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Abstract

Video surveillance has significant application prospects such as security, law enforcement, and traffic monitoring.
Visual traffic surveillance using computer vision techniques can be non-invasive, cost effective, and automated.
Detecting and recognizing the objects in a video is an important part of many video surveillance systems which
can help in tracking of the detected objects and gathering important information. In case of traffic video surveillance,
vehicle detection and classification is important as it can help in traffic control and gathering of traffic statistics that
can be used in intelligent transportation systems. Vehicle classification poses a difficult problem as vehicles have
high intra-class variation and relatively low inter-class variation. In this work, we investigate five different object
recognition techniques: PCA + DFVS, PCA + DIVS, PCA + SVM, LDA, and constellation-based modeling applied to the
problem of vehicle classification. We also compare them with the state-of-the-art techniques in vehicle classification. In
case of the PCA-based approaches, we extend face detection using a PCA approach for the problem of vehicle
classification to carry out multi-class classification. We also implement constellation model-based approach that
uses the dense representation of scale-invariant feature transform (SIFT) features as presented in the work of Ma
and Grimson (Edge-based rich representation for vehicle classification. Paper presented at the international conference
on computer vision, 2006, pp. 1185–1192) with slight modification. We consider three classes: sedans, vans, and taxis,
and record classification accuracy as high as 99.25% in case of cars vs vans and 97.57% in case of sedans vs taxis. We
also present a fusion approach that uses both PCA + DFVS and PCA + DIVS and achieves a classification accuracy of
96.42% in case of sedans vs vans vs taxis.

Keywords: Computer vision; Video surveillance; Pattern recognition; Traffic monitoring; Vehicle classification;
Machine vision and scene understanding; Image processing

MSC: 68T10; 68T45; 68U10
1 Introduction
Visual traffic surveillance has attracted significant interest
in computer vision, because of its significant application
prospects. Efficient and robust localization of vehicles
from an image sequence (video) can lead to semantic
results, such as ‘Vehicle No. 3 stopped,’ ‘Vehicle No. 4 is
moving faster than Vehicle No. 6.’ However, such infor-
mation can be more relevant if we not only can detect ve-
hicles but also can classify them. Information such as gap,
headway, stopped-vehicle detection, speeding vehicle, and
class of a vehicle can be useful for intelligent transpor-
tation systems [1]. Monitoring vital assets using video
surveillance has increased in recent years. The class of
a detected vehicle can supply important information
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that can be used to make sure that certain types of vehi-
cles do not appear in certain areas under surveillance.
Multi-camera systems such as the one used in [2] can
benefit immensely if the information regarding the classes
of vehicles is available, as vehicle classification can be used
in matching objects detected in non-overlapping field of
views from different cameras.
Object detection and tracking has achieved good accur-

acy in recent years. However, the same cannot be said
about object classification. Object recognition in case of
still images has the problem of dealing with the clutter in
the scene and a large number of classes. Object recognition
in video sequences has the benefit of using background
segmentation to remove clutter [3]. However, images
obtained from video surveillance cameras are generally of
low resolution, and in case of traffic video surveillance,
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the vehicles cover very small areas of these images, making
the classification problem challenging. Vehicle classes such
as cars and vans are difficult to differentiate as they have
similar sizes. Therefore, classification techniques that use
global features such as size and shape of the detected blob
do not yield satisfactory results.
For this work, we consider three vehicle classes: cars,

vans, and taxis. Classes like bus, semi, and motorcycle
were not included because they are relatively easy to
classify based on their size. We considered three differ-
ent scenarios: cars vs vans, sedans vs taxis, and sedans
vs vans vs taxis. Taxis and sedans are disjoint subsets
of class cars. Therefore, results of sedans vs taxis will
demonstrate the relevance of our approach when inter-
class variability is low. For the purpose of this paper,
we used a dataset provided in [4].
In [3], Ambardekar et al. presented a comprehensive

traffic surveillance system that can detect, track, and
classify the vehicles using a 3D model-based approach.
The classification using the 3D model-based approach
requires camera parameters and orientation of a vehicle
which can be calculated using tracking results. When ve-
hicle orientation information is available, the methods
presented in this paper can be used in a traffic surveillance
system such as [3] to improve the vehicle classification
accuracy.
In this work, we present five different vehicle classifi-

cation techniques that can be used in combination with
a consideration to the requirements of the scenario and
do not require camera calibration. The two main contri-
butions of our work are the following: (1) We present sev-
eral approaches (PCA +DFVS, PCA +DIVS, PCA + SVM,
LDA, and constellation model) and improvements over
the published results that used state-of-the-art techniques.
(2) We perform a comparative study of these and other
approaches in the literature for the purpose of vehicle
classification.
There are similarities between the problem of face de-

tection and vehicle recognition especially in the typical
size of an image sample under consideration. In face de-
tection, the problem is finding a face from non-face image
samples. However, in case of vehicles, we have multiple
classes, and we want to differentiate between them. Turk
and Pentland used PCA to form eigenfaces that can reli-
ably recognize faces [5]. We extend the face detection
based on PCA and implement three different techniques:
PCA +DFVS, PCA +DIVS, and PCA + SVM. In these ap-
proaches, we create a principal component space (PCS)
using PCA which we call vehicle space. In case of PCA +
DFVS, the decision is made by finding the distance from a
separate vehicle space for each class, and therefore, it is
named distance from vehicle space (DFVS). On the other
hand, PCA +DIVS predicts the class of a test image after
projecting a test image onto a combined vehicle space,
and distance from each class is calculated in vehicle space
and hence named distance in vehicle space (DIVS). We
achieved an overall accuracy as high as 95.85% in case of
sedans vs vans vs taxis using PCA +DFVS. In the difficult
case of sedans vs taxis, we achieved a 97.57% accuracy
using PCA + DFVS which is higher than any published
results using this dataset [6,7]. PCA + DIVS yielded
99.25% accuracy in case of cars vs vans. Our results
match or surpass the results in all the cases considered
in [4,8]. PCA depends upon most expressive features
(MEFs) that can be different from most discriminant
features (MDFs) [9]; therefore, we also implement LDA that
relies on MDFs. We observed that PCA+DIVS approach
works better when the classes have more inter-class vari-
ation, e.g., cars vs vans, and PCA +DFVS seems to work
better even in the difficult case of sedans vs taxis when
inter-class variation is low. Therefore, we devised a new
fusion approach that combines the benefits of both the
approaches to classify sedans vs vans vs taxis, and were
able to achieve classification accuracy of 96.42%.
Constellation models [10,11] have been shown to be

able to learn to recognize multiple objects using a training
set of just a few examples. In [4], Ma and Grimson used a
constellation model with mean-shift clustering of scale-
invariant feature transform (SIFT) features to classify vehi-
cles. However, the mean-shift clustering is considerably
slow. In our implementation, we used K-means clustering.
We also use an expectation maximization algorithm that
considers up to 6 Gaussians and choose the number of
Gaussians that maximizes the maximum likelihood for
training data. We achieved similar accuracy with consid-
erably less computation complexity compared to results
achieved in [4]. In [4], Ma and Grimson dealt with only a
two-class classification problem. We extend the approach
by performing classification in the three class case of sedans
vs vans vs taxis.
The rest of the paper is organized as follows: Section 2

discusses previous work. Section 3 gives details about
the techniques compared in this paper, and Section 4
describes and compares the results obtained. Section 5
discusses the conclusions and future work.

2 Existing video annotation and retrieval systems
Object classification in general is a challenging field.
Vehicle classification poses another challenge as inter-class
variability is relatively smaller compared to intra-class
variability. The approaches for vehicle classification can
be broadly classified into four categories.

2.1 3D model-based approaches
3D model-based approaches have been proposed for the
purpose of object detection and tracking in [3,12,13]. In
[3], a region of interest (ROI) was extracted using statis-
tical background modeling and extraction of foreground
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using background subtraction. Edges were detected using
either the Sobel edge detector or the Canny edge detector.
3D wireframes of the models in the database are projected
onto the image, and the best match is found based on the
best matching pixel position [14], or mathematical morph-
ology to match the model to the edge points [3]. All the
models are subjected to the matching process, and the
one with the highest matching score (i.e., lowest matching
error) is selected as the model. These methods require
camera parameters to be calibrated so that a 3D wireframe
can be projected onto an image. They also need orienta-
tion of the vehicles which can be retrieved from optical
flow calculation.

2.2 Global feature-based approaches
Gupte et al. [15] proposed a system for vehicle detection
and classification. They classified the tracked vehicles
into two categories: cars and non-cars. The classification
is based on vehicle dimensions, where they compute the
length and height of a vehicle and use them to distinguish
cars from non-cars [15]. Avely et al. [16] used a similar
approach, where the vehicles are classified on the basis of
length using an uncalibrated camera. However, this
method also classifies the vehicles into two coarse groups:
short vehicles and long vehicles. In order to achieve a
finer-level classification of vehicles, a more refined
method needs to be devised that can detect and model
the invariant characteristics for each vehicle category
considered.

2.3 PCA-based approaches
Chunrui and Siyal developed a new segmentation tech-
nique for the classification of moving vehicles [17]. They
used simple correlation to get the desired match. The
results shown in the paper are for the lateral view of the
vehicles, and no quantitative results were given. Towards
this goal, a method is developed by Zhang et al. [18]. In
their work, they used a PCA-based vehicle classification
framework. They implemented two classification algo-
rithms: eigenvehicle and PCA-SVM to classify vehicle
objects into trucks, passenger cars, vans, and pickups.
These two methods exploit the distinguishing power of
principal component analysis (PCA) at different granular-
ities with different learning mechanisms. Eigenvehicle ap-
proach used in [18] is similar to the proposed approach
PCA +DIVS. However, we use distance from mean image
in PCA space instead of finding distance from each image
from each class as done in [18]. The performance of
such algorithms also depends on the accuracy of vehicle
normalization.

2.4 Local feature-based approaches
Local features have certain advantages over using global
features as they are better suited to handle partial
occlusion. In traffic surveillance, if the intersection moni-
toring is desired, then overlapping of passing vehicles will
result in partial occlusion and errors in extracting ROIs.
SIFT [19] has shown to outperform other local features in
terms of repeatability [20].
Ma and Grimson developed a vehicle classification

approach using modified SIFT descriptors [4]. They
used SIFT features to train the constellation models
that were used to classify the vehicles. They considered
two cases: cars vs vans and sedans vs taxis. They reported
good results for the difficult case of classifying sedans vs
taxis. However, they do not report combined classification
results for sedans vs vans vs taxis that will show the
scalability of the approach. We used the same dataset
provided by them. We implemented constellation model-
based approach that differs slightly from [4], but we were
able to achieve similar accuracy with better computational
complexity.

2.5 Other approaches
Koch and Malone [21] used infrared video sequences and
a multinomial pattern-matching algorithm [22] to match
the signature to a database of learned signatures to do
classification. They started with a single-look approach
where they extract a signature consisting of a histogram of
gradient orientations from a set of regions covering the
moving object. They also implemented a multi-look fusion
approach for improving the performance of a single-look
system. They used the sequential probability ratio test to
combine the match scores of multiple signatures from a
single tracked object. Huang and Liao [23] used hierarchical
coarse classification and fine classification. Ji et al. used a
partial Gabor filter approach [24]. In [8], Wijnhoven and
de With presented a patch-based approach that uses
Gabor-filtered versions of the input images at several
scales. The feature vectors were used to train a SVM
classifier which was able to produce results better than
those presented in [4] in cars vs vans case. However, this
approach is global feature based; therefore, it is not best
suited for cases with partial occlusion. Recently, Buch
et al. presented a traffic video surveillance system which
employs motion 3D extended histogram of oriented gra-
dients (3DHOG) to classify road users [6].

3 Classification framework
The problem of face detection can be considered as a
two-class classification when we deal with face vs non-
face classification. In this research, we are interested in
classifying vehicles in multiple classes, and we do so by
extending the eigenface approach [5]. The components
extracted from PCA are the MEFs, while LDA uses the
MDFs. The constellation model is a generative model
which models scale invariant features to distinguish be-
tween different classes of vehicles. As the constellation
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model is a part-based model, it can perform well even in
the presence of partial occlusion.

3.1 Eigenvehicle approach (PCA + DFVS)
The images in the dataset have different sizes and there-
fore are not suitable for PCA directly. We normalize all
the images to average width and height (74 × 43). In [5],
PCA was used for single-class classification (i.e., face).
We use it for up to three classes at the same time and
therefore extend the approach by creating a separate
PCS or vehicle space for each class. We define each
eigenspace as eigenvehicle [18].

3.1.1 Training for eigenvehicles
For creating the principal component space for each
class, i.e., creating eigenvehicle for each class, we normalize
the images such that the width and height of all the images
are the same. Since each sample image is a 2-D image, Ai ∈
Rm × n, we create a vector from an image by concatenating
rows to create a column vector A′i ∈ R1 × mn. We consider
k = 50 images for each class; then, we have a matrix of k
columns A′ = [A′1 A′2 A′3 … A′k] that represents the set of
training samples. The length of each column is m × n.
Then, we can compute the mean vector μ as below:

μ ¼ 1
k

Xk

i¼1
A0
i: ð1Þ

Let σi =A′i − μ, and σ = [σ1, σ2, σ3, … σk]. The covariance
matrix of A′ is

C ¼ 1
k

Xk

i¼1
σ iσ

T
i ¼ σσT ð2Þ

The eigenvectors of C are the principal components.
The eigenvectors associated with the largest eigenvalues
correspond to the dimensions in the space where the
PCS for cars 

DF

(b) 

(

Figure 1 PCA-DFVS. (a) A test image showing an example from car class.
projection of the test image with respect to van PCS. The absolute difference
(red arrows).
data has the largest variance. In our training set, the size
of C is mn ×mn (3,182 × 3,182), which is not feasible to
compute principal components. In [5], Turk and Pentland
proposed a solution to this problem, where they find the
eigenvectors and eigenvalues of σTσ, instead of σσT. Sup-
pose vi is an eigenvector of σTσ, and λi is the associated
eigenvalue. Then,

σTσvi ¼ λivi →
yields

σσTσvi ¼ λiσvi ð3Þ

The above deduction shows that σvi is an eigenvector of
σσT. This technique reduces the computation complexity
since the dimension of σTσ is only k × k (50 × 50). We are
able to extract top k principal components of σσT by the
following equation:

ui ¼ σvi ð4Þ

The eigenvectors corresponding to the biggest eigenvalue
represent the most dominant dimensions or features of the
images in a class. The length of each eigenvector is m × n.
Therefore, each of these eigenvectors can be re-arranged as
an image that we call an eigenvehicle. As we use 50 sample
images from each class during the creation of eigenvehicles,
we have 50 eigenvehicles for each class. However, not all
the eigenvehicles need to be used during the classification.

3.1.2 Classification using eigenvehicles
Classifying a new image in one of the classes is carried
out in three steps. First, we reshape Anew into A′new, such
that the width and height of the image are normalized.
We then obtain σnew =A′new − μ. Second, we project σnew
onto an eigenvehicle space, i.e., the PCS created. Trad-
itionally, this space has been called the face space. This
process yields the k weights wi where
PCS for vans 

VS 

(c) 

a) 

(b) Back projection of the test image with respect to car PCS. (c) Back
(DFVS) between back-projected images and original image is calculated
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Figure 2 PCA-DIVS. A test image is projected on to the principal component space. The Euclidean distance (DIVS) between the projected image
and mean projected image of each class is calculated (red arrows).
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wi ¼ uTi σnew ð5Þ
We choose the first l weights, where l < k and back

project to get an image A″new:

A00
new ¼

Xl

i¼1
wiσ i þ μ ð6Þ

The image A″new is subtracted from the original test
image A′new to find the Euclidean distance, i.e., DFVS,
which is essentially a back projection error:

DFFS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm�n

i¼1
A″new i −Anew ið Þ22

q
ð7Þ

We do this for every class which yields a new A″new.
This process is described in Figure 1. The class related
to the PCS that results in the smallest DFVS is assigned
as the class of the test image. We tried to use a different
number of principal eigenvectors to see the dependence
of accuracy on the number of eigenvectors used. The
detailed results are discussed in Section 4. This approach
has an ability to perform well in the case of low inter-
class variability (e.g., sedans vs taxis).

3.2 PCA + DIVS
In this approach, we start by employing PCA as described
in eigenvehicle approach with a slight modification. We
create a PCS or vehicle space for all the training samples
irrespective of the class label. Therefore, there is only one
PCS contrary to the previous approach, where we cre-
ated a separate PCS for each class. All training images
(a) (b)
Figure 3 Interest point detection and respective affine regions. (a) Or
LoG-affine regions.
irrespective of class label are used to calculate a covari-
ance matrix C whose eigenvectors define a single PCS.
Then, all training images in a class c (c ∈ {1, 2} in two
class case) are projected onto the PCS and weights are
calculated. The mean weight vector (principal compo-
nent) wc

mean for each class is calculated using the first l
weights that belong to the eigenvectors with the largest
eigenvalues (l < k, where k is the total number of train-
ing sample images in all the classes combined, kc is the
number of training samples in a class c, and l will be the
dimension of wc

mean ).

wc
mean ¼ 1

kc
X

uT : σc
train ð8Þ

For testing, a test image is projected on the PCS to
get the weight vector (principal component) w with l
dimensions, where the components of w are calculated
using

wi ¼ uTi σnew ð9Þ
We calculate the Mahalanobis distance dc

Mahalanobis

from the mean principal component wc
mean of each class:

d c
Mahalanobis ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wi−wc

mean

� �T
C−1 wi−wc

mean

� �q
ð10Þ

The smallest distance decides the class of the test image.
This process is described in Figure 2. This approach works
better when there is relatively high inter-class variability
(e.g., cars vs vans).
(c)
iginal image. (b) Detected Harris affine regions. (c) Detected



(a) (b) (c)
Figure 4 Clustering of feature descriptors. (a) Original image, (b) detected edge points after applying Canny edge detector, and (c) detected
edge point groups are shown in different colors after clustering SIFT vectors using K-means.
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3.3 PCA + SVM
In this approach, we used the approach described in
Section 3.2 to create the PCS. However, instead of finding
the distance from the mean principal component of each
class, we train PCA vectors using a support vector ma-
chine (SVM) with a radial basis function (RBF) kernel
[25]. The main objective of the support vector machine
training is to find the largest possible classification margin,
which indicates the minimum value of w in

1
2
wTwþ E

X
εi ð11Þ

where εi ≥ 0 and E is the error tolerance level. The training
vectors are grouped in labeled pairs Li (xi, yi) where xi is a
training vector and yi ∈ {−1, 1} is the class label of xi and
are used in training SVM that finds the hyperplane leaving
the largest possible fraction of points of the same class on
the same side, while maximizing the distance of either
class from the hyperplane. We used four fold cross-
validation and tried different values for bandwidth to find
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Figure 5 Accuracy vs number of eigenvectors used (PCA + DFVS). (a)
the best parameters for SVM that minimize the cross-
validation estimate of the test error.
For testing, a test image is projected on the PCS and

then the corresponding principal component is classified
using the trained SVM. The choice of kernel, the size of
training set, and bandwidth selection plays a major role
in the efficiency of SVM training and accuracy of the
results.

3.4 LDA
Approaches based on PCA use the MEFs to classify novel
images. However, MEFs are not always the MDFs. The
linear discriminant analysis (LDA) automatically selects
the features that provide an effective feature space to be
used for classification [8].
To eliminate the problem of high dimensionality, we

start by employing PCA as described in Section 3.2, where
all the images irrespective of class label are projected onto
a single PCS. The dimension of the PCS will be limited by
the total number of training images minus the number of
classes. The LDA involves calculating two matrices: the
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Table 1 Confusion matrices using PCA + DFVS: cars vs
vans

Cars Vans

Cars 200 0

Vans 6 194

Table 3 Confusion matrices using PCA + DFVS: sedans vs
vans vs taxis

Sedans Vans Taxis

Sedans 189 1 10

Vans 8 190 2

Taxis 1 0 129
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within-class scatter matrix EW and the between-class
scatter matrix SB:

SW ¼
XC

i¼1

XMi

j¼1
yj−μi

� �
yj−μi

� �T
ð12Þ

SB ¼
XC

i¼1
μi−μð Þ μi−μð ÞT ; ð13Þ

where C is the number of classes, μi is the mean vector
of a class i, and Mi is the number of samples within class
i. The mean of all the mean vectors is represented by μ
and is calculated as

μ ¼ 1
C

XC

i¼1
μi ð14Þ

LDA computes a transformation that maximizes the
between-class scatter while minimizing the within-class
scatter by maximizing the following ratio: det|SB|/det|
SW|. The advantage of using this ratio is that it has been
proven [26] that if SW is a non-singular matrix, then this
ratio is maximized when the column vectors of the projec-
tion matrix W are the eigenvectors of S−1WSB . The W with
dimension C − 1 projects the training data onto a new
space called fisherfaces. We use W to project all training
samples onto the fisherfaces. The resulting vectors are
used to create a KD-tree which is employed in finding the
approximate nearest neighbors during the classification of
a sample image. We use five nearest neighbors, and the
class with the highest number of nearest neighbors is
assigned as the class of the vehicle.

3.5 Constellation of SIFT features
Object recognition techniques that generally work well
for object classification are not directly useful in the
case of object categorization when inter-class variability
is low. The problem of vehicle classification is different
from many other object classification problems [10], where
the difference between object classes is considerable
(e.g., airplane vs motorcycle). Surveillance videos pose
other problems, for example, surveillance image sizes
Table 2 Confusion matrices using PCA + DFVS: sedans
vs taxis

Sedans Taxis

Sedans 193 7

Taxis 1 129
are generally small and captured images can have varying
lighting conditions. Affine invariant detectors have shown
to outperform simple corner detectors in the task of object
classification [27]. We tried two interest point detectors:
Harris-Laplace with affine invariance and LoG with affine
invariance. Figure 3 shows the original image and the affine
regions detected using the interest point detectors. The
number of interest points detected using these techniques
is small and may not provide enough information to classify
an image successfully.
In this section, we present a constellation model-based

approach that uses the same techniques as presented by
[4] with a few modifications. In our implementation, we
extend the approach to do the multi-class classification
and use K-means clustering instead of mean-shift cluster-
ing to improve the computational complexity. Ma and
Grimson [4] used a single Gaussian to model the features
and a mixture of Gaussians (MoG) to model feature posi-
tions. However, in our implementation, we model both
features and feature positions as independent MoGs that
consider up to 6 Gaussians and choose the number of
Gaussians that maximizes the maximum likelihood for
training data.

3.51 Constellation of SIFT Features
In [19], Lowe used a corner detector to find interest points.
The SIFT descriptors were calculated using image patches
around the detected interest points. Therefore, there are
two parts to SIFT feature detection: interest point detection
and calculation of descriptor. In low-resolution images
obtained using surveillance video, the number of corners
detected is limited. Thus, we use a Canny edge detector [7]
to detect the edge points which are used as interest points
to improve robustness by using over-complete information.
We adopt SIFT with some modifications as discussed in
[4]. Lowe used eight orientations in the orientation histo-
gram; we use only four orientations that reduce the size of
the descriptor fourfold. Another modification that we use is
instead of using 4 × 4 regions around interest points, we
use 2 × 2 regions (24 pixels × 24 pixels determined experi-
mentally), resulting in the length of SIFT descriptor to be
16 instead of 128 in Lowe’s implementation. We use x2

distance as the distance between SIFT vectors (descrip-
tors) instead of Euclidean distance. This ensures that rela-
tive differences are taken instead of absolute differences as
in the case of Euclidean distance.
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Figure 6 Accuracy vs number of eigenvectors used (PCA + DIVS). (a) Cars vs vans. (b) Sedans vs taxis. (c) Sedans vs vans vs taxis.
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As a result of intra-class variation in appearance and
low resolution of images, the individual edge points are
not sufficient to model spatial repeatability. Therefore, we
group the similar descriptors that results in edge point
groups that are spatially repeatable. The other benefit of
using edge point groups is that it results in concise models
compared to using edge points directly. In [4], Ma and
Grimson used mean-shift clustering to create the edge
point groups. Although mean shift is a good technique to
find the dominant modes, it is computationally intensive
(time complexity: O(Tn2), where T is the number of iter-
ations, and n is the number of features) and sensitive to
parameters like the Gaussian kernel bandwidth. Thus,
we use K-means clustering with K = 10 (time complexity:
O(KnT), where K is the number of clusters, T is the num-
ber of iterations, and n is the number of features). Figure 4
shows a sample image, detected edge points after applying
the Canny edge detector, and edge point groups after ap-
plying K-means clustering.
After clustering the SIFT descriptors, we have edge

points with their coordinates (pixel coordinates are nor-
malized to (0.0, 1.0)) and respective SIFT descriptors.
We denote the number of points in cluster (segment) i
Table 4 Confusion matrices using PCA + DIVS: cars vs
vans

Cars Vans

Cars 199 1

Vans 2 198
as Ji, the 2D coordinates of the jth (j = 1,…Ji) point in

segment i as Pij
→
, and the SIFT vector of the point as Sij

→
.

A feature descriptor fk (k = 1,…N, where N is the num-
ber of edge points in an image) is defined using the

triplet pij
→

n o
; sij

→
n o

; ci
→

n on o
, where ci

→ is the average of

all Sij
→

of segment i. The feature descriptors obtained from
an image are denoted by F = {fi}. During the training
phase, we extract all the feature descriptors of all the im-
ages related to a particular class and group them accord-

ing to ci
→
.

3.5.2 Constellation model
A constellation model is a probabilistic model of a set of
characteristic parts with a variable appearance and spatial
configuration [10,28]. Fergus et al. modeled the object as
a constellation of parts where shape configuration of the
parts was modeled as a joint Gaussian of object parts’
coordinates, and the appearance of individual parts was
modeled by independent Gaussians [10]. In [4], Ma and
Grimson modified this constellation model to classify
vehicles in two-class problem. We extend the approach
Table 5 Confusion matrices using PCA + DIVS: sedans vs
taxis

Sedans Taxis

Sedans 167 34

Taxis 1 129



Table 6 Confusion matrices using PCA + DIVS: sedans vs
vans vs taxis

Sedans Vans Taxis

Sedans 186 2 12

Vans 7 193 0

Taxis 9 1 120

Table 8 Confusion matrices using PCA + SVM: sedans vs
taxis

Sedans Taxis

Sedans 131 69

Taxis 78 122
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to multi-class classification and use a mixture of Gauss-
ians (up to 6) to fit the model parameters.
For c classes ω1, … ωc, a Bayesian decision is given by

C� ¼ arg max
c

p ωcjFð Þ ¼ arg max
c

p F ωcÞp ωcð Þjð ð15Þ

where F contains the features of an observed object. By
assuming constant priors, a hypothesis is defined as
matching of detected features to parts. Then, the likeli-
hood can be expanded as

p F jωcð Þ ¼
X

hϵH
p F ; hjωcð Þ

¼
X

hϵH
p F h;ωcÞp h ωcÞ;jðjð

ð16Þ
where H is the set of all possible hypotheses. In [4], it
was observed that over-segmentation of edge points of
an observed object may result in several almost identical
features that effectively produce many-to-one hypothesis
mapping. Ma and Grimson [4] used an approximation,
where only the most probable hypothesis is used instead
of summing over the entire hypothesis space for all the
combinations. Therefore, Equation 16 becomes

p F ωcÞ≅ p F ; h� ωcÞ;jðjð ð17Þ
where h* is the hypothesis, in which every fi(fi ∈ F) is
mapped to the most similar part in a model. We assume
that features of an object are independent of each other,
and for each feature, assume that its edge point coordi-
nates pij

→
n o

and corresponding SIFT vectors sij
→

n o
are also

independent. If we consider that there are N features, then
Equation 16 can be written as

p F jωcð Þ≅
YN

i¼1
p pij

→
n o

jh�;ωc

� �
p sij

→
n o

jh�;ωc

� �
ð18Þ

We consider two variations of this model: implicit
shape model and explicit shape model as discussed in
[4]. In the implicit shape model, we do not model the
position of the features. Therefore, Equation 18 becomes
Table 7 Confusion matrices using PCA + SVM: cars vs vans

Cars Vans

Cars 200 0

Vans 147 53
p F jωcð Þ≅
YN

i¼1
p sij

→
n o

jh�;ωc

� �
ð19Þ

By assuming the independence of features, we can

calculate p sij
→

n o
jh�;ωc

� �
as

p sij
→

n o
jh�;ωc

� �
¼

XKs
h� ið Þ

m¼1
αsh� ið Þ;m

�G sij
→

n o
jμsh� ið Þ;m;Σ

s
h� ið Þ;m

� �
;

ð20Þ

where h*(i) is the index of the part that matches feature
i of the observed object, Ks

h� ið Þ is the number of mixture
components, αsh� ið Þ;m is the weight of the mth mixture
component, and μsh� ið Þ;m and Σs

h� ið Þ;m are the mean vector
and covariance matrix of the mth Gaussian component,
respectively. We use a mixture of Gaussians instead of a
single Gaussian as used in [4]. It allows us to handle
problems in clustering such as undersegmentation.
In case of the explicit shape model, we use Equation

18, where p sij
→

n o
jh�;ωc

� �
is defined by Equation 20, and

p pij
→

n o
jh�;ωc

� �
is given by

p pij
→

n o
jh�;ωc

� �
¼

XKp
h� ið Þ

m¼1
αph� ið Þ;m

�G sij
→

n o
jμph� ið Þ;m;Σ

p
h� ið Þ;m

� �
;

ð21Þ

where h*(i) is the index of the part that matches feature
i of the observed object, Kp

h� ið Þ is the number of mixture
components, αph� ið Þ;m is the weight of the mth mixture
component, and μph� ið Þ;m and Σp

h� ið Þ;m are the mean vector
and covariance matrix of the mth Gaussian component,
respectively.

3.5.3 Learning and recognition
During the learning process, we have a choice of using
all the features detected. However, it was observed by
Ma and Grimson [4] that some features only appear in
very few objects. Therefore, we can prune such features
without losing the correctness of the model.
Table 9 Confusion matrices using LDA: cars vs vans

Cars Vans

Cars 200 0

Vans 16 184



Table 10 Confusion matrices using LDA: sedans vs taxis

Sedans Taxis

Sedans 194 6

Taxis 10 120

Table 12 Confusion matrices using implicit shape model:
cars vs vans

Cars Vans

Cars 191 9

Vans 6 194
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We use a similar learning and recognition procedure
as outlined in [4]. We start by computing the features of
each training sample in a class first. Then, sequential
clustering is carried out on all features to give a feature
pool. For sequential clustering, we denote a pool of
features for class c as Fc

q . To start, a training sample

from class c with all its features F = {fi} is randomly selected
and added to the feature pool. Then, another sample with
all its features F′ = {f′i} is added. For each f′i, x

2-distance is
calculated between the average SIFT feature vector ci.
Suppose fmin in the feature pool has the smallest distance
to f′i. If this smallest distance is less than a threshold, f′i is
merged with fmin in the feature pool by adding all its SIFT
vectors and corresponding coordinates to fmin, and the
mean SIFT vector of fmin is updated. Otherwise, f′i is
added to Fc

q as a new feature. We repeat the same proced-

ure for all training samples in class c to create the feature
pool Fc

q . While creating feature pool, we also keep record

of the percentage of sample images that contributed to
feature fi which is denoted by ri. During the pruning
process, any feature fi with ri less than some threshold is
considered to be invalid and not considered in the future
model learning process.
For the model structures established in the previous sec-

tion, the parameters to be learned are Kp
q; α

p
q;m; μ

p
q;m;

n

Σp
q;m;K

s
q; α

s
q;m; μ

s
q;m;Σ

s
q;mg, where m = 1, … Kp, q = 1, … Q,

where Q is the number of parts in the feature pool. The
parameters of Gaussian mixture models are estimated
using a typical EM algorithm.
In the recognition phase, the features of an observed ob-

ject are computed, and class conditional likelihoods are
evaluated using Equation 18 for explicit shape model or
Equation 19 for implicit shape model. The Bayesian deci-
sion rule in Equation 16 gives the classification result.
3.6 A fusion of approaches
We presented five approaches that can be used in com-
bination with each other and improve the classification
Table 11 Confusion matrices using LDA: sedans vs vans
vs taxis

Sedans Vans Taxis

Sedans 174 6 20

Vans 17 180 3

Taxis 7 0 123
accuracy. The fusion of approaches becomes more import-
ant when the number of classes increases. In Section 4, we
present the results using all the approaches showing that
certain approaches are better suited for a certain classifica-
tion task, e.g., PCA +DIVS works well for the case of cars
vs vans, while PCA +DFVS works well for the case of se-
dans vs taxis. As explained earlier, sedans and taxis are
disjoint subsets of cars. Therefore, we train two classifiers
where the first classifier uses PCA +DIVS and classifies a
test image into cars and vans. The test images that were
classified as cars are further classified into sedans and
taxis using the second classifier which employs PCA +
DFVS. The fusion of different methods is thus possible
and yields better results than just using a single approach.
4 Results
In this work, we have considered five different approaches.
This section provides details about the experimental setup
used during testing, the effect of different parameter
choices on the results, and the comparison between
the different approaches.
4.1 Experimental setup
In our dataset, we have three types of vehicles: cars,
vans, and taxis. Sedans and taxis are the disjoint subsets
of class cars. The dataset provided in [4] has 50 images
of each class for training and 200 images of cars, vans,
and sedans each and 130 images of taxis. For the case of
cars vs vans, we use 50 images from each class for train-
ing and 200 images of each class for testing. For the case
of sedans vs taxis, we use 50 images from each class for
training, while 200 images of sedans and 130 images of
taxis are used for testing. We use the same experimental
setup as that used in [6,7], so that a fair comparison is
performed. In the case of sedans vs vans vs taxis, we use
50 images of each class for training and 200 images of
sedans, and 200 images of vans and 130 images of taxis
for testing. Previously published results do not consider
such as a three-class case.
Table 13 Confusion matrices using implicit shape model:
sedans vs taxis

Sedans Taxis

Sedans 183 17

Taxis 18 112



Table 14 Confusion matrices using implicit shape model:
sedans vs vans vs taxis

Sedans Vans Taxis

Sedans 137 22 41

Vans 3 190 7

Taxis 3 0 127

Table 16 Confusion matrices using explicit shape model:
sedans vs taxis

Sedans Taxis

Sedans 183 17

Taxis 19 111
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4.2 Eigenvehicle approach (PCA + DFVS)
As 50 images of each class were used for training, the
dimension of the principal component space is limited
to 50. The first principal component (eigen) vector is
the most expressive vector, the second one is the sec-
ond most expressive vector, and so on. We choose the
first k principal components and perform the experi-
ment. Figure 5 shows the accuracy vs number of eigen-
vectors used. We observed that changing the number
of eigenvectors used does not change the accuracy
greatly. For the case of sedans vs vans vs taxis, we
achieved the accuracy of 95.85% when we used 20
eigenvectors. We got the accuracy of 98.5% in the case
of cars vs vans by using 15 eigenvectors, while 97.57%
in the case of sedans vs taxis by using 22 eigenvectors.
Tables 1, 2 and 3 give the confusion matrices for the
experiments performed while using optimal number of
eigenvectors.

4.3 PCA + DIVS
In this approach, we create a single combined principal
component space for all the classes. During recognition,
we have to make a similar choice as in the previous ap-
proach to choose the number of eigenvectors that are
used to calculate the Mahalanobis distance from the
mean principal component vector of each class. We
experimented with the choice of the number of eigen-
vectors. Figure 6 shows the bar graphs of the accuracy
vs number of eigenvectors.
For the case of sedans vs vans vs taxis, we achieved an

accuracy of 94.15% when we used 25 eigenvectors. Ac-
curacy was 99.25% in the case of cars vs vans by using
40 eigenvectors, which is higher than any published
results [6,7]. We achieved the accuracy of 89.69% in the
case of sedans vs taxis by using 25 eigenvectors.
Tables 4, 5 and 6 give the confusion matrices for
the experiments performed while using optimal number
of eigenvectors.
Table 15 Confusion matrices using explicit shape model:
cars vs vans

Cars Vans

Cars 194 6

Vans 6 194
4.4 PCA + SVM
We used PCA + SVM to classify cars vs vans and sedans
vs taxis. We achieved an accuracy of 63.25% in the case
of cars vs vans and 76.67% in the case of sedans vs taxis.
The accuracy achieved was low compared to other
methods and therefore we did not perform the experi-
ment on the more challenging case of sedans vs vans
vs taxis. Tables 7 and 8 give the confusion matrices for
the experiments performed.

4.5. LDA
LDA has shown to outperform PCA in the cases where
there are many training samples [29]. In this algorithm,
the number of nearest neighbors used k is the free vari-
able. We experimentally chose [k = 5]. We observed an
accuracy of 96% in the case of cars vs vans and 95.15%
in the case of sedans vs taxis. In the difficult case of se-
dans vs vans vs taxis, we achieved an accuracy of 90.00%.
Tables 9, 10 and 11 give the confusion matrices for the ex-
periments performed.

4.6 Constellation model
We consider two types of constellation models: implicit
and explicit. In the implicit shape constellation model,
we do not model the positions of the features. Tables 12,
13 and 14 give the confusion matrix for all the cases
considered using the implicit shape model.
Using the implicit shape model, we achieved an ac-

curacy of 96.25% in the case of cars vs vans, 89.39% in
the case of sedans vs taxis, and 85.66% in the case of
sedans vs vans vs taxis. In the explicit shape model, we
model the normalized position of the features along
with the features themselves. We achieved slightly bet-
ter results for cars vs vans and sedans vs vans vs taxis.
However, the implicit shape model outperformed the
explicit shape model in the case of sedans vs taxis. We
achieved a 97% accuracy in the case of cars vs vans and
89.09% in the case of sedans vs taxis using the explicit
shape model. In the difficult case when all three vehicle
Table 17 Confusion matrices using explicit shape model:
sedans vs vans vs taxis

Sedans Vans Taxis

Sedans 137 22 41

Vans 3 194 3

Taxis 5 0 125



Table 18 Confusion matrix using a fusion of approaches

Sedans Vans Taxis

Sedans 189 3 8

Vans 4 194 2

Taxis 1 1 128
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classes were considered, we achieved an accuracy of
86.04%. Tables 15, 16 and 17 give the confusion matrices
for the experiments performed.
For both the implicit and explicit shape models, prior

probabilities were considered to be the same. In the case
of three class classification, we can observe that sedans
are misclassified. We can alleviate this problem and im-
prove the results by using higher prior probabilities for
the sedan class.

4.7 A fusion of approaches
In this approach, we employ two classifiers: PCA +DIVS
to classify between cars and vans, and PCA +DFVS to
classify between sedans and taxis. For initial classifica-
tion, we use the PCA +DIVS as explained in Section 3.2.
To classify the images that are classified as cars, we use
the PCA +DFVS as discussed in Section 3.1. We use this
combined approach to classify vehicles in case of sedans
vs vans vs taxis and achieve an accuracy of 96.42%. The
fusion approach works better than using any individual
approach. Table 18 gives the confusion matrix for the
experiment performed.

4.8 Comparison of approaches
In this paper, we used six different approaches to classify
vehicles. The dataset that we used contains the images
of vehicles taken from a surveillance video camera and
segmented using a tracking algorithm [30]. The images
were taken such that vehicles are captured in a more
general oblique view instead of side or top view. We
compare our approaches with the approaches presented
in [4] and [8] that use the same dataset. We observe that
our PCA + DFVS outperforms all other approaches in
Table 19 Comparison of approaches

Cars vs vans (%)

PCA + DFVS (eigenvehicle) 98.5

PCA + DIVS 99.25

PCA + SVM 63.25

LDA 96

Constellation model (implicit shape) 96.25

Constellation model (explicit shape) 97

A fusion of approaches

Constellation model [4] 98.5

Patch-based object classification [8] 99.25
the case sedans vs taxis, while our PCA + DIVS outper-
forms the rest in the case of cars vs vans. In the case of
sedans vs vans vs taxis, the proposed fusion of approaches
(PCA +DIVS and PCA +DFVS) gives the best results.
The constellation model-based approach presented in

this paper gives performance benefits by using K-means
clustering over mean shift. It also has an advantage over
all other approaches presented in this work that it has an
ability to handle partial occlusions, owing to its reliance of
local features rather than global features. Our constella-
tion model-based approach gives comparable results to
the constellation model-based approach presented in [4]
for the cases of cars vs vans and sedans vs taxis. In this
work, we extended the constellation model-based ap-
proach to handle multi-class case. We can observe that
the accuracy decreases while doing multi-class classifi-
cation which can be attributed to increased number of
common features as the number of classes increases.
Table 19 provides the accuracy achieved using each

approach, and the approaches that yielded the best results
are italicized. The first seven rows of Table 19 provide the
results obtained using techniques investigated in this
paper. The last two rows of the Table 19 give the results
obtained by the state-of-the-art techniques in vehicle
classification when applied to the same dataset. They
are copied from [4] and [8] respectively and use the
same experimental setup as presented in this paper.
However, these techniques do not extend to perform
multi-class classification.

5 Conclusion
In this work, we investigated and compared five different
approaches for vehicle classification. Using the PCA +
DFVS (eigenvehicle) approach, we were able to achieve an
accuracy of 97.57% in the challenging case of sedans vs
taxis which is higher than any published results using this
dataset. PCA +DIVS outperformed all other approaches
investigated in this paper in the case of cars vs vans. We
also extended the constellation model approach [4] for
classifying all three vehicle classes at the same time. LDA
Sedans vs taxis (%) Sedans vs vans vs taxis (%)

97.57 95.85

89.69 94.15

76.67

95.15 90.00

89.39 85.66

89.09 86.04

96.42

95.86

95.25
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performed reliably but did not produce the best results in
any of the cases we experimented on. PCA + SVM did not
perform satisfactorily, but more experimentation with
the choice of kernel and parameters might improve the
results. Overall, PCA + DFVS approach achieves good
results. However, the constellation model-based approach
can be configured to work better in the presence of partial
occlusion and minor rotations. We also presented an
approach that combines two approaches and achieves
improvements over using just one approach. We report
accuracy of 96.42% in case of sedans vs vans vs taxis
using a fusion of approaches. We can use the SIFT-PCA
features to train the constellation models. Also, features
other than SIFT, such as LoG affine regions can be used
for modeling. The performance of the constellation
model deteriorates as we extend it to multiple classes. A
boosting algorithm can be used to choose the appropriate
features for training.
In this paper, we used the images extracted from sur-

veillance video captured using a fixed-angle camera. In
the real traffic surveillance videos, vehicles can have
different orientations and different view angles and
sizes. The problem of orientation can be solved using
camera self-calibration and the result of a tracking algo-
rithm. Appearance-based algorithms have limited ability to
model different view angles. A 3D model-based approach
with strong thresholds (low false positives) can be used to
train an appearance-based approach for better accuracy.
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