-
linear and there is no strict relationship between them.
The only observation is that if PSNR-HVS-M decreases,
MSSIM usually diminishes as well and vice versa.
Thus, our approach to analysis consists in the following.

The first task is to determine 2D areas of δV and δk where
reduction is smaller than 0.5 dB according to the metrics
PSNR and PSNR-HVS-M or smaller than 0.005 according
to MSSIM for each considered image and each set of mixed
noise parameters. It is assumed that if the mixed noise pa-
rameters’ estimates are within these areas, the estimation
errors do not essentially influence the filtering accuracy.
Note that in addition to three aforementioned sets of
mixed noise parameters for the model (1), we consider
below one set (combination) of σ2si and k for the model
(2) to simulate the real-life situation for which the multi-
plicative noise is dominant. Then, at the second stage,
the obtained areas have to be aggregated by AND rule to
provide final requirements to estimation accuracy under
assumption that neither noise statistics nor image pro-
perties are available in advance.
4. Analysis of results
The obtained dependences of output PSNR on δV and δk
are presented as 2D surfaces (see Figure 5) of red color.
Black color horizontal surface corresponds to the levels
PSNR(δV = 0, δk = 0) − 0.5, dB and PSNR-HVS-M(δV = 0,
δk = 0) − 0.5, dB, respectively. Thus, it is easy to see for
which area of δV and δk filtering efficiency is acceptable for
each particular case (red color surface is over black one).
Three combinations of k and σ2si are considered,

namely, k = 0.2, σ2si = 10; k = 0.2, σ2si = 50; and k = 1, σ2si =
30. For each combination, Table 1 presents the following
data: MSEinp to discriminate the cases of dominant
signal-dependent or signal-independent noise; PSNR
(δV = −1, δk = −1), i.e., for original noisy image; PSNR
(δV = 0, δk = 0), i.e., for the image filtered with the re-
commended parameter under condition of absolutely ac-
curate estimation of σ2si and k; max PSNR, i.e., maximal
attained value and the values δVmax, δkmax for which
maxPSNR has been provided.
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Figure 7 Dependences of MSSIM on δV and δk for the R component of the test image #3. For different noise cases: k = 0.2; σ2si = 10 (a), k =
0.2; σ2si = 50 (b), and k = 1; σ2si = 30 (c).
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As it is seen, for two cases (k = 0.2, σ2si = 10 and k = 1,
σ2si = 30), the SD noise component is dominant (MSEinp >2
σ2si ). For the case k = 0.2, σ2si = 50, the SI noise compo-
nent is dominant. The first observation is that if noise is
more intensive (compare the case k = 1, σ2si = 30 to the
case k = 0.2, σ2si = 10), the DCT-based filtering is more
efficient (PSNR(δV = 0, δk = 0) differs more from the cor-
responding PSNR(δV = −1, δk = −1)). In particular, PSNR
(δV = 0, δk = 0) is larger by about 8 dB than PSNR
(δV = −1, δk = −1) for the case k = 1, σ2

si = 30.
If the SD noise component is dominant (see the plots

in Figure 5a, c), it does not matter too much how accu-
rate the estimates σ̂ 2

si are. It is considerably more impor-
tant how accurate is the estimate of the SD noise
parameter k. If σ̂ 2

si is quite accurate (let us say, |δV| ≤
0.5), then |δk| should be smaller than about 0.4. Thus, if
the SD noise component is dominant, then the requirement
to accuracy of k is stricter than the requirement to accuracy
of σ̂ 2

si . This appears itself in the fact that a red surface ‘strip’
that is ‘over’ the corresponding threshold (black color
surface) is oriented more parallel to the axis δV.
Another situation is observed if SI noise component is

dominant (see the plot in Figure 5b). Then accuracy of
estimating the parameter k is less important, but the re-
quirement to estimation of σ2si is stricter. In fact, for the
considered case, it is desirable to provide |δV| less than
0.3…0.4. The red surface ‘strip’ is oriented more parallel
to the axis δk. Thus, initial conclusion is quite trivial - it
is necessary to more accurately estimate the parameter
for the noise component which is dominant.
Table 3 Simulation data for the test image #13, noise
model (1), PSNR metric
k σ2

si MSEinp PSNR (δV =
−1, δk = −1)

PSNR (δV =
−0, δk = −0)

maxPSNR δVmax δkmax

0.2 10 32.0 33.08 33.91 33.96 −0.6 0

0.2 50 71.93 29.56 30.99 31.09 −0.3 0

1.0 30 140.24 26.66 28.64 28.77 −0.6 −0.1
If one parameter is overestimated, then it is desirable
to have another parameter underestimated (

⌢

k < k ) to
provide rather efficient filtering (see the values δVmax

and δkmax in Table 1). It is better, if ⌢σ 2
si > σ2

si; δV > 0 .
The worst case is if both parameters, σ2si and k, are
underestimated. Then, undersmoothing is observed
(look at data for δV→ −1, δk→ −1) and filtering effi-
ciency is far from optimal (attainable). One more inter-
esting observation that follows from analysis of data in
Table 1 is that maxPSNR is only slightly (by 0.01…0.05 dB)
larger than PSNR(δV = 0, δk = 0). This shows that the prac-
tical recommendation (5) works well enough.
Consider now the dependences for the metric PSNR-

HVS-M presented in Figure 6. The corresponding data
are collected in Table 2. For each combination, Table 2
presents the values of PSNR-HVS-M(δV = −1, δk = −1)for
original noisy images; PSNR-HVS-M(δV = 0, δk = 0), i.e.,
for the images filtered with the recommended parameter
under condition of absolutely accurate estimation of σ2si
and k; maxPSNR−HVS−M, i.e., maximal reachable value and
the values δVmaxvis, δkmaxvis for which maxPSNR−HVS−M

has been attained.
From the very beginning, let us stress that the values

PSNR-HVS-M(δV = −1, δk = −1) are larger than the cor-
responding PSNR(δV = −1, δk = −1). This is due to the
masking effects [39]. As it is according to the metric
PSNR, PSNR-HVS-M increases for the recommended set-
ting of the DCT filter parameter β (compare PSNR-HVS-M
(δV = 0, δk = 0) to PSNR-HVS-M(δV = −1, δk = −1)). Visual
quality improvement due to filtering is essential - from
Table 4 Simulation data for the test image #13, noise
model (1), PSNR-HVS-M metric
k σ2

si MSEinp PSNR-HVS-M
(δV = −1,
δk = −1)

PSNR-HVS-M
(δV = −0,
δk = −0)

maxPSNR−
HVS−M

δVmaxvis δkmaxvis

0.2 10 32.0 40.08 40.36 40.45 −0.1 −0.4

0.2 50 71.93 34.90 35.42 35.56 −0.4 0

1.0 30 140.24 31.30 32.01 32.24 −0.7 −0.2
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Figure 8 Dependences of PSNR on δV and δk for the R component of the test image #13. For different noise cases: k = 0.2; σ2si = 10 (a), k =
0.2; σ2si = 50 (b), and k = 1; σ2si = 30 (c).
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about 4 dB for non-intensive noise (k = 0.2; σ2si = 10), it
reaches 5.5 dB for the case k = 1, σ2

si = 30. Note that
PSNR-HVS-M(δV = 0, δk = 0) for k = 0.2; σ2si = 10 exceeds
40 dB, i.e., residual distortions in the filtered image
are almost invisible [35].
The observed values maxPSNR−HVS−M practically do

not differ from the corresponding PSNR-HVS-M(δV = 0,
δk = 0). Interestingly, all δVmaxvis are larger than 0 while
all δkmaxvis are smaller than 0. This means that it is less
risky to overestimate SI noise variance and underesti-
mate the parameter k than to fall into other possible sit-
uations. Meanwhile, all δVmaxvis (Table 2) are smaller
than the corresponding δVmax (see Table 1). This shows
that for providing higher visual quality, it is undesirable
to have considerable overestimation of mixed noise pa-
rameters. In some sense, it is equivalent to the recom-
mendation to have β slightly smaller than 2.6 in
threshold setting (5) to guarantee good visual quality of
filtered image [38].
Figure 7 shows dependences of the metric MSSIM on

δV and δk for the test image #3. The conclusions that
can be drawn from their analysis are similar to those
presented above. Overestimation of mixed noise parame-
ters is less risky than underestimation. It is more impor-
tant to correctly estimate the parameter of mixed noise
ba

Figure 9 Dependences of PSNR-HVS-M on δV and δk for the R compo
(a), k = 0.2; σ2si = 50 (b), and k = 1; σ2si = 30 (c).
that corresponds to the dominant component of the
noise.
Consider now the results for the test image #13

(Figures 1 or 3a). Again, we present data only for R com-
ponent processed but the dependences for other color
components are very similar. The dependences obtained
for PSNR and PSNR-HVS-M are represented in Figures 8
and 9, respectively. Particular data are collected in
Tables 3 and 4. Note that the cases k = 0.2, σ2

si = 10 and
k = 1; σ2si = 30, as earlier, correspond to the dominant SD
noise component while the SI noise component is
prevailing if k = 0.2; σ2si = 50.
At the first glance, the dependences in Figures 8 and 9

are quite similar to the corresponding dependences in
Figures 5 and 6. However, there are several distinctive
differences. One of them is that filtering of the test
image #13 is considerably less efficient than of the test
image #3. Only for the most intensive noise (k = 1; σ2si =
30), the difference between PSNR(δV = 0, δk = 0) and
PSNR for the original image (PSNR(δV = −1, δk =−1))
reaches 2 dB. This difference is only 0.83 dB for the case
k = 0.2; σ2si = 10. The value maxPSNR is 0.05…0.13 dB larger
than the corresponding PSNR(δV = 0, δk = 0), and this takes
place if δVmax < 0, i.e., if SI noise variance is underestimated
and the parameter k is estimated properly (without error).
c

nent of the test image #13. For different noise cases: k = 0.2; σ2si = 10
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Figure 10 Dependences of MSSIM on δV and δk for the R component of the test image #13. For different noise cases: k = 0.2; σ2si = 10 (a),
k = 0.2; σ2si = 50 (b), and k = 1; σ2si = 30 (c).
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Overestimation of both parameters is severely undesir-
able since this leads to reduction of filtering efficiency
and image oversmoothing (analyze data for δV→ 1, δk→
1 where the dependences PSNR(δV, δk) rapidly decrease
if δV and δk increase).
Analysis of plots in Figure 9 and data in Table 4 leads

to the same conclusions. Note that in the case k = 0.2;
σ2si = 10, PSNR-HVS-M increase due to filtering is only
0.28 dB, i.e., it is practically invisible. Only for k = 1;
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Figure 11 Areas of acceptable δV and δk for different noise cases with
PSNR; (b) for PSNR-HVS-M and (c) for MSSIM metrics for red color compon
color for image #3, red color for image #13, solid line for the case k = 1; σ2si
the case k = 0.2; σ2si = 50.
σ2si = 30 the value PSNR-HVS-M(δV = 0, δk = 0) is by
0.71 dB larger than for the original image, i.e., there is
a small noticeable improvement of visual quality. This
means that if filtering is applied to improve visual
quality of highly textural images based on mixed noise
parameters estimated in a blind manner, then these es-
timates should not be essentially larger than true
values of these parameters (i.e., in fact, it is desirable
to have δV ≤ 0, δk ≤ 0).
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marked boundaries for appropriate estimation accuracy. (a) For
ent and (d) for PSNR for green color component. Notations used: black
= 30; dashed line for the case k = 0.2; σ2si = 10; dashed-dotted line for



Figure 12 Dependences of PSNR (a) and PSNR-HVS-M (b) on δV and δk for the test image #3. With noise simulated according model (2) for
k = 0.01 and σ2si = 20.

Table 5 Simulation data for the test image #3 and 13,
noise model (2), PSNR metric
Image
no.

k σ2
si MSEinp PSNR

(δV = −1,
δk = −1)

PSNR
(δV = −0,
δk = −0)

maxPSNR δVmax δkmax

3 0.01 20 171.67 25.78 33.66 33.70 0.6 0

13 0.01 20 168.90 25.85 28.02 28.10 −0.6 −0.1
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Figure 10 presents the obtained results for the metric
MSSIM. Their analysis also shows that overestimation of
mixed noise parameters is severely undesirable for this
(highly textural) test image. Parameter that relates to a
dominant component of the mixed noise has to be esti-
mated more accurately.
Let us now aggregate the obtained results for three

noise parameter combinations and two test images of
sufficiently different complexity. For this purpose, we
have marked the ‘allowed’ 2D areas of mixed noise par-
ameter estimates to be acceptable (see Figure 11 and de-
scription of notations used) and determined a joint
acceptable area (where all areas overlap). This area is in-
dicated by solid (blue) line and is located in the central
part (horizontal axis corresponds to δV and vertical to
δk). Although all particular areas are of rather large size,
their intersection is, certainly, smaller. However, it is still
quite large. In the worst case, |δk| = 0.2 and |δV| = 0.3
(see Figure 11a). The conclusions that can be drawn
from analysis of the area according to the metric PSNR-
HVS-M (Figure 11b) are practically the same. The inter-
section area obtained for the metric MSSIM (Figure 11c)
almost coincides with that for the metric PSNR.
To show that the results obtained for other color com-

ponents are similar to the results obtained for the red
component, Figure 11d presents intersection areas for
the green component according to the metric PSNR.
Comparison of the obtained acceptable areas to the cor-
responding areas presented in Figure 11a shows that
there is no essential difference.
Let us consider now the data for the model (2). Only

one case has been simulated: k = 0.01, σ2
si = 20. The de-

pendences of PSNR and PSNR-HVSM on δV and δk for
the R component of the test image #3 are presented in
Figure 12. The data are collected in Tables 5 and 6.
As it is seen, the multiplicative noise is dominant. Be-

cause of this, the parameter k has to be estimated with
higher accuracy than the parameter σ2si . PSNR and
PSNR-HVS-M improvement due to filtering is quite
large, about 8 dB for PSNR and about 5 dB for PSNR-
HVS-M. Similarly, Figure 13 presents dependences of
PSNR and PSNR-HVS-M on δV and δk for the R compo-
nent of the test image #13.
The data are given in Tables 5 and 6, respectively. In

this case, PSNR and PSNR-HVS-M improvement for ac-
curately estimated k and σ2si (see data for δV = 0, δk = 0)
is considerably smaller than for the test image #3. The
requirement to accuracy of the parameter k estimation is
stricter than to estimation accuracy of the parameter σ2si
although the estimation errors with |δk| ≤ 0.2 are still
acceptable. Overestimation of the parameter k is es-
pecially undesirable.
A shortcoming of the analysis carried out above is that

only two test images (although with essentially different
properties) and only four (totally) sets of mixed noise
parameters (although quite different) have been consi-
dered. Thus, let us also study two extreme cases. Ac-
cording to the previous analysis, the strictest restrictions
are observed for the following cases: (a) a complex struc-
ture image corrupted by non-intensive noise with obvi-
ous dominance of one component, for example, additive;
(b) a simple structure image corrupted by intensive
noise with one prevailing component, for example,
signal dependent of the model (2).
For the case a, we have used the test image #1 from

the database TID2008 (Figure 1). The model (1) noise
has been simulated with k = 0.01 and σ2si = 25. These
settings relate to, e.g., the practical case of noisy (junk)
component images acquired by old generation hyper-
spectral sensors [8]. For the case b, the test image #23
from TID2008 (Figure 1) that is one of the simplest



Table 6 Simulation data for the test image #3 and 13, noise model (2), PSNR-HVS-M metric

Image No k σ2
si MSEinp PSNR-HVS-M (δV = −1, δk = −1) PSNR-HVS-M (δV = −0, δk = −0) maxPSNR−HVS−M δVmaxvis δkmaxvis

3 0.01 20 171.67 28.46 33.48 33.49 0.6 −0.1

13 0.01 20 168.90 30.32 31.24 31.39 −0.8 −0.2
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has been exploited. The model (2) noise has been gen-
erated with k = 0.1 and σ2si = 10. Such noise can be ob-
served in images formed by multi-look synthetic
aperture radars.
The obtained dependences of PSNR, PSNR-HVS-M,

and MSSIM on δV and δk for the case a are presented in
Figure 14. Obviously, σ2si has to be estimated with high
accuracy and its overestimation is strongly undesirable.
Quality improvement due to filtering is small even for
the best settings.
The dependences for the case b are shown in Figure 15.

It is seen that the parameter k has to be estimated cor-
rectly. Its underestimation can lead to considerable
undersmoothing and is undesirable. In both extreme
cases, it is still enough to estimate the dominant noise
parameter with relative error not exceeding 0.2.
Finally, we have obtained intersection areas for two

metrics (PSNR and PSNR-HVS-M) for all images (three
components for each image) and all considered sets of
signal-dependent noise models. These areas are shown
in Figure 16. The first observation is that these accep-
table areas are only slightly smaller than those ones pre-
sented earlier in Figure 11. Conclusions that follow from
the analysis of these areas are the following. First, abso-
lute values of both errors δV and δk should not, in ge-
neral, be larger than 0.2. Second, as exceptional
situation, it is possible that absolute values of one of
these errors can be slightly larger than 0.2 (but in this
case, another error should have the opposite sign). This
property appears itself in non-circular (quasi-elliptical
shape of acceptable areas). Third, the acceptable area for
the metric PSNR-HVS-M is slightly shifted with respect
a

Figure 13 Dependences of PSNR (a) and PSNR-HVS-M (b) on δV and δ
for k = 0.01 and σ2si = 20.
to the acceptable area for the metric PSNR toward
smaller values of both errors. In fact, this means that
overestimation of mixed noise parameters is more risky
for providing high visual quality of filtered images com-
pared to the case of conventional analysis of denoising
efficiency in terms of output MSE or PSNR.
Clearly, the way we followed in our analysis is not the

only one possible. It is also possible to study tolerance of
filtering techniques to ambiguity or inaccuracy of available
a priori information in other ways. One of them can be
based on simulating some estimates of noise parameters
and using them instead of true values in denoising with
statistical assessment of filtering efficiency. Following
this way, we have assumed unbiased estimation of both
parameters for the noise model (1) and estimates modeled
as k̂ ¼ k þ Δk; σ̂ 2

si ¼ σ̂ 2
si þ Δσ̂ 2

si; where Δk and Δσ̂ 2
si

are mutually independent zero mean random variables
supposed to be Gaussian with standard deviations δk
and δv, respectively. Then, varying δk, δv, it is possible
to simulate erroneous estimation for a set of realiza-
tions, to determine what are filtering criteria values
(PSNR, PSNR-HVS-M, MSSIM) for each realization
and to statistically process them with obtaining mean
and standard deviation for each considered metric as
well as confidence intervals.
Note that erroneous estimation of noise parameters

leads to degradation of all metrics (reduction of their
mean values compared to the corresponding optimal
ones). Because of this, we have determined confidence
interval width as MCW= |MO −MM| + 3MS, where
MO determines optimal value of a visual quality metric
for errorless noise parameters estimates; MM is mean
b

k for the test image #13. With noise simulated according model (2)
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Figure 14 Dependences of PSNR (a), PSNR-HVS-M (b), and MSSIM (c) on δV and δk for the test image #1. With noise simulated according
model (1) for k = 0.01 and σ2si = 25.
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value of a visual quality metric; MS is standard deviation
of a visual quality metric.
Simulation results for the test images #3 and #13 for

two sets of parameters for model (1) are presented in
Table 7. Recall that we need MCW less than 0.5 dB for
the metrics PSNR and PSNR-HVS-M and less than
0.005 for the metric MSSIM. Conditions for which these
requirements are satisfied depend upon a test image and
noise parameters. The larger values of δk, δv result in
larger degradations of all metrics. However, the afore-
mentioned requirements are usually satisfied if both
δk, δv are smaller than 0.15. If these standard devia-
tions are both equal to 0.25, requirements can be not
satisfied. Thus, we come approximately to the same
conclusions as in our previous analysis.

5. Conclusions and future work
The question of influence of mixed noise parameters es-
timation accuracy on filtering efficiency in image en-
hancement applications is studied. It is demonstrated
that the parameter that corresponds to a dominant noise
type has to be estimated with a higher accuracy. This ac-
curacy is characterized by a relative error that should be
less than 20% for the dominant noise type and less than
30% for another type of noise. Then, decrease of filtering
ba

Figure 15 Dependences of PSNR (a), PSNR-HVS-M (b), and MSSIM (c)
model (2) for k = 0.1 and σ2si = 10.
efficiency characterized by PSNR or PSNR-HVS-M drop
compared to the optimum does not exceed 0.5 dB
(MSSIM drop does not exceed 0.005), and thus, it is
practically not noticeable (crucial). Note that these re-
quirements practically coincide with requirements to ac-
curacy of pure additive or pure multiplicative noise
variance estimation [17] - an estimate has to differ from
a true value by less than 20%. It is also important to
stress that even the most advanced modern methods of
blind estimation of mixed noise parameters do not al-
ways provide the required accuracy of parameters’
estimation [44].
It is also shown that for highly textural images it is

better to have underestimation of the mixed noise pa-
rameters than overestimation. Unfortunately, it happens
in practice that mixed noise parameters are usually over-
estimated for complex structure images [22]. This moti-
vates a design of more accurate methods for blind
estimation including analysis of dependences between
the estimates of components of the mixed noise.
Besides, in the future, we plan to concentrate on con-

sidering spatially correlated noise which is rather typical
in practice. Other filters based on using estimated pa-
rameters of mixed noise can be studied as well since re-
strictions for them can differ from restrictions obtained
for the DCT-based denoising.
c

on δV and δk for the test image #23. With noise simulated according
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Figure 16 Areas of acceptable δV and δk for two metrics. (a) PSNR and (b) PSNR-HVS-M for all TID2008 database images (three components
for each image) and all considered sets of signal-dependent noise models.

Table 7 Simulation data for the test image #3 and 13, noise model (1), all considered metrics

δk, δν PSNR PSNR-HVS-M MSSIM

MO MM MS MCW MO MM MS MCW MO MM MS MCW

Image 03

Case k = 0.2; σ2si = 50

0.05 36.58 36.57 0.013 0.046 37.40 37.40 0.006 0.017 0.9841 0.9841 0.0001 0.0002

0.10 36.55 0.045 0.160 37.38 0.030 0.103 0.9840 0.0002 0.0007

0.15 36.52 0.103 0.364 37.37 0.059 0.207 0.9839 0.0005 0.0016

0.20 36.49 0.158 0.557 37.34 0.091 0.328 0.9838 0.0007 0.0025

0.25 36.41 0.244 0.900 37.29 0.142 0.534 0.9834 0.0011 0.0041

Case k = 1.0; σ2si = 30

0.05 34.53 34.52 0.020 0.065 34.67 34.67 0.004 0.018 0.9756 0.9764 0.0002 0.0005

0.10 34.51 0.051 0.173 34.66 0.026 0.095 0.9764 0.0004 0.0012

0.15 34.44 0.132 0.480 34.63 0.071 0.260 0.9760 0.0009 0.0031

0.20 34.37 0.336 1.162 34.58 0.189 0.662 0.9756 0.0023 0.0077

0.25 34.35 0.347 1.218 34.56 0.198 0.710 0.9755 0.0023 0.0079

Image 13

Case k = 0.2; σ2si = 50

0.05 31.00 31.00 0.034 0.102 35.42 35.42 0.046 0.138 0.9828 0.9828 0.0003 0.0008

0.10 30.98 0.066 0.215 35.40 0.087 0.277 0.9827 0.0005 0.0016

0.15 30.96 0.100 0.343 35.37 0.126 0.426 0.9825 0.0008 0.0025

0.20 30.97 0.151 0.479 35.40 0.194 0.598 0.9827 0.0012 0.0036

0.25 30.93 0.164 0.555 35.36 0.217 0.709 0.9825 0.0013 0.0043

Case k = 1.0; σ2si = 30

0.05 28.64 28.64 0.041 0.127 32.01 32.01 0.054 0.164 0.9713 0.9713 0.0005 0.0017

0.10 28.64 0.080 0.246 32.01 0.101 0.308 0.9712 0.0010 0.0031

0.15 28.61 0.109 0.356 31.98 0.137 0.443 0.9710 0.0014 0.0045

0.20 28.62 0.143 0.450 32.00 0.185 0.563 0.9713 0.0019 0.0059

0.25 28.55 0.241 0.810 31.93 0.299 0.975 0.9706 0.0031 0.0098
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