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Abstract

ATR results compared with state-of-the-art methods.

This paper presents a novel feature extraction algorithm based on the local binary features for automatic target
recognition (ATR) in infrared imagery. Since the inception of the local binary pattern (LBP) and local ternary pattern
(LTP) features, many extensions have been proposed to improve their robustness and performance in a variety of
applications. However, most attentions were paid to improve local feature extraction with little consideration on the
incorporation of global or regional information. In this work, we propose a new concave-convex partition (CCP)
strategy to improve LBP and LTP by dividing local features into two distinct groups, i.e., concave and convex,
according to the contrast between local and global intensities. Then two separate histograms built from the two
categories are concatenated together to form a new LBP/LTP code that is expected to better reflect both global and
local information. Experimental results on standard texture images demonstrate the improved discriminability of the
proposed features and those on infrared imagery further show that the proposed features can achieve competitive
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Introduction

Automatic target recognition (ATR) is an important and
challenging problem for a wide range of military and
civilian applications. Many ATR algorithms have been
proposed for forward-looking infrared (FLIR) imagery
which can be roughly classified into two groups, i.e.,
learning-based and model-based [1]. For the learning-
based methods, a classifier or a subspace representation
which is learned for a set of labeled training data is
used for target recognition and classification [2,3]. On
the other hand, the model-based approaches involve a set
of target templates or feature maps created from CAD
models or a model database and then match them with
observed features to fulfill the ATR task [4-8]. Li et al. [1]
gave an excellent survey of traditional ATR algorithms,
including convolution neural network (CNN), principal
component analysis (PCA), linear discriminant analysis
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(LDA), learning vector quantization (LVQ), modular neu-
ral networks (MNN), and two model-based algorithms
using the Hausdorff metric and geometric hashing. In
[9], Patel et al. introduced an interesting ATR algorithm
that was motivated by sparse representation-based clas-
sification (SRC) [10], which outperforms the traditional
ones with promising results. Recently, there are also many
hybrid vision approaches that combine learning-based
and model-based ideas for object tracking and recognition
in visible-band images [11-13].

As one of the learning approaches, the ATR task has also
been cast as a texture analysis problem due to rich texture
characteristics in most infrared imagery. Various texture-
like features, including geometric, topological, and spec-
tral features, were proposed for appearance-based ATR
as reviewed in [14]. Moreover, wavelet-based PCA and
independent component analysis (ICA) methods were
developed in [15]. Both wavelet and Gabor features were
used for target detection in [16]. A texture feature cod-
ing method (TFCM) was proposed for synthetic aperture
radar (SAR)-based ATR in [17]. In this work, we are inter-
ested in the texture-based ATR approach. Particularly,
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we are focused on how to extract effective yet simple
local binary pattern (LBP) operators for infrared ATR.
This research is motivated by the rapid growth of the
development of various LBP features and their promis-
ing results in several ATR applications, such as maritime
target detection and recognition in [18], infrared building
recognition in [19], and ISAR-based ATR in [20].

The LBP operator was proposed by Ojala et al. in [21],
which is based on the so-called texture unit (TU) intro-
duced by Wang and He in [22]. LBP has been proved a
robust and computationally simple approach to describe
local structures and has been extensively exploited in
many applications, such as texture analysis and classifi-
cation [23-30], face recognition [31-36], motion analysis
[37-39], and medical image analysis [40-42]. Since Ojala’s
original work, the LBP methodology has been developed
with large number of extensions for improved perfor-
mance. For example, Ojala et al. [43] extended the basic
LBP to multiresolution gray scale, uniform, and rotation
invariant patterns in order to achieve rotation invariance,
optional neighborhoods, and strong discriminative capa-
bility. Tan and Triggs [32] proposed the local ternary pat-
tern (LTP) to quantize the intensity difference between a
pixel and its neighbors into three levels to further enhance
the robustness to noise. LTP has been proven effectively
in face recognition. Ahonen and Pietikdinen [44] intro-
duced soft LBP (SLBP) to enhance the feature robustness
in the sense that a small change in an input image causes
only a small change in the feature extraction output by
employing fuzzy theory. Guo et al. [45] proposed a com-
plete LBP (CLBP), which fuses the signs (the same as
the basic LBP) with the absolute value of the local inten-
sity difference and the central gray level to improve the
discriminative capability. Liao et al. [46] proposed a multi-
block LBP (MB-LBP), which, instead of comparing pixels,
compares local average intensities of neighboring sub-
regions to capture not only the microstructures but also
the macrostructures. Wolf et al. [47] proposed a simi-
lar scheme as [46], called three-patch LBP (TP-LBP) and
four-patch LBP (FP-LBP), which involves a unique dis-
tance function to compare local blocks (patches), instead
of a single pixel as in [21] or average intensity as in [46].

In this work, we are interested in the applicability of
LBP/LTP for infrared ATR. We also take a different per-
spective to improve LBP/LTP features in this new con-
text. Almost all the extensions of the basic LBP features
mentioned above focus on local feature extraction in a
small neighborhood. However, the local feature may not
be sufficient for rotation invariant texture classification
and other applications that require some information in
a larger area. We will give an example shortly, where it
is shown that the two local patches with entirely dif-
ferent gray levels may have the exact same LBP code.
Therefore, we propose a concave-convex partition (CCP)
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scheme to involve global information (i.e., the global
mean) for LBP/LTP encoding. We also introduce a sim-
ple yet effective blocking technique to further improve
the feature discriminability for infrared ATR. We evaluate
the newly proposed CCP technique in two standard tex-
ture databases, and we compare also our CCP-based local
binary features (LBP/LTP) with the latest sparsity-based
ATR algorithm proposed in [9] where we have used four
implementations from SparseLab [48] and SPGL1 [49].

The rest of the paper is organized as follows. In Section
‘Brief review of LBP-based methods’, we briefly discussed
the basic LBP and LTP. Section ‘Concave-convex local
binary features’ discusses the limitation of traditional LBP
features and presents the new CCP scheme in detail.
Section ‘Experiments and discussions’ reports the exper-
imental results on two texture databases and a recent
ATR database. Finally, we conclude our study in Section
‘Conclusions’.

Brief review of LBP-based methods

Since its origination, there are many extensions of LBP. In
this section, we only give a brief introduction of the basic
LBP and one of its extensions, LTP.

Local binary pattern
The basic LBP operator is first introduced in [21] for
texture analysis. It works by thresholding a neighbor-
hood with the gray level of the central pixel. The LBP
code is produced by multiplying the thresholded values by
weights given by powers of 2 and adding the results in a
clockwise way. It was extended to achieve rotation invari-
ance, optional neighborhoods, and stronger discrimina-
tive capability in [43]. The basic LBP is commonly referred
as LBPp r, which is written as
P-1
LBPpr = ZS (pi — pe) x 2, (1)
i=0

1ifx>0
0 otherwise, ’
pling pixels on the circle, R is the radius of the circle, p.
corresponds to the gray value of the central pixel, and
pi corresponds to the gray value of each sampling pix-
els on the circle. Figure 1 gives an example of calculating
LBP code with P = 8,R = 1. In Figure 2, three differ-
ent neighborhoods with a varying number of samples P
and different neighborhood radii R are shown. It should
be noted that the gray value of neighboring pixels which
do not fall exactly on the grid is calculated by linear
interpolation of the neighboring pixels.

The classical description of the rotation invariant LBP
operator [43] can be defined as below:

o s (pi—po) if U (LBPpg) <2
P+1 otherwise

where s (x) = { P is the number of sam-

LBP}Y = { » (2)
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Figure 1 lllustration of the process of LBP feature extraction.

where the superscript riu2 refers to the use of rotation
invariant uniform patterns that have a U value (U < 2).
The uniformity measure U corresponds to the number of
transitions from O to 1 or 1 to 0 between successive bits
in the circular representation of the binary code LBPp,
which is defined as

u (LBPP,R) = |s(pr-1 = pc) —sWo — pc) |

P-1 3)
+ . ls@i—po) —s@pict —po) |

All nonuniform patterns are classified as one pattern for
LBP;‘,‘}?. The mapping from LBPp to LBPR‘}QZ, which has
P + 2 distinct output values, can be implemented with a
lookup table.

Local ternary pattern

Because the gray value of the central pixel is directly used
as a threshold, the LBP is sensitive to noise, especially in
a smooth image region. To address this problem, Tan and
Triggs [32] extended the original LBP to a version with
three-value codes, which is called local ternary pattern. In
LTP, the indicator s (x) as in Equation 1 is given as

I pi—=pc=zt
sWi—pe—1)=10 Ipi—pl<rt ()
=1 pi—pc < -1,

where t is a user-set threshold. In order to reduce the
dimension of LTP, a coding scheme is also represented

by Tan and Triggs [32] by splitting each ternary pat-
tern into two parts: the positive part and the negative
part, as illustrated in Figure 3. Though the LTP codes are
more resistant to noise, it is no longer strictly invariant to
gray-level transformations.

Concave-convex local binary features

In this section, we first discuss the limitation of the tra-
ditional LBP-based operators, and then we propose a new
method called CCP to improve LBP/LTP features.

Limitation of traditional LBP-based methods
Until now, most LBP extensions concentrate on how
to improve the discernibility of the feature extracted
from the local neighborhoods. As a result, the empha-
sis of such LBP-based methods is on the local fea-
tures. However, is local information sufficient for rotation
invariant texture classification and other texture analy-
sis applications? Figure 4 shed some light on this issue.
Figure 4a shows two 8 neighborhoods in an texture
image (160 x 160). The neighborhoods (al) and (a2) in
Figure 4a have the exact same LBP code (i.e., 219), posi-
tive LTP code (145), and negative LTP code (32), although
they have entirely different visual perception. That is
to say, the operators LBP and LTP mentioned above
cannot draw any distinction between (al) and (a2) in
Figure 4a.

For further explanation, we refer to the average gray
value of the neighborhood because it is clear that the
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Figure 2 The circular (8, 1), (16, 2), and (24, 3) neighborhoods.
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average gray value of (al) and (a2) in Figure 4a is very dif-
ferent. Figure 4b gives the distribution of the average gray
value for the neighborhoods (P = 8 and R = 1) which
have the same LBP code (LBPg; = 4). There are totally
649 neighborhoods and the maximum and minimum of
the average gray value are 228.1 and 54.7, respectively.
Obviously, many neighborhoods with the same LBP code
have different visual perception because their average gray
values differ greatly.

Most of other extensions of LBP also have the same
limitation as LBP and LTP. The main reason is that such
operators concentrate only on local features and the global
feature of the image is neglected. Therefore, the basic LBP
and most of its extensions cannot distinguish the pat-
terns with different global intensities and with the same
local features. There is little effort to address this problem
directly so far. The recently proposed CLBP feature in [45]
implicitly addresses this problem by involving an addi-
tional binary code that encodes the comparison between
the central pixel and the global average. In this paper, we

Concave-convex partition

Since the neighborhoods with different visual perception
may have the same binary code by the LBP-based oper-
ators, we can differentiate them from each other before
computing the local binary codes. For example, we can
use the bit-plane decomposition [50] to compute the local
binary codes on each 1-b plane, and then integrate them
together. In that case, the global information can be car-
ried by the binary codes. The price paid by this method
is the doubled feature dimensionality. Of course, there
could be other methods which are able to achieve a similar
effect. However, to keep the simplicity and effectiveness
of the basic LBP, we propose a simple yet effective method
in this paper to address the weakness. The new method
is called concave-convex partition or CCP. It is known
that the average gray level is a widely accepted statistical
parameter for texture analysis. We also chose it to denote
the gray-level variation of a neighborhood. Let y;; denote
the average gray level of a neighborhood (i, j), which is
given as follows:

study this problem explicitly by dividing the local features 1 P
into two groups to reflect the relative contrast between the Wij = il (pi,j + Z pk> . (5)
local and global intensities. + k=1
200 B concave LBP|
159 161| 165 1800 I convex LbP (|4

“ ™ 164|160 163

161] 159 160

(al)

PooI0qUB1au JO aN[EA ABID) FEIOAY

I 910 (a2

()

(b)

1600

1400

1200

1000

50 100 150 200 250

(©)

Figure 4 Example of LBP and CCLBP features. (a) Two neighborhoods share the same code (LBPg; = 219) but have different gray-level
distributions. (b) The spatial distribution of the average for the neighborhoods sharing the same code (LBPg; = 4). (c) The CCLBP histogram of the

texture image (a).
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Here, we further manifest the limitations of traditional
LBP-based methods on an infrared chip. Figure 5a shows
an infrared chip with a target in the center (40 x 75), and
Figure 5b presents the distribution of w;; for all neighbor-
hoods (P = 8 and R = 1) which have the same rotation
invariant and uniform LBP code (LBPg{‘{Z = 3). There are
totally 347 neighborhoods in the image and the maximum
and minimum of w;; are 580.37 and 474.57, respectively.
It is also obvious that there are many local neighborhoods
with different visual perception but having the same code.
In order to address this problem, we introduce the CCP
technique based on ;; as follows.

Definition of CCP

Let w(i,j) be a neighborhood centered at pixel (i, /) in an
image and j;; be its average gray value. Given o as a CCP
threshold, if u;; < a, the central pixel p;; is regarded
as a concave pixel and the neighborhood w(i, /) as a con-
cave neighborhood. Otherwise, p; ; is regarded as a convex
pixel and w (i, j) is as a convex neighborhood. The set of all
concave neighborhoods are denoted as 21 = {(i,/)|ui; <
a}), and all convex neighborhoods are denoted as Q2 =
{(,DImij = m}. Now the key of CCP is to choose the opti-
mal parameter o which should provide the least square
error approximation to all local means:

a = argminy Z Z (,ui,,' — a)z. (6)
i

Hence, it is straightforward to get & as the mean of all
the local means j;; as

. 1
& = m;;ﬂzj; 7)

where N; x Nj is the number of local neighborhoods in
the image. To speed up the computation, we further use
the global mean u to approximate &.

The proposed CCP technique can be applied to nearly
all LBP features and their extensions. The CCP-based
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feature extraction has two steps. Firstly, the local binary
code of each neighborhood is computed by a LBP oper-
ator. Secondly, the codes are divided into two categories
according to CCP. After that, the original feature his-
togram of an image is decomposed into two parts, which
are called the concave histogram (the statistics of the
neighborhoods where j1;; < ) and the convex histogram
(the statistics of the neighborhoods where p1;; > ).

It is expected that CCP-based LBP features will be
enriched by incorporating the global mean. For example,
Figure 4c gives the CCP-based LBP distribution of the tex-
ture image in Figure 4a, the LBP histogram (P = 8, R =1)
is decomposed into a concave one and a convex one.
Figure 5c presents the CCP-based LBP distribution of the
infrared chip shown in Figure 5a; the LBP histogram that
is rotation invariant and uniform (represented by LBPg‘il2
is decomposed into a concave one and a convex one.
It is worth mentioning that we have tried CCP with more
than two feature groups without further improvement,
showing that the binary CCP is the most cost-effective
one.

Dissimilarity measure

Various metrics have been presented to evaluate the dis-
similarity between two histograms. As most LBP-based
algorithms, we chose the chi square distance as the dis-
similarity measure, which is defined as

K 2
(h; — by)
d(H,B) = _ 8
(H,B) ; b ®)
where H = {h;} and B = {b;} (i =1,2,...,K) denote the
two feature histograms, and K is the number of bins in the
histogram.

Experiments and discussions

In this section, we first evaluate and compare LBP [43],
LTP [32], SLBP [44], and CLBP [45] along with their
CCP-enhanced versions which are called CCP-based LBP

..
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Figure 5 Example of LBP and CCLBP fe_atures. (a) Example of an infrared chip. (b) The spatial distribution of the neighborhoods sharing the same
rotation invariant uniform LBP code (LBPQVUW2 = 3). (c) the CCLBP histogram of the infrared chip (a).
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the Columbia-Utrecht Reflection and Texture (CUReT)

(P,R =81 (P,R=(16,2) (P,R) =(24,3) database [52].

LBPRY 10 18 26
CCLBP;‘;Z 20 36 52 Experimental results on Outex database
TPy 20 36 59 For the Outex database [51], we chose Outex_TC_0010
CCLT/P'M 20 - 104 (TC10) and Outex_TC_0012 (TC12), where TC10 and

PR TC12 contain the same 24 classes of textures collected
SLBPR 10 18 2 under three different illuminants (‘horizon, ‘inca; and
CCSLBPRY 20 36 52 ‘t184’) and nine different rotation angles (0°, 5°, 10°, 15°,
CLBP;L};?2 100 324 676 30°, 45°, 60°, 75°, and 90°). There are 20 nonoverlapping
cccuspiY 200 648 1352 128 x 128 texture samples for each class under each sit-

(CCLBP), CCP-based LTP (CCLTP), CCP-based SLBP
(CCSLBP), and CCP-based CLBP (CCCLBP) for texture
classification to demonstrate the usefulness of the pro-
posed CCP technique. Then, we focus on LTP and CCLTP
to examine their effectiveness for infrared ATR where four
SRC-based methods are involved for performance eval-
uation. The experiments were conducted on a PC with
the AMD Phenom(tm)II Processor (3.41GHz) (Advanced
Micro Devices, Inc., Sunnyvale, CA, USA), 8 GB RAM,
and the 64-b Win7 Operating System.

Three different multiresolutions are used for the eight
features tested in this work, P = 8 and R = 1, P = 16
and R = 2, and P = 24 and R = 3. To simplify the fea-
ture computation, LTP is split into two LBPs as mentioned
in [32], i.e., positive LBPs and negative LBPs. Then two
histograms are built and concatenated into one histogram
(shown in Figure 3) as the image feature, which is denoted
as LTP}”}}}?Z. For CLBP, we choose CLBP_SE}V‘}?2 /er,i,‘}?2 oper-
ator in the paper. We compare all eight LBP features in
terms of their dimension in Table 1 where it is shown
that both CLBP and CCCLBP have a significantly higher
dimension than others.

Experiments on texture classification
For texture classification, we chose two commonly used
textures databases, i.e., the Outex database [51] and

uation. For TC10, samples of illuminant inca and angle
0° in each class were used for classifier training and the
other eight rotation angles with the same illuminant were
used for testing. Hence, there are 480 (24 x 20) mod-
els and 3,840 (24 x 8 x 20) validation samples. For TC12,
all the 24 x 20 x 9 samples captured under illumination
tl84 or horizon were used as the test data. Table 2 gives
the experimental results of different LBP features, where
t represents the test setup of illuminant t184 and % repre-
sents horizon. It is clear that CCP can improve the LBP,
LTP, SLBP, and CLBP greatly. For P = 8 and R = 1,
P =16 and R = 2,and P = 24 and R = 3, CCLBP}Y,
CCLTPpY, CCSLBP,Y, and CCCLBP_Sp'? /MR have
an averaged accuracy improvement of 12.5%, 5.2%, 7.7%,
and 2.9% over their original versions, respectively.

Experimental results on CUReT database

The CUReT database includes 61 classes of textures cap-
tured at different viewpoints and illumination orienta-
tions [52], and 92 images in each class are selected from
the images shot from a viewing angle of less than 60°. To
get statistically significant experimental results, N train-
ing images (N = 46,23, 12, and 6) were randomly chosen
from each class while the remaining (92 — N) images
were used as the test set. The average accuracy over 23
randomly splits are listed in Table 3. Similar conclusions
observed from TC10 and TC12 can also be drawn for the

Table 2 Classification accuracy (%) on TC10 and TC12 texture sets using different LBP operators

(P,R) = (8,1) (P,R) = (16,2) (P,R) = (24,3)
TC10 TC12 Average TC10 TC12 Average TC10 TC12 Average

t h t h t h
LBP’FL;'?Z 84.81 65.46 63.68 7131 89.40 82.26 75.20 8228 95.07 85.04 80.78 86.96
CCLBP[,‘;Z 95.96 90.57 90.97 92.50 94.81 90.74 89.46 9167 97.81 9342 90.87 94.03
LTP;;‘%Z 94.14 75.87 73.95 8132 96.95 90.16 86.94 91.35 98.20 93.58 89.42 93.73
CCLTPE%Z 96.87 86.96 88.10 90.64 98.20 94.53 94.46 95.73 98.75 95.67 9291 95.77
SLBPB};2 90.63 72.31 70.63 77.86 92.99 8713 71.67 87.26 96.41 90.05 85.74 90.73
CCSLBP%2 95.94 87.41 87.64 90.33 97.50 9273 92.59 94.27 97.86 94.26 91.20 94.44
CLBPE%Z 94.66 82.75 83.14 86.85 97.89 90.55 91.11 93.18 99.32 93.58 93.35 9541
CCCLBPE;'?2 97.29 90.20 9293 9347 98.80 92.50 9349 94.93 98.72 94.81 94.28 95.93
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Table 3 Classification accuracy (%) on CuRet database using different LBP operators

(P,R) = (8,1) (P,R) = (16,2) (P,R) = (24,3)
46 23 12 6 46 23 12 6 46 23 12 6

LBPy 70,06 65.77 54.21 4733 7449 7040 5855 51.23 75.71 72.51 61.52 54,64
CCLBP 8398 7871 6547 57.57 82,96 7764 64.62 56.59 8230 78.18 66.53 58.95
LTPG 77.36 7177 58.33 49,84 82.54 76.29 62.54 5421 83.15 77.85 6437 56.40
cCLTPyY 8345 76.90 62.86 54.18 86.21 79.37 6546 56.71 86.58 80.58 67.26 59.02
SLBPIY 7145 62.75 5361 39.55 7555 66.64 5826 4411 77.26 67.24 5867 4716
CCSLBPIY 77.98 68.90 59.90 4445 81.18 70.90 61.27 47.94 82.50 7265 65.25 50.90
CLBPY 85.78 79.69 66.34 5861 86.28 80.72 67.39 59.02 86.25 8147 68.54 60.36
CCCLBPI 88.19 81.24 67.77 5936 8841 81.79 68.29 60.11 88.66 8322 7047 6257

experimental results on the CUReT dataset. CCLBP}})‘I‘?,
CCLTP}Y, CCSLBPY? and CCCLBP_SR%2 /M54 get an

CCCLBP is still moderately better than CCLTP. However,
the high dimension of CCCLBP may limit its potential

averaged accuracy improvement of 8.1%, 3.6%, 5.1%, and
1.6% over their original versions, respectively.

The results on the two texture databases show the
effectiveness of the proposed CCP technique to improve
various LBP features. It is worth mentioning that without
CCP enhancement, CLBP shows the best performance
and LTP is the second. However, the dimension of CLBP is

in real applications where multiple local features may be
needed to deal with nonstationarity in an image. CCLTP
has a more balanced trade-off between complexity and
performance.

Experiments for infrared ATR
This section reports the evaluation of the eight LBP fea-
tures in the context of infrared ATR. The LBP features of

more than 10 times of that LTP. With CCP enhancement,
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Figure 6 Some infrared chips of the 10 targets (row-wise) in 10 views (column-wise) in the FLIR dataset.
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Figure 7 Recognition accuracy comparison for eight operators. L8P, CCLBP, LTP, CCLTP, SLBP, CCSLBP, CLBP, and CCCLBP.

three different scales (P =8 and R=1,P =16 and R =
2, and P = 24 and R = 3) are concatenated together
as an image feature which are denoted as LBPgi,lﬁm,z 1243
(LBP), CCLBPg,ﬁm,HMs (CLBP), LTP §{§116,2+24,3 (LTP),
CCLTP §{111116,2+24,3 (CCLTP), SLBP§E§116,2+24,3 (SLBP),
CCSLBPEY? 165245 (CCSLBP), {CLBPs/M}ZY? 1621043
(CLBP), {CCCLBPs/M}§{2 45,043 (CCSLBP), respec-
tively. The Comanche (Boeing-Sikorsky, USA) FLIR
dataset is used here, similar to [9]. There are 10 dif-
ferent military targets denoted as T'1,72,...,7T10. For

each target, there are 72 orientations, corresponding
to aspect angles of 0°, 5° ..., 355°. The dataset con-
tains 437 to 759 images (40 x 75) for each target
type, totaly 6,930 infrared chips. In Figure 6, we show
some infrared chips for 10 targets under 10 different
views.

Comparison of LBP, CCLBP, LTP, CCLTP, SLBP, CCSLBP, CLBP,
and CCCLBP

In this experiment, we randomly chose about 10% (718
chips), 20% (1,436 chips), 30% (2,154 chips), 40% (2872

Seg—1

Seg—5

Seg-2

Seg—6

Figure 8 Six blocking methods to divide an infrared chip into multiple segments.
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chips), and 50% (3590 chips) target chips of each target
class as training data. The remaining 90%, 80%, 70%, 60%,
and 50% images in the dataset are set as testing data,
respectively. The mean and variance of the recognition
accuracy averaged by 10 trials are given in Figure 7. It can
be seen from the experimental results that

e With CCP enhancement, the accuracy improvements
averaged over five training datasets of CCLBP,
CCLTP, CCLBP, and CCCLBP are 23.25%, 9.22%,
11.43%, and 2.92%, respectively, compared with their
original versions. A much less improvement of
CCCLBP over CLBP is likely due to its
high-dimension nature that may reduce the benefit of
CCP.

e The experimental result also shows that eight LBP
features, i.e., LBP, LTP, SLBP, CLBP, CCLBP,
CCLTP, CCSLBP, and CCCLBP, are robust for
infrared ATR, because they are fairly stable in 10
random trials for each case.

. {CCCLBPS/M}QEL@H%?) gives the best
performance among the eight operators, followed by
CCLTPE{L{LG,Z 24,3- However, the dimension of
{CCCLBPS/M}QE%‘_16,2+24’3 is 2,2OQ which is over 10
times as the dimension of CCLTPg‘EiIG,H%B (216).
On the other hand, the recognition accuracy of
CCLTPEE%—16,2+24,3 and {CCCLBPs/ M}g,ﬁm,uz%
is getting closer as training data increase. Therefore,
we will further make some detailed comparisons
between LTP/CCLTP and other recent sparsity-based
ATR methods in the following experiments.

Recognition rates of different blocking methods
The analysis reported in [53] shows that the holistic LBP
histogram is appropriate for standard texture analysis but

95

90

Accuracy (%)
a

~
(=]

10 20 30 40 50
The size of the training data (%)

Figure 9 Recognition accuracy comparison for six blocking
methods using CCLTP under different sizes of training data.
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Table 4 Feature dimensionality and average feature
extraction time per chip for different blocking schemes
shown in Figure 8

Seg-1 Seg-2 Seg-3 Seg-4 Seg-5 Seg-6
Dimension 216 432 432 864 1296 1944
Average feature
extractiontime (s) 0033 0036 0036 0043 0049 0059

not suitable for facial recognition. The reason is that
the texture images have uniform or homogeneous prop-
erty, however, the face images have large spatial variations
due to distinct facial features. Therefore, a facial image
is divided into some blocks. Then a LBP histogram is
extracted from each block and all LBP histograms are
concatenated together as a feature representation for face
recognition. Similarly, the targets in infrared chips have
strong spatial variations. A holistic LBP or LTP histogram
is not suitable for ATR. Therefore, we divide an infrared
chip into different blocks and extract a LTP/CCLTP his-
togram from each block.

We studied six different blocking methods, as illustrated
in Figure 8. Seg-1 denotes the whole chip without block-
ing. Seg-2 divides a chip into the left-right blocks. Seg-3
segments a chip into the top-bottom blocks. Seg-4 divides
a chip into four quadrants that are slightly overlapped.
Seg-5 segments a chip into six blocks. Seg-6 partitions a
chip into nine blocks. The operator, CCLTPgi,‘ﬁ_m2 4243 18
chosen as the feature. A histogram CCLTPQ"{2+16,2 1043 18
extracted from each block and all block-wise histograms
are concatenated together as a target representation. The
average recognition accuracy averaged by 10 trials is
shown in Figure 9. The dimensionality and the average
feature extraction time cost of each chip are given in
Table 3. The average training and recognition time cost for
each segmentation method is shown in Table 4. As seen
from Figure 9, Tables 4 and 5, Seg-6 yields the best ATR
recognition performance if we choose 10% and 20% chips
as training data, and Seg-4 provides the best performance
in other cases which is only slightly worse than ‘Seg-6’
in the 10% and 20% cases. However, the computational

Table 5 Time consumed for feature extraction, training,
and recognition under different training datasets

10% 20% 30% 40% 50%
Seg-1 0.0039 0.0076 0.0109 0.0122 0.0128
Seg-2 0.0086 0.0158 0.0208 0.0234 0.0274
Seg-3 0.0086 0.0159 0.0209 0.0235 0.0275
Seg-4 0.024 0.0422 0.0562 0.0594 0.0663
Seg-5 0.0398 0.0718 0.0947 0.1035 0.1103
Seg-6 0.0619 01111 0.1451 0.1633 0.1694
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Table 6 Accuracy of infrared ATR for (%) six methods under different training datasets

sCCLTP sLTP SPG_lasso SparselLab_lasso SparseLab_nnlasso SparseLab_OMP
10% 66.50 59.09 7545 75.65 74.35 67.54
20% 79.05 72.72 84.43 83.95 8246 76.61
30% 85.88 80.21 88.51 87.95 86.60 81.55
40% 89.80 84.66 91.10 90.24 89.12 84.87
50% 9225 87.88 92.76 91.86 90.98 87.21
60% 93.55 89.63 93.87 93.04 92.34 88.61
70% 94.64 9137 94.54 93.82 93.20 89.83
80% 95.29 9229 9523 94.43 94.08 90.95
Leave-one-out 97.63 95.28 96.87 95.84 95.53 93.15

complexity of Seg-6 is much heavier than that of ‘Seg-4’.
Therefore, Seg-4 is considered the optimal blocking meth-
ods to apply the LTP/CCLTP for the infrared ATR task in
this work.

Comparison of LTP/CCLTP and SRC methods
In this section, we compare the performance of LTP and
CCLTP with SRC-based methods that achieved the state-
of-the-art results in infrared ATR [9]. We have down-
loaded two SRC software packages which are SparseLab
[48] and spectral projected gradient (SPGL1) [49]. These
two packages support different sparse optimization algo-
rithms. For SparseLab, we chose three sparse solutions:
‘lasso’, ‘nnlasso’, and ‘OMP’, which are referred to as
Sparselab-lasso, Sparselab-nnlasso, and Sparselab-OMP
in the following. For SPGL1, we chose one solution lasso,
which is called SPG-lasso in this work. The reason we
chose these four specific algorithms is mainly due to
their relatively low computational load which is acceptable
in the ATR experiments. To reduce the dimensionality
of infrared chips, several dimensionality reduction tech-
niques were studied in [9] where a simple 16 x 16 down-
sampling was shown comparable with others, including
Haar wavelet, PCA, and random projection. Thus, the
dimensionality of each chip is downsampled from 40 x 75
to 16 x 16 as mentioned in [9].

In addition, we randomly selected 10% (718 chips), 20%
(1436 chips), 30% (2154 chips), 40% (2,872 chips), 50%
(3,590 chips), 60% (4,308 chips), 70% (4,958 chips), and

80% (5,607 chips) target chips of each target class as
training data. The remaining 90%, 80%, 70%, 60%, 50%,
40%, 30%, and 20% images in the dataset are set as test-
ing data, respectively. We augment the Seg-4 blocking
method with LTP/CCLTP which leads to two new feature
representations denoted by sLTP and sCCLTP. The recog-
nition accuracy of sLTP, sCCLTP, and the four sparse-
based methods that is averaged by 10 trials is given in
Table 6 where we also include the leave-one-out result
for each method. The average training and recognition
time of six methods is shown in Table 7. As seen from
Table 6, sCCLTP is showing improved performance as
the training size grows. Especially for the leave-one-out
experiment, sSCCLTP provides the best ATR performance.
The confusion matrices of six methods corresponding to
the leave-one-out experiment are shown in Figure 10. It
is shown that the sCCLTP result has only three non-
diagonal entries greater than 1% (Figure 10a), while
sLTP (Figure 10b), Sparselab-lasso (Figure 10c), Sparselab-
nnlasso (Figure 10d), Sparselab-OMP (Figure 10e), and
SPG-lasso (Figure 10f) have 12, 9, 12, 23, and 5 nondiago-
nal entries greater than 1%, showing the best robustness of
sCCLTP.

In order to further show the advantages of the pro-
posed CCP methods, Figure 11 presents the curves of
pose recognition accuracies vs. acceptable angle errors (up
to 60°) for the leave-one-out experiment. As can be seen
from Figure 11, sCCLTP again provides the best perfor-
mance. Specifically, sSCCLTP can get 66% pose recognition

Table 7 Averaged time consumed (s) for training and testing (sparsity-based methods do not have training stage)

10% 20% 30% 40% 50% 60% 70% 80%
SCCLTPEY 162243 0032 0.056 0075 0.079 0.086 0073 0.064 0.045
SLTPEY 1624243 0011 0020 0027 0.029 0.034 0026 0.023 0016
SPG_lasso 0.046 0.069 0.086 0.095 0.103 0.094 0.082 0.064
Sparselab_lasso 0.053 0077 0092 0.106 0.12 0113 0.095 0.069
SparseLab_nnlasso 0.031 0051 0.064 0.075 0.085 0.08 0.068 0.049
SparseLab_OMP 0.022 0032 0037 0.04 0.044 0.041 0032 0022
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(b) SLTP
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Figure 10 Confusion matrices of the six methods in the leave-one-out recognition experiment. (a) sSCCLTP. (b) sLTP. (c) Sparselab-lasso.

Predicted Class.

accuracy with the angle error less than 5°, 85% with the
angle error less than 10°, and more than 90% with the
angle error less than 15°. On the other hand, sLTP has
similar pose recognition performance as Sparselab-lasso
and Sparselab-nnlasso.

Conclusions

In this paper, a new LBP-based ATR algorithm is pro-
posed using concave-convex partition local ternary pat-
tern (CCLTP). Based on the analysis of the limitation
of traditional LBP-based methods, CCP is presented to



Sun et al. EURASIP Journal on Image and Video Processing 2014, 2014:23
http://jivp.eurasipjournals.com/content/2014/1/23

Page 12 0f 13

IEEE Computer Society Conference on Computer Vision Pattern Recognition
(San Francisco, CA, 18-20 June 1996), pp. 114-119

3. LCWang, SZ Der, NM Nasrabadi, A committee of networks classifier with
multi-resolution feature extraction for automatic target recognition, in
Proceedings of IEEE International Conference on Neural Networks, vol. 3
(Houston, TX, 9-12 June 1997), pp. 1596-1601

4. Y Lamdan, H Wolfson, Geometric hashing: a general and efficient
model-based recognition scheme, in Proceedings of the 2nd International

0.95

0.9

0.85

Pose recognition accuracy

0.8 Conference on Computer Vision (Tampa, FL, 5-8 December 1988),
—&— sCCLTP pp. 238-249
0.75 /i e sLTP N 5. CF Olson, DP Huttenlocher, Automatic target recognition by matching
0.7 = Spg-lasso ] oriented edge pixels. IEEE Trans. Image Process. 6(1), 103-113 (1997)
) -+~ SparseLab-lasso 6. U Grenander, MI Miller, A Srivastava, Hilbert-Schmidt lower bounds for
0.65'# —¥— SparseLab-nnlasso | | estimators on matrix lie groups for ATR. IEEE Trans. Pattern Anal. Mach.
¥ SparseLab-OMP Intell. 20(8), 790-802 (1998)
} . . . . L 7. V\Venkataraman, G Fan, L Yu, X Zhang, W Liu, JP Havlicek, Automated
10 20 30 40 50 60 target tracking and recognition using coupled view and identity
Angle error manifolds for shape representation. EURASIP J. Adv. Signal Process.
Figure 11 Curves of pose recognition accuracies versus 124,1-17 (2011)
threshold of acceptable angle error for leave-one-out 8. JGong, G Fan, L Yu, JP Havlicek, D Chen, N Fan, Joint view-identity

manifold for infrared target tracking and recognition. Comput. Vis. Image
Understand. 118(1), 211-224 (2014)
9. VM Patel, NM Nasrabadi, R Chellappa, Sparsity-motivated automatic
target recognition. Appl. Opt. 50(10), 1425-1433 (2011)
10. J Wright, AY Yang, A Ganesh, SS Sastry, Y Ma, Robust face recognition via
sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2),
210-227 (2009)
J Liebelt, C Schmid, K Schertler, Viewpoint-independent object class
detection using 3D feature maps, in Proceedings of IEEE Conference on
CVPR (Anchorage, AK, 23-28 June 2008), pp. 1-8
SM Khan, H Cheng, D Matthies, H Sawhney, 3D model based vehicle
classification in aerial imagery, in IEEE Conference on Computer Vision and
Pattern Recognition (San Francisco, CA, 13-18 June 2010), pp. 1681-1687
13. AToshev, A Makadia, K Daniilidis, Shape-based object recognition in
videos using 3D synthetic object models, in IEEE Conference on Computer
Vision and Pattern Recognition (Miami, FL, 20-25 June 2009), pp. 288-295
B Bhanu, Automatic target recognition: state of the art survey. IEEE Trans.
Aero. Electron. Syst. AES-22(4), 364-379 (1986)
K Messer, D de Ridder, J Kittler, Adaptive texture representation methods
for automatic target recognition, in Proceedings of British Machine Vision
Conference BMVC99 (Nottingham, 13-16 September 1999), pp. 1-10
16. D Casasent, Y Smokelin, Wavelet and Gabor transforms for target
detection. Opt. Eng. 31(9), 1893-1898 (1992)
C Jeong, M Cha, H-M Kim, Texture feature coding method for SAR
automatic target recognition with adaptive boosting, in Proceedings of
the 2nd Asian-Pacific Conference on Synthetic Aperture Radar (Xian, 26-30
October 2009), pp. 473-476
18. N Rahmani, A Behrad, Automatic marine targets detection using features
based on local Gabor binary pattern histogram sequence, in Proceedings
of the 1st International Conference on Computer and Knowledge Engineering
(Mashhad, 13-14 October 2011), pp. 195-201
. YQin, Z Cao, Z Fang, A study on the difficulty prediction for infrared
target recognition, in Proceedings of SPIE, vol. 8918 (Wuhan, 26 October
2013).doi:10.1117/12.2031100
F Wang, W Sheng, X Ma, H Wang, Target automatic recognition based on
ISAR image with wavelet transform and MBLBP, in 2070 International
Symposium on Signals Systems and Electronics, vol. 2 (Nanjing, 17-20
September 2010), pp. 1-4
21. TOjala, M Pietikdinen, D Harwood, A comparative study of texture
measures with classification based on featured distributions. Pattern
Recogn. 29(1), 51-59 (1996)
L Wang, D-C He, Texture classification using texture spectrum. Pattern
Recogn. 23(8), 905-910 (1990)
23. M Pietikdinen, T Ojala, Z Xu, Rotation-invariant texture classification using
feature distributions. Pattern Recogn. 33(1), 43-52 (2000)

experiment.

group local features into two categories in order to reflect
the contrast between local and the global intensities. The
improvement of the proposed CCLBP/CCLTP methods 11.
over LBP and LTP as well as two improved LBP fea-

tures (SLBP and CLBP) is first demonstrated on two 5
standard texture databases, and then CCLTP is further
enhanced by augmenting a simple yet effective blocking
scheme for infrared imagery, leading to sCCLTP which
is evaluated against sLTP (block-based LTP) and four
SRC-based methods on an infrared ATR database. Experi- '+
mental results show that sSCCLTP outperforms SRC-based
methods and sLTP in terms of both recognition accuracy
and pose estimation. It is worth mentioning that the pro-
posed CCP technique can be applied to nearly all existing
LBP features to improve feature discriminantability. 17.
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