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Abstract

Stress is a serious concern facing our world today, motivating the development of a better objective understanding
through the use of non-intrusive means for stress recognition by reducing restrictions to natural human behavior.
As an initial step in computer vision-based stress detection, this paper proposes a temporal thermal spectrum (TS)
and visible spectrum (VS) video database ANUStressDB - a major contribution to stress research. The database
contains videos of 35 subjects watching stressed and not-stressed film clips validated by the subjects. We present
the experiment and the process conducted to acquire videos of subjects' faces while they watched the films for
the ANUStressDB. Further, a baseline model based on computing local binary patterns on three orthogonal planes
(LBP-TOP) descriptor on VS and TS videos for stress detection is presented. A LBP-TOP-inspired descriptor was used
to capture dynamic thermal patterns in histograms (HDTP) which exploited spatio-temporal characteristics in TS
videos. Support vector machines were used for our stress detection model. A genetic algorithm was used to select
salient facial block divisions for stress classification and to determine whether certain regions of the face of subjects
showed better stress patterns. Results showed that a fusion of facial patterns from VS and TS videos produced
statistically significantly better stress recognition rates than patterns from VS or TS videos used in isolation.
Moreover, the genetic algorithm selection method led to statistically significantly better stress detection rates than
classifiers that used all the facial block divisions. In addition, the best stress recognition rate was obtained from
HDTP features fused with LBP-TOP features for TS and VS videos using a hybrid of a genetic algorithm and a
support vector machine stress detection model. The model produced an accuracy of 86%.

Keywords: Stress classification; Temporal stress; Thermal imaging; Support vector machines; Genetic algorithms;
Watching films
1 Introduction
Stress is a part of everyday life, and it has been widely
accepted that stress, which leads to less favorable states
(such as anxiety, fear, or anger), is a growing concern to a
person's health and well-being, functioning, social inter-
action, and financial aspects. The term stress was coined by
Hans Selye, which he defined as ‘the non-specific response
of the body to any demand for change’ [1]. Stress is a
natural alarm, resistance, and exhaustion system [2] for the
body to prepare for a fight or flight response to either de-
fend or make the body adjust to threats and changes. The
body shows stress through symptoms such as frustration,
anger, agitation, preoccupation, fear, anxiety, and tenseness
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[3]. When chronic and left untreated, stress can lead to
incurable illnesses (e.g., cardiovascular diseases [4], diabetes
[5], and cancer [6]), relationship deterioration [7,8], and
high economic costs, especially in developed countries
[9,10]. It is important to recognize stress early to dimin-
ish the risks. Stress research is beneficial to our society
with a range of benefits, motivating interest and posing
technical challenges in computer science in general and
affective computing in particular.
Various computational techniques have been used to

objectively recognize stress using models based on tech-
niques such as Bayesian networks [11], decision trees [12],
support vector machines [13], and artificial neural networks
[14]. These techniques have used a range of physiological
(e.g., heart activity [15,16], brain activity [17,18], galvanic
skin response [19], and skin temperature [12,20]) and phys-
ical (e.g., eye gaze [11], facial information [21]) measures
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for stress as inputs. Physiological signal acquisition re-
quires sensors to be in contact with a person, and this
can be obtrusive [3]. In addition, the physiological sen-
sors are usually required to be placed on specific loca-
tions of the body, and sensor calibration time is usually
required as well, e.g., approximately 5 min is needed for
the isotonic gel to settle before galvanic skin response
readings can be taken satisfactorily using the BIOPAC
System [22]. The trend in this area of research is leading
towards obtaining symptom of stress measures through
less or non-intrusive methods. This paper proposes a
stress recognition method using facial imaging and does
not require body contact with sensors unlike the usual
physiological sensors.
A relatively new area of research is recognition of

stress using facial data in the thermal (TS) and visible
(VS) spectrums. Blood flow through superficial blood
vessels, which are situated under the skin and above
the bone and muscle layer of the human body, allows
TS images to be captured. It has been reported in the
literature that stress can be successfully detected from
thermal imaging [23] due to changes in skin temperature
under stress. In addition, facial expressions have been
analyzed [24] and classified [25-27] using TS imaging.
Commonly, VS imaging has been used for modeling fa-
cial expressions, and associated robust facial recognition
techniques have been developed [28-30]. However, from
our understanding, the literature has not developed
computational models for stress recognition using both
TS and VS imaging together as yet. This paper addresses
the gap and presents a robust method to use information
from temporal and texture characteristics of facial regions
for stress recognition.
Automatic facial expression analysis is a long researched

problem. Techniques have been developed for analyzing
the temporal dynamics of facial muscle movements. A
detailed survey of facial expression recognition methods
can be found in [31]. Further, vision-based facial dynam-
ics have been used for affective computing tasks such
as pain monitoring [32] and depression analysis [30].
This motivated us to explore vision-based stress analysis
where inspiration can be taken from the vast field of facial
expression analysis. Descriptors such as the local binary
pattern (LBP) have been developed for texture analysis
and have been successfully applied to facial expression
analysis [25,33,34], depression analysis [30], and face
recognition [35]. A particular LBP extension for ana-
lysis of temporal data - local binary patterns on three
orthogonal planes (LBP-TOP) - has gained attention
and is suitable for the work in this study. LBP-TOP
provides features that incorporate appearance and mo-
tion, and is robust to illumination variations and image
transformations [25]. This paper presents an application
of LBP-TOP to TS and VS videos.
Various facial dynamics databases have been proposed
in the literature. For facial expression analysis, one of
the most popular databases is the Cohn-Kanade + [32],
which contains facial action coding system (FACS) and
generic expression labels. Subjects were asked to pose
and display various expressions. There are other databases
in the literature which are spontaneous or close to spon-
taneous, such as RU-FACS [36], Belfast [37], VAM [38],
and AFEW [39]. However, these are limited to emotion-
related labels which do not serve the problem in the paper,
i.e., stress classification. Lucey et al. [32] proposed the
UNBC McMasters database comprising video clips where
patients were asked to move the arm up and their reaction
was recorded. For creating ANUStressDB, subjects were
shown stressful and non-stressful video clips. This database
is similar to that in [32].
There are various forms of stressors, i.e., demands or

stimuli that cause stress [23,40-42] validated by self-
reports (e.g., self-assessment [43,44]) and observer reports
(e.g., human behavior coder [42]). Some examples of
stressors are playing video (action) games [45,46], solving
difficult mathematical/logical problems [47], and listening
to energetic music [45]. Among these stressors are films,
which were used to stimulate stress in this work. In this
work, we develop a computed stress measure [3] using
facial imaging in VS and TS. Our work analyzes dynamic
facial expressions that are as natural as possible elicited by
a typical stressful, tense, or fearful environment from film
clips. Unlike the previous work in the literature that uses
posed facial expressions for classification [48], the work
presented in this paper provides an investigation of spon-
taneous facial expressions as responses or reactions to en-
vironments portrayed by the films.
This paper describes a method for collecting and

computationally analyzing data for stress recognition
from TS and VS videos. A stress database (ANUStressDB)
of videos of faces is presented. An experiment was con-
ducted to collect the data where experiment partici-
pants watched stressful and non-stressful film clips.
ANUStressDB contains videos of 35 subjects watching
film clips that created stressed and not-stressed envi-
ronments validated by the person. Facial expressions in the
videos were stimulated by the film clips. Spatio-temporal
features were extracted from the TS and VS videos,
and these features were provided as inputs to a support
vector machine (SVM) classifier to recognize stress
patterns. A hybrid of a genetic algorithm (GA) and
SVM was used to select salient divisions of facial block
regions and determine whether using the block regions
improved the stress recognition rate. The paper compares
the quality of the stress classifications produced from
using LBP-TOP and HDTP (our thermal spatio-temporal
descriptor) features from TS and VS data with and without
using facial block selection.
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The organization of the paper is as follows: Section 2
presents the experiment for TS, VS, and self-reported
data collection. Section 3 describes the facial imaging
processing steps for the TS and VS data. The new ther-
mal spatio-temporal descriptor, HDTP, is proposed in
Section 4. Stress classification models are described in
Section 5. Section 6 presents the results, an analysis of
the results, and suggestions for future work.

2 Data collection from the film experiment
After receiving approval from the Australian National
University Human Research Ethics Committee, an ex-
periment was conducted to collect TS and VS videos of
faces of individuals while they watched films. Thirty-five
graduate students consisting of 22 males and 13 females
between the ages of 23 and 39 years old volunteered to
be experiment participants. Each participant had to
understand the experiment requirements from written
experiment instructions with the guidance of an ex-
periment instructor before they filled in the consent
form. The participant was provided information about
the experiment and its purpose from a script to ensure
that there was consistency in the experiment informa-
tion provided across all participants. After providing
consent, the participant was seated in front of a LCD
display (placed between two speakers). The distance
between the screen and subject was in the range be-
tween 70 and 90 cm. The instructor started the films,
which triggered a blank screen with a countdown of
the numbers 3, 2, and 1 transitioning in and out slowly
with one before the other. The reason for the count-
down display and the blank screen was for participants
to move away from their thoughts at the time and get
ready to pay attention to the films that were about to
start. This approach was like that used in experiments
for similar work in [49]. Subsequent to the countdown
display, a blank screen was shown for 15 s, which was
followed by a sequence of film clips with 5-s blank
screens in between. After watching the films, the partici-
pant was asked to do a survey, which related to the films
they watched and provided validation for the film labels.
The experiment took approximately 45 min for each par-
ticipant. An outline of the process of the experiment for
an experiment participant is shown in Figure 1.
Participants watched two types of films either labeled

as stressed or not-stressed. Stressed films had stressful
content (e.g., suspense with jumpy music), whereas
Figure 1 An outline of the process followed by each experiment part
not-stressed films created illusions of meditative environ-
ments (e.g., swans and ducks paddling in a lake) and had
content that was not stressful or at least was relatively less
stressful compared with films labeled as stressed. There
were six film clips for each type of film. The survey
done by experiment participants validated the film la-
bels. The survey asked participants to rate the films
they watched in terms of levels of stress portrayed by
the film and the degree of tension and relaxation they
felt. Participants found the films that were labeled
stressed as stressful and films labeled not-stressed as
not stressful with a statistical significance of p < 0.001
according to the Wilcoxon test.
While the participants watched the film clips, TS and

VS videos of their faces were recorded. A schematic
diagram of the experiment setup is shown in Figure 2.
TS videos were captured using a FLIR infrared camera
(model number SC620, FLIR Systems, Inc. Notting
Hill, Australia), and VS videos were recorded using a
Microsoft webcam (Microsoft Corporation, Redmond,
WA, USA). Both the videos were recorded with a sam-
pling rate of 30 Hz, and the frame width and height
were 640 and 480 pixels, respectively. Each participant
had a TS and VS video for each film they watched. As a
consequence, a participant had 12 video clips made up
of six stressed videos and six not-stressed videos. We
name the database that has the collected labeled video
data and its protocols as the ANU Stress database
(ANUStressDB).
Note the usage of the terms film and video in this paper.

We use the term film to refer to a video portraying enter-
taining content, colloquially called a ‘film’ or ‘movie’, which
a participant watched during the experiment. We use the
term video to refer to a visual recording of a participant's
face and its movement during the time period while they
watched a film. Thus in this paper, a film is something
which is watched, while a video is something recorded
about the watcher.

3 Face pre-processing pipeline
Facial regions in VS videos were detected using the
Viola-Jones face detector. However, facial regions could
not be recognized satisfactorily using the Viola-Jones
algorithm in thermal spectrum (TS) videos, so a face
detection method based on eye coordinates [50,51] and
a template matching algorithm was used. A template of
a facial region was developed from the first frame of a
icipant in the film experiment.



Figure 2 Setup for the film experiment to obtain facial video data in thermal and visible spectrums.

Figure 3 Examples of facial regions extracted from the
ANUStressDB database. The facial regions are of an experiment
participant watching the different types of film clips. (a) The
participant was watching a not-stressed film clip. (b) The participant
was watching a stressed film clip. (i) A frame in the visual spectrum.
(ii) The corresponding frame in the thermal spectrum. The crosshairs
in the thermal frame were added by the recording software and
represents the camera auto-focus.
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TS video. The facial region was extracted using the
Pretty Helpful Development Functions toolbox for Face
Recognition [50-52], which calculated the intraocular
displacement to detect a facial region in an image. This
facial region formed a template for facial regions in each
video frame of the TS videos, which were extracted using
MATLAB's Template Matcher system [53]. The Template
Matcher was set to search the minimum difference pixel
by pixel to find the area of the frame that best matched
the template. Examples of facial regions that were detected
in the VS and TS videos for a participant are presented in
Figure 3.
Facial regions were extracted from each frame of a

VS video and its corresponding TS video. Grouped
and arranged in order of time of appearance in a video,
the facial regions formed volumes of the facial region
frames. Examples of facial blocks in TS and VS are
shown in Figure 4.

4 Spatio-temporal features
There are claims in the literature that features from seg-
mented image blocks of a facial image region can provide
more information than features directly extracted from an
image of a full facial region in VS [25]. Examples of full fa-
cial regions are shown in Figure 4, and blocks of a full facial
region are presented in Figure 5. To illustrate the claim,
features from each of the blocks used in conjunction with
features from the other blocks in Figure 5 (i) can offer more
information than features obtained from Figure 4a (i). The
claim aligns with the results from classifying stress based
on facial thermal characteristics [23]. As a consequence, the
facial regions in this work were segmented into a grid of
3 × 3 blocks for each video segment, or facial volume, form-
ing 3 × 3 blocks. A block has X, Y, and T components where
X, Y, and T represent the width, height, and time compo-
nents of an image sequence, respectively. Each block repre-
sented a division of a full facial block region or facial
volume. LBP-TOP features were calculated for each block.
LBP-TOP is the temporal variant of local binary patterns

(LBP). In LBP-TOP, LBP is applied to three planes - XY, XT,
and YT - to describe the appearance of an image, horizontal
motion, and vertical motion, respectively. For a center pixel
Op of an orthogonal plane O and its neighboring pixels Ni,
a decimal value is assigned to it:

d ¼
XXY ;XT ;YT

O

X

p

Xk

i¼1

2i−1I Op;Ni
� � ð1Þ

According to a study that investigated facial expression
recognition using LBP-TOP features, VS and near-infrared
images produced similar facial expression recognition



Figure 4 Examples of facial volumes extracted from the ANUStressDB database. The facial volumes are of an experiment participant
watching the different types of film clips. (a) The participant was watching a not-stressed film clip. (b) The participant was watching a stressed
film clip. (i) A facial volume in the visual spectrum. (ii) The corresponding facial volume in the thermal spectrum.
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rates, provided that VS images had strong illumination
[33]. Due to the fact that TS videos are defined by colors
and different color variations, LBP-TOP features may
not be able to fully exploit thermal information pro-
vided in TS videos and in particular capture thermal
patterns for stress. In addition, LBP-TOP features have
been mainly extracted from image sequences of people
told to show some facial expression, which is not like
the image sequences obtained from our film experi-
ment. In our film experiment, participants watched
films and involuntary facial expressions were captured.
The recordings may have more subtle facial expres-
sions of the kind of facial expressions analyzed in the
literature using LBP-TOP. With the subtleness in facial
movement, it is possible that LBP-TOP may not be able
to offer as much information for stress analysis. These
points motivate the development of a new set of fea-
tures that exploits thermal patterns in TS videos for
stress recognition. We propose a new type of feature
for TS videos that captures dynamic thermal patterns
in histograms (HDTP). This feature makes use of ther-
mal data in each frame of a TS video of a face over the
course of the video.
4.1 Histogram of dynamic thermal patterns
HDTP captures normalized dynamic thermal patterns,
which enables individual-independent stress analysis. Some
people may be more tolerant to some stressors than others
[54,55]. This could mean that some people may show
higher degree responses to stress than others. Additionally
in general, the baseline for human response can vary from
person to person. To consider these characteristics in fea-
tures used for individual-independent stress analysis, ways
have been developed to normalize data for each partici-
pant for their type of data [42]. HDTP is defined in terms
of a participant's overall thermal state to minimize individ-
ual bias in stress analysis.
A HDTP feature is calculated for each facial block re-

gion. Firstly, a statistic (consider the standard deviation)
is calculated for each facial region frame for a participant
for a particular block (e.g., facial block region situated at
the top right corner of the facial region in the XY plane)
for all the videos. The statistic values from all these
frames are partitioned to define empty bins. A bin has a
continuous value range with a location defined from the
statistic values. The bins are used to partition statistic
values for each facial block region where the value for



Figure 5 The facial region in Figure 4a segmented into 3 × 3
blocks. (i) Blocks of the frame in the visual spectrum. (ii) Blocks of
the corresponding frame in the thermal spectrum.
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each bin is the frequency of statistic values in the block
that falls within the bounds of the bin range. Conse-
quently, a histogram for each block can be formed from
the frequencies. An algorithm presenting the approach
for developing histograms of dynamic thermal patterns
in thermal videos for a participant who has a set of facial
videos is provided in Figure 6.
As an illustration, consider that the statistic used is

the standard deviation and the facial block region for
which we want to develop a histogram is situated at the
top right corner of the facial region in the XY plane
(FBR1) for video V1 when a participant Pi was watching
film F1. In order to create a histogram, the bin locations
and sizes need to be calculated. To do this, the standard
deviation needs to be calculated for all frames in FBR1 in
all videos (V1-12) for Pi. This will give standard deviation
values from which the global minimum and maximum
can be obtained and used to calculate the bin location
and sizes. Then, the histogram for FBR1, for V1, and for
Pi is calculated by filling the bins with the standard de-
viation values for each frame in FBR1. This method
then provides normalized features that also take into
account the image and motion, and can be used as in-
puts to a classifier.

5 Stress classification system using a hybrid of a
support vector machine and a genetic algorithm
SVMs have been widely used in the literature to model
classification problems including facial expression rec-
ognition [27,33,34]. Provided a set of training samples,
a SVM transforms the data samples using a nonlinear
mapping to a higher dimension with the aim to deter-
mine a hyperplane that partitions data by class or la-
bels. A hyperplane is chosen based on support vectors,
which are training data samples that define maximum
margins from the support vectors to the hyperplane to
form the best decision boundary.
It has been reported in the literature that thermal pat-

terns for certain regions of a face provide more informa-
tion for stress than other regions [23]. The performance
of the stress classifier can degrade if irrelevant features
are provided as inputs. As a consequence and due to its
benefits noted in literature, the classification system was
extended to include a feature selection component, which
used a GA to select facial block regions appropriate for
the stress classification. GAs are inspired by biological
evolution and the concept of survival of the fittest. A
GA is a global search technique and has been shown to
be useful for optimization problems and problems con-
cerning optimal feature selection for classification [56].
The GA evolves a population of candidate solutions,

represented by chromosomes, using crossover, mutation, and
selection operations in search for a better quality population
based on some fitness measure. Crossover and mutation
operations are applied to chromosomes to achieve diversity
in the population and reduce the risk of the search being
stuck with a local optimal population. After each generation
during the search, the GA selects chromosomes, probabilis-
tically mostly made up of better quality chromosomes, for



Figure 6 The HDTP algorithm captures dynamic thermal patterns in histograms from thermal image sequences.
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the population in the next generation to direct the search
to more favorable chromosomes.
Given a population of subsets of facial block regions

with corresponding features, a GA was defined to
evolve sets of blocks by applying crossover and muta-
tion operations, and selecting block sets during each it-
eration of the search to determine sets of blocks that
produce better quality SVM classifications. Each block
set was represented by a binary fixed-length chromosome
where an index or locus symbolized a facial block region;
its value or allele depicted whether or not the block was
used in the classification and the length of the chromo-
some matched the number of blocks for a video. The
search space had 3 × 3 blocks (as shown in Figure 5) with
an addition of blocks that overlapped each other by
50%. The architecture for the GA-SVM classification
system is shown in Figure 7. The characteristics of the
GA implemented for facial block region selection is
provided in Table 1.
In summary, various stress classification systems using

a SVM were developed which differed in terms of the
following input characteristics:

� VSLBP-TOP: LBP-TOP features for VS videos
� TSLBP-TOP: LBP-TOP features for TS videos
� TSHDTP: HDTP features (as described in Section 4.1)

for TS videos
� VSLBP-TOP + TSLBP-TOP: VSLBP-TOP and TSLBP-TOP



Figure 7 The architecture of the GA-SVM hybrid stress classification system.
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� VSLBP-TOP + TSHDTP: VSLBP-TOP and TSHDTP

� TSLBP-TOP + TSHDTP: TSLBP-TOP and TSHDTP

� VSLBP-TOP + TSLBP-TOP + TSHDTP

These inputs were also provided as inputs to the
GA-SVM classification systems to determine whether
the system produced better stress recognition rates.
6 Results and discussion
Each of the different features is derived from VS and TS
facial videos using LBP-TOP and HDTP facial descriptors
on standardized data and provided as inputs to a SVM for
stress classification. Facial videos of participants watching
stressed films were assigned to the stressed class, and vid-
eos associated with not-stressed films were assigned to the



Table 1 GA implementation settings for facial block
region selection

GA parameter Value/setting

Population size 100

Number of generations 2,000

Crossover rate 0.8

Mutation rate 0.01

Crossover type Scattered crossover

Mutation type Uniform mutation

Selection type Stochastic uniform selection

VS-L TS-L TS-H V
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Input to the Stress

R
ec

og
ni

tio
n 

R
at

e

SVM
GA-SVM

VS-L TS-L TS-H V
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Input to the Stress

F
-S

co
re

SVM
GA-SVM

Figure 8 Performance measures for SVM and GA-SVM stress recognit
based on 10-fold cross-validation. The labels on the horizontal axes are sho
respectively. (a) Recognition rate measure for the stress recognition system
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not-stressed class. Furthermore, their corresponding fea-
tures were assigned to corresponding classes. Recognition
rates and F-scores for the classifications were obtained
using 10-fold cross-validation for each type of input. The
results are shown in Figure 8.
Results show that when HDTP features for TS videos

(TSHDTP) were provided as input to the SVM classifier,
there were improvements in the stress recognition mea-
sures. The best recognition measures for the SVM were
obtained when VSLBP-TOP + TSHDTP was provided as in-
put. It produced a recognition rate that was at least 0.10
greater than the recognition rate for inputs without
TSHDTP where the range for recognition rates was 0.13.
This provides evidence that TSHDTP had a significant
contribution towards the better classification perform-
ance and suggests that TSHDTP captured more patterns
associated with stress than VSLBP-TOP and TSLBP-TOP.
(a)

(b)

S-L+TS-L VS-L+TS-H TS-L+TS-H VS-L+TS-L+TS-H

 Recognition System

S-L+TS-L VS-L+TS-H TS-L+TS-H VS-L+TS-L+TS-H

 Recognition System

ion systems. The measures were obtained for various input features
rtened to improve readability. L and H stand for LBP-TOP and HDTP,
s. (b) F-score measure for the stress recognition systems.
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The performance for the classification was the lowest
when TSLBP-TOP was provided as input.
The features were also provided as inputs to a GA

which selected facial block regions with a goal to disregard
irrelevant facial block regions for stress recognition and to
improve the SVM-based recognition measures. Perfor-
mances of the classifications using 10-fold cross-validation
on the different inputs are provided in Figure 8. For all
types of inputs, GA-SVM produced significantly better
stress recognition measures. According to the Wilcoxon
non-parametric statistical test, the statistical significance
was p < 0.01. Similar to the trend observed for stress
recognition measures produced by the SVM, TSHDTP

also contributed to the improved results in GA-SVM.
The best recognition measures were obtained when
VSLBP-TOP + TSLBP-TOP + TSHDTP was provided as input to
the GA-SVM classifier. The performance of the classifier
was highly similar when it received VSLBP-TOP + TSHDTP

as inputs with a difference of 0.01 in the recognition rate.
Results show that when a combination of at least two of
VSLBP-TOP, TSLBP-TOP, and TSHDTP was provided as input,
then it performed better than when only one of VSLBP-TOP,
TSLBP-TOP, or TSHDTP was used.
Further, stress recognition systems provided with TSHDTP

as input produced significantly better stress recognition
measures than inputs with TSHDTP replaced by TSLBP-TOP

(p < 0.01). This suggests that stress patterns were better
captured by TSHDTP features than TSLBP-TOP features.
In addition, blocks selected by the GA in the GA-SVM

classifier for the different inputs were recorded. When
VSLBP-TOP was given as inputs to a GA, the blocks that
produced better recognition results were the blocks that
corresponded to the cheeks and mouth regions on the
XY plane. For VSLBP-TOP, fewer blocks were selected and
they were situated around the nose. On the other hand
for TSHDTP, more blocks were used in the classification -
nose, mouth, and cheek regions and regions on the fore-
head were selected by the GA. Future work could extend
the investigation by more complex block definitions to
find and use more precise regions showing symptoms of
stress for classification.
Future work could also investigate other block selec-

tion methods different from the GA used in this work.
The GA search took approximately 5 min to reach con-
vergence, but it could take longer if the chromosome is
extended to encode more general information for a
block, e.g., coordinate values and the size for the block.
The literature has claimed that a GA usually takes lon-
ger execution times than other types of feature selection
techniques, such as correlation analysis [57]. Therefore
in future, other block selection methods could be inves-
tigated that do not require execution times as long as a
GA and still produce stress recognition measures com-
parable to the GA hybrid.
7 Conclusions
The ANU Stress database (ANUStressDB) was presented
which has videos of faces in temporal thermal (TS) and vis-
ible (VS) spectrums for stress recognition. A computational
classification model of stress using spatial and temporal
characteristics of facial regions in the ANUStressDB
was successfully developed. In the process, a new method
for capturing patterns in thermal videos was defined -
HDTP. The approach was defined so that it reduced
individual bias in the computational models and enhanced
participant-independent recognition of symptoms of stress.
For computing the baseline for stress classification, a
SVM was used. Facial block regions selected informed
by a genetic algorithm improved the rates of the classifi-
cations regardless of the type of video - videos in TS or
VS. The best recognition rates, however, were obtained
when features from TS and VS videos were provided as
inputs to the GA-SVM classifier. In addition, stress rec-
ognition rates were significantly better for classifiers
provided with HDTP features instead of LBP-TOP fea-
tures for TS. Future work could extend the investigation
by developing features for facial block regions to capture
more complex patterns and examining different forms of
facial block regions for stress recognition.
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