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Abstract

Principle orientation

Multiscale-based texture retrieval algorithms use low-dimensional feature sets in general. However, they do not have
as good retrieval performances as those of the state-of-the-art techniques in the literature. The main motivation of
this study is to use low-dimensional multiscale features to provide comparable retrieval performances with the
state-of-the-art techniques. The proposed features of this study are low-dimensional, robust against rotation, and

have better performance than the earlier multiresolution-based algorithms and the state-of-the-art techniques with
low-dimensional feature sets. They are obtained through curvelet transformation and have considerably small
dimensions. The rotation invariance is provided by applying a novel principal orientation alignment based on cross
energies of adjacent curvelet blocks. The curvelet block pair with the highest cross energy is marked as the principle
orientation, and the rest of the blocks are cycle-shifted around the principle orientation. Two separate rotation-invariant
feature vectors are proposed and evaluated in this study. The first feature vector has 84 elements and contains the
mean and standard deviation of curvelet blocks at each angle together with a weighting factor based on the spatial
support of the curvelet coefficients. The second feature vector has 840 elements and contains the kernel density
estimation (KDE) of curvelet blocks at each angle. The first and the second feature vectors are used in the classification
of textures based on nearest neighbor algorithm with Euclidian and Kullback-Leibler distance measures, respectively.
The proposed method is evaluated on well-known databases such as, Brodatz, TC10, TC12-t184, and TC12-horizon of
Outex, UIUCTex, and KTH-TIPS. The best performance is obtained for kernel density feature vector. Mean and standard
deviation feature vector also provides similar performance and has less complexity due to its smaller feature dimension.
The results are reported as both precision-recall curves and classification rates and compared with the existing
state-of-the-art texture retrieval techniques. It is shown through several experiments that the proposed
rotation-invariant feature vectors outperform earlier multiresolution-based ones and provide comparable
performances with the rest of the literature even though they have considerably small dimensions.
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1. Introduction

Texture classification and retrieval has been investigated
by many researchers. Recognizing textures is essential in
content-based image retrieval (CBIR) applications since
images are actually constructed of many texture combi-
nations. Unfortunately, textures rarely exist in a fixed
orientation and scale. Hence, defining rotation-invariant
features is important and rotation invariance is a hot
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research topic since 1980s. In one of the early works [1],
rotation-invariant matched filters are used for rotation-
invariant pattern recognition. The authors of [2] applied a
model-based approach, in which they used statistical fea-
tures of textures for classification. Using the statistics of
spatial features as in [1,2] may provide good results, how-
ever, it may include great interclass variations depending
on the recording conditions of textures such as contrast,
illumination, etc. Hence, multiscale techniques which have
the capability of representing the feature in one or more
resolution with lesser effect of these recording conditions

© 2014 Cavusogluy; licensee Springer. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.


mailto:bulent.cavusoglu@gmail.com
http://creativecommons.org/licenses/by/2.0

Cavusoglu EURASIP Journal on Image and Video Processing 2014, 2014:22

http://jivp.eurasipjournals.com/content/2014/1/22

have been used since 1990s. The main idea behind multi-
scale analysis in image processing is to provide the views
of the same image in different resolutions to enhance the
feature that can be more apparent in a specific resolution.
In this way, it is easier to analyze or classify the image
based on certain properties and certain scales. Nonstation-
ary structures such as images require their multiscale
transforms to be well localized both in time and fre-
quency. However, according to Heisenberg's uncertainty
principle, it is impossible to have localization both in time
and frequency simultaneously. In other words, one cannot
find a particular frequency to represent a certain point in
time. Hence, frequency localizations require the time to
be defined over a particular time window. It is also im-
portant that these localizations can be performed over or-
thogonal basis of tight frames. Wavelets [3] can address all
these requirements. They are generated from one mother
wavelet through translations and scalings. In one of the
earliest works [4], the authors used statistics of Gabor
wavelet as the features over Brodatz database while per-
forming multiscale analysis for texture retrieval. However,
the effects of rotations are not considered in this work.
Another drawback of this work is such that wavelet trans-
form is able to capture singularities around a point. The
textures which have curvature-like structures may not
provide good results by using the wavelet transform.
Other transforms such as ridgelet [5] which extends wave-
lets to capture singularities along a line and curvelets [6,7]
which can capture singularities around a curve are pro-
posed to overcome such issues. One promising result of
curvelet is that it can capture the edge around a curve in
terms of very few coefficients. This creates new opportun-
ities in the area of image processing. Curvelets with their
nice features are also used in texture retrieval [8]. How-
ever, rotation invariance is not considered in [8]. Rotation
invariance in the multiscale framework was first investi-
gated in [9] for Gabor wavelet features. In a similar work,
the authors used Gaussianized steerable pyramids for pro-
viding rotation-invariant features in [10]. Wavelet-based
rotation invariance is introduced in [11] using rotated
complex wavelet filters and in [12] using wavelet-based
hidden Markov trees. These works show the effectiveness
of their methods on the average performance. The details
of their work also reveal that the textures with curvature-
like structures perform worse than other textures. Hence,
curvelet is a good alternative to overcome such issues.
However, the authors of [8] realized that curvelet is actu-
ally very orientation-dependent and sensitive to rotation.
Then, they provided rotation-invariant curvelet features in
[13,14] based on comparison of energies of curvelet coeffi-
cients and realigning the curvelet blocks by cycle-shifting
them with reference to the highest energy curvelet block.
They showed that this scheme creates great advantage
when compared to rotation-variant curvelet features. They

Page 2 of 19

also showed that their features provide better results when
compared to wavelets and rotation-invariant Gabor filters.
However, the authors of [15] indicated that the provided
method of [13,14] does not work for all the images, and
they proposed another method based on modeling the
curvelet coefficients as generalized Gaussian distributions
(GGD) and then providing a distance measure by using
Kullback-Leibler divergence between the statistical param-
eters of curvelets. It should be noted that they also use the
highest energy curvelet block for circular shifting with the
exception that they use only one reference point instead
of using different reference points for each scale. This
approach may provide good fits for higher scales of cur-
velet coefficients; however, lower levels of curvelet coef-
ficients tend to not behave as Gaussian. In this study,
we investigate the distributions of curvelet coefficients
and use kernel density estimation (KDE) which provides
better fits for lower scales as well. Although the com-
plexity increases with density estimations, better results
are obtained. There are also some latest and compre-
hensive works in texture retrieval trying to address both
the scale invariance and rotation invariance issues. For
instance in [16], Harris-Laplace detector [17] is used for
salient region detection and then scale-invariant feature
transformation (SIFT) [18] is used in order to provide
scale invariance and rotation-invariant feature trans-
formation (RIFT) [19] is used for rotation invariance.
The results are pretty good; however, feature vector
sizes are considerably large, 5,120 (40 x 128) for SIFT
descriptor with earth mover distance (EMD). In [20],
local binary pattern (LBP) variance is used for rotation
invariance, in which two principle orientations are found
and local binary pattern variances are used for texture re-
trieval. The feature dimensions of [20] with feature reduc-
tion are in the range of 1,000 s. In [21], both the scale and
rotation variance are considered together using LBP, and
it provides promising results again with feature sizes
around LBP variants.

The main motivation of this study is to provide good
retrieval performance with low-dimensional feature sets.
The multiresolution structure in the literature has low-
dimensional feature sets but not in the desired range of
performances. In this study, we provide solutions for
low-dimensional rotation-invariant multiresolution fea-
tures with good retrieval performances by using curvelet
transformation. First, a novel method is introduced for
obtaining rotation-invariant curvelet features. The pro-
posed method is based on cross energy principle. Second,
the low-dimensional feature set based on mean and stand-
ard deviation of curvelet coefficients, used in the literature
[13,14], is modified to reflect its support region. The size of
this feature vector is 84, and the increase in the perform-
ance by this modification is also shown. Third, we use ker-
nel density estimate, a nonparametric density estimation,
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of curvelet coefficients to estimate the densities and use
symmetric Kullback-Leibler distance as the distance meas-
ure. Although this feature set has higher dimension, 840, it
provides better results and still remains in the low com-
plexity region when compared with the other methods in
the literature. It is shown through experiments that the re-
sults of the proposed feature sets are better than those of
the state-of-the-art techniques in low dimension and
comparable in medium dimension feature sets. The
organization of the paper is as follows. First, multireso-
lution transforms are introduced in Section 2. Second,
Section 3 explains the proposed texture retrieval scheme.
Third, the proposed rotation invariance method is pro-
vided in Section 4, and classification is explained in
Section 5. Fourth, the experimental results are presented
in Section 6. Then, Section 7 includes discussions and
comparisons with state-of-the-art texture retrieval tech-
niques. Finally, Section 8 includes conclusions.

2. Background

Multiscale transforms are widely used in CBIR and tex-
ture retrieval. Hence, in order to better appreciate and
understand the multiscale transforms, especially the cur-
velet transform, we briefly define wavelets, ridgelets, and
curvelet transforms in this section.

2.1. Wavelets

Given that ¥ ,(x, y) is a wavelet function for scale s and
translation 1, wavelet transform of a function flx, y) and
the inverse transform can be obtained by using Equa-
tions 1 and 2, respectively.

Wi(s,t) = [ f(x,9)¥; ,(x,y)dxdy (1)

S(x,y) = [Wy(s, 1)W1 (,y)drds (2)

where ¥ is a two-dimensional mother wavelet. Other
wavelets can be generated by scaling the mother wavelet
function by s and shifting in the x or y direction by z, or
1,, respectively, as given in Equation 3. In wavelet trans-
form, only the transformation framework is outlined and
the wavelet functions are left to the choice of the de-
signer. Commonly used Mexican hat wavelet is depicted
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in Figure 1. The isometric shape of the wavelet can be
seen from the figure. The projection of the function of
interest (i.e., an image) to this isometric wavelet results
in capturing point singularities very well. However, the
singularities in images are generally continuous around a
line or a curve. In order to provide a better solution for
the detection of line-shaped geometries, the ridgelets are
proposed.

1 X—Ty Y-T
Wz, (%,9) = ﬁ‘y(T,Ty) (3)

2.2. Ridgelets

Ridgelets are proposed for effectively describing aniso-
tropic elements such as lines or curves with small number
of coefficients. In order to have the ability of detecting
lines or curves, it is necessary to define functions with dir-
ectional geometry. Such a function is constant along lines
of xcos(0) + ysin(f). A sample ridgelet is given in Figure 2.
The ridgelet is obtained by scaling and translating the
mother wavelet function ¥(x, y). The ridgelet in Equation 4
is defined for angle 6, scale s, and translation 7. Ridgelets
can be used to identify the singularities along lines.

(x cos(6) + ysin(G)—r)

1
‘Ijs,rﬂ(xay) = %‘Ij

(4)

N

Using the ridgelet functions defined in Equations 4, the
ridgelet transform and inverse ridgelet transform can be
performed using Equations 5 and 6, respectively.

% f(5.7.0) =j j F9)Y o, y)ddy (5)

JT

f(x) :j

oo

ds
j R f(s,7,0)¥sr0(%,9) 5 dr
0

do

4r

(6)

§ —8

2.3. Curvelets

Curvelet transformation enables the detection of singu-
larities along a curvature, while the ridgelets are not
sufficient enough for the identification of curves due to

a

Figure 1 Mexican hat wavelet. (a) 3D view. (b) Top view.
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a

Figure 2 Mexican hat-based ridgelet. (a) 3D view. (b) Top view.

their line-directional geometry. Basically, a curvelet
function is also a wavelet function which is rotated,
scaled, and translated for different angles, scales, and
shifts, respectively. A curvelet function can also be de-
fined as a ridgelet function with various rotation angles.
Figure 3 shows a curvelet function for specific scale, ro-
tation, and translation. If the translations on Z* are de-
fined by k = (ky, ky), rotations are given by 6,=27.27°.¢
where € =0, 1,...., 2° such that 0 < 6, < 27, parabolic scal-
ing matrix D; is given by Equation 7 and rotation oper-
ator is given by Equation 8, then the curvelet function is
defined by Equation 9.

B 223 0

=% 7] @
| cosBe  sinO

Ro, = {—sin&e C0595:| (8)

k
W, (x,y) = 252w, ( DR x]—[ 1
(%, y) ( o [y k)

)

where ¥ is a mother wavelet function. Based on the
above definitions, the curvelet coefficient is given by
Equation 10.

Cloi ) = | | £ 9)cacy (10

A graphical explanation of the curvelet can be depicted
as in Figure 4. Here, the image is represented by a red
curve over which the curvelet transform is calculated, and
the blue line in black ovals represents the cross-sectional
magnitude of curvelet operator. The dot product of the
line, originally the image, and the curvelet function be-
comes maximum when the image and the signal are
aligned, in other words, have the maximum number of
common points (pixels). On the other end, the curvelet co-
efficients become zero if the two do not cross each other
for any rotational and/or translational change. Hence, it is
possible to follow the orientation and location of the
image, red line, by just determining the maximum of cur-
velet coefficients. Due to this efficient property, it is pos-
sible to use curvelets for edge detection, object detection,

a

I j
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c

Figure 3 A curvelet function for specific scale, rotation, and translation. (a) 3D view of a Mexican hat based curvelet. (b) Mexican hat
curvelet, top view. (c) 3D view of a Meyer-based curvelet. (d) Meyer curvelet, top view.
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Figure 4 Graphical view of curvelet operation.

noise removal, texture identification, etc. Since orientation
is an important feature of curvelet transformation, curvelet
coefficients may significantly vary with rotation. Hence, the
direct use of curvelet coefficients as the image features
introduce rotation dependency and overall texture clas-
sification performance may deteriorate if rotated replica
of a texture exists in the database. So, it is necessary to
utilize curvelet coefficients in a rotation-invariant man-
ner to overcome this downside.
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3. Proposed texture retrieval scheme

The proposed texture retrieval scheme is depicted in
Figure 5. In the proposed scheme, first, the query and
training images are selected from the image database.
Second, curvelet transform is applied to both sets of im-
ages. Third, principle orientation (PO) of each image is
detected by analyzing the cross energies of the curvelet
coefficients. Then, the extracted features are realigned by
cycle-shifting all the features around the PO. Finally, PO-
aligned features are compared for classification. Each step
of the algorithm is explained in the following subsections.

3.1. Feature extraction

Broad range of feature sets are used in the literature such
as entropy, energy, first- and second-order statistics, and
many more. In this study, we propose and evaluate two
different feature vectors. The first one is called as mean
and standard deviation feature vector, F,,, and the second
one is called as kernel density feature vector, Fxpg. F, in-
cludes the mean and standard deviation of curvelet coeffi-
cients, which belong to different levels and angles, scaled
with a support coefficient. Similar features previously used
in [13,14] without a scaling factor. Using only the first-
and second-order statistics may describe the distribution
fully only if the distribution is Gaussian. However, as indi-
cated in earlier works [15], the Gaussian probability dens-
ity function (PDF) may not be a perfect fit for curvelet
data. Moreover, the curvelet coefficients at lower levels de-
viate from the Gaussian distribution as it can be seen from
Figure 6, which presents second level curvelet coefficients

' Image Database

Query
images

Curvelet
Transform

Feature P_nncple
’ rientation
Extraction

Detection

Principle Orientation

Aligned Feature

Training
images

Curvelet
Transform

Principle
Orientation

Feature
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Principle Orientation
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Figure 5 The proposed texture retrieval scheme.
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Figure 6 Non-Gaussian behavior. The Outex_TC12_t184 image of 000649.ras (left), the histogram of curvelet coefficients (right) at 2nd level,
and angle 371/4 and corresponding Gaussian fit (green) and Kernel density estimation (red).
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of an image. Hence, kernel density feature, Fyxpg, which
estimates the PDF of curvelet coefficients using KDE, is
also proposed. It is expected to obtain better classification
results when the PDF of curvelet coefficients is used since
it represents full statistics. An alignment step is needed in
both approaches to provide rotation invariance. Before go-
ing into the details of the alignment step, the feature vec-
tors of this study are defined first.

3.2. Mean standard deviation feature vector F,,

A feature vector which includes the first- and second-
order statistics of curvelet coefficients for five levels is
given by Equation 11.

F/m = [/41,1a 011,421,021, 422,022; ----- yH28,028, U3 1,
03,1, 32,032, -ennve #3,16,03165 41,041, g 2,

where p;, and o;, are the mean and standard deviation of
curvelet coefficients at scale s and angle ¢, respectively. It
should be noted that it is enough to consider only the first
half plane of the curvelet coefficients since curvelet trans-
form is even symmetric around 7. This feature vector is
depicted for 5 scales and includes 84 elements. The fea-
ture vector of Equation 11 is used in [13] as well. Since
the feature vector includes robust features such as the
first- and second-order statistics, it can be used for com-
parison purposes. As it can be seen from Figure 7, the
number of wedges doubles every other scale going from
the lower to the higher frequencies. This means that the
spatial support is halved every other scale as well. In other
words, curvelet transformation is applied over a narrower
region going from the lower to the higher scales. A larger
special support region means that it is more likely to have
dissimilarities. Thus, the statistics carried out from dis-

42; oo Ha16 4,16, 51, 05,1] o . o .
e 14162 e similarities should be penalized. A similar approach is also
1 p pp
(11) used in [22], where the authors use spatially obtained
22
) 52
2]
o )i
o (
® ( (
a b
Figure 7 Curvelet transform. (a) Frequency support. (b) Spatial support.
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features for classification of various scene categories. In
order to reflect the size of the spatial support, we apply a
weighting factor, a;, given by Equation 12 and obtain the
scaled mean-standard deviation feature vector, F,,, given
by Equation 13.

1 , =1
as = {Zceil(s/Z) s>1 } (12)
Fuo = [a1(py1,011), @2(Hy 150215 Hy 9, 022, oo
Hag) 0'2-,8)7 ey “N(MN,U O'N,l)]
(13)

where N is the total number of scales and s is the scale.
The ‘ceil’ function rounds up the number to the nearest
integer. If there are five scales, then the corresponding
feature vector is given by the following:

_ [0 1
F/w - [2 (ﬂl,l,al,l),z (ﬂ2,170'2,17/’£2,2,0'2‘27 -~'7/’l2,8302,8)a
2 2
2%(M31,03,1,H32, 032, - H316:03,16), 2" (Ha1;

04.1,M42:0425--+, Ky 16 0416); 23(/45,17 05.1)]
(14)

The images we use are either 128 x 128 or converted
to 128 x 128 in the preprocessing stage during our work,
and the feature vector used in this study has five scales.
Considering 8 angles at 2nd, 16 angles at 3rd and 4th,
and 1 for 1st and 5th scales, the size of the feature vec-
toris (1+8+16+16+1)x2=84.

3.3. Kernel density feature vector Fypg

Probability density of curvelet coefficients is very close
to normal distribution. However, earlier works have
showed that the coefficients may not exactly be modeled
by using a normal PDF. It is shown in [15] that modeling
curvelet coefficients by GGD provides a better fit than
that of the normal PDF. In this study, we use a nonpara-
metric approach for estimating the density of curvelet
coefficients due to the fact the Gaussianity assumption
gets even weaker for lower levels. One may notice non-
Gaussian behavior by observing Figure 6. Nonparametric
estimation is widely used when parametric modeling of
the distribution becomes infeasible. We obtain the pro-
posed kernel density feature vector, Fypg, through KDE.
It is given by Equation 15.

Fxpe = [f11:/21: /22 28 31 320
1316 S a1 S a2 - Sa16:S5.1]

where each element of Fypg, which represents the density
of curvelet coefficients at a particular scale and angle, is
estimated through KDE. The feature vector of Equation 15
is given for five scales and can be extended to include
higher number of scales. In KDE, first, a kernel function is

(15)
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defined [23]. Then, using # data points (X3, X5, ..., X,,) of a
random variable x, the kernel estimator for PDF p(x) is
given by Equation 16:

pl) = Z x(50)

where K is the kernel function and # is the smoothing
parameter called bandwidth. The kernel function used in
this study is normal kernel with zero mean and unity
variance. Each kernel is placed on the data points and
normalized over the data to obtain the kernel estimation.
A more depth analysis on KDE is given in [23]. The
histogram of the curvelet coefficients, corresponding
Gaussian fit, and KDE is shown in Figure 6. As it can be
seen from the figure, KDE provides much better fit than
Gaussian. The non-Gaussian structure of curvelet coeffi-
cients can be observed for second-level coefficients of a
sample image given in Figure 6. We have evaluated the
kernel density at 20 bins, resulting in a feature vector di-
mension of 840 (42 x 20).

(16)

4. Rotation invariance

4.1. Effect of rotation on curvelet transform

Following the curvelet transformation, curvelet coeffi-
cients for different orientations and specific scales are
obtained. Hence, the curvelet coefficients reflect the ef-
fect of the rotation. Let us consider a particular scale s
with rotation angles represented by {6;, 0,......... , 6,}. For
each rotation angle, there exists a curvelet coefficient
matrix. The elements of this matrix are obtained follow-
ing a translation in x and y direction. Curvelet trans-
formation of two different images and their rotated
versions are given in Figure 8. These images are in the
size of 128 x 128 and have 5 scales in curvelet domain.
Four of those scales are shown in Figure 8. The fifth
scale is the highest resolution and is not divided into an-
gles. The most inner box and the most outer box repre-
sent the lowest and highest resolutions, respectively. We
can follow that the rotation is captured in all scales. It is
difficult to notice the rotation by just looking at the cur-
velet domain image. However, high energy areas are
really noticeable. The authors of [13,14] realized this fea-
ture and proposed to synchronize them by aligning the
highest energy curvelet coefficients while cycle-shifting
the others not to change the relative order among all.
Since the curvelet coefficients are arranged in a cyclic
fashion, applying this idea gave promising results. How-
ever, the obvious energy compaction is not valid for all
images as the authors of [15] pointed out. It is also pos-
sible that the high energy area may exist at some other
location in the rotated image after curvelet transform-
ation is applied, especially in the figures where a nice
uniform texture does not exist.
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Figure 8 Curvelet transformations of some textures. (a) Original
image (left) and its curvelet coefficients (right). (b) 60° rotated image
(left) and its curvelet coefficients (right). (c) Original image (left) and
its curvelet coefficients (right). (d) 30° rotated image (left) and its
curvelet coefficients (right).
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This nonuniformity can be observed in Figure 8c,d. In
order to overcome this issue, first, we propose to find
the most robust area of the image against rotation based
on curvelet transform and mark that point as principle
orientation; then perform an alignment by cycle-shifting
the feature vector with reference to principle orientation.
In order to find the least affected rotation angle, we

Page 8 of 19

perform cross-correlation check for two adjacent curve-
let coefficients at each scale.

4.2. Principle orientation detection

In order to minimize the effect of rotation in the texture,
it is necessary to find a reference point, namely, principle
orientation, so that all feature vectors can be synchronized
by reordering the features. The rotation dependence is
expected to be eliminated after the synchronization. The
authors of [13,14] suggest a synchronization routine by
means of the curvelet block with the maximum energy.
We propose to use cross energy of adjacent curvelet
blocks for the principle orientation detection, and the pro-
cedure is explained in the following subsection.

4.3. Cross-correlation and cross energy of curvelet coeffi-
cients at adjacent angles

The cross-correlation of two adjacent curvelet blocks for
angles ¢ and € + 1 is given as follows:

Rie(my,my) = ZZ (|C(S,€,k1,k2) |.|C(s,€+ 1,k
ko K

+n1,ky + 1’12) | )
(17)

The cross-correlation function actually reflects the
cross energies for different lags. In obtaining the latter
curvelet coefficient on the right hand side of Equation 17,
only a rotation is applied to curvelet operator while the
image stands still. Also, as it can be seen from Equation 9
that this rotation operator is not supposed to cause a lag
in the latter coefficient. Hence, it is expected to get the
maximum value of cross-correlation function at Oth lag,
that is R ¢(0, 0). As a result, Equation 17 can be used to
detect the highest cross-energy blocks. Another view
can be expressed as follows: by analyzing the adjacent
blocks of curvelet transform in terms of their cross-
correlation quantities, one may find the orientation for
each scale which is the least affected by rotation. In
other words, getting a high correlation between two ad-
jacent blocks means that the directional change has little
effect on curvelet coefficients for the specific two orien-
tations at hand. In short, if curvelet coefficients of two
adjacent blocks of an image at specific orientation give
the highest values, they will also be the ones with the
highest correlation values for the rotated version of ori-
ginal texture. The proposed method is structured based
on this approach. Since rotation of curvelet operator and
rotation of image has the same effect, the observed angle
between the curvelet operator and the image for the
highest correlation value remains fixed. Based on this
principle, we determine the fixed angle by searching for
the highest cross correlation and take the first of the
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Figure 9 Image D1 of Brodatz database.

highest cross-energy (correlated) blocks as the principle
block (orientation) and then cycle-shift all the coeffi-
cients in reference to the principle orientation. Hence,
this operation provides an alignment based on the high-
est cross-energy principle. Once the cross-correlation
functions are obtained for all scales except the coarsest
and finest due to the fact that there is only one coefficient
matrix for them, the curvelet coefficients are aligned with
reference to the highest Oth lag value of cross-correlations
in each scale. The dimension mismatch is generally the
case faced for two coefficient matrices of adjacent orienta-
tions. If there are not enough coefficients to match the
larger sized coefficient block, then the smaller sized coeffi-
cient block is padded with zero coefficients in order to
overcome the dimension mismatch problem. This zero-
filling solves the dimension mismatch problem and does
not affect the cross energy.
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4.3. Closer look on principle orientation alignment based
on cross energy

In this subsection, we outline some examples to better
understand the contribution of this study. In the first ex-
ample, we consider an image taken from the Brodatz data-
base as shown in Figure 9. The corresponding curvelet
coefficients of this image and its 30° and 60° rotated ver-
sions are given in Figure 10. The yellow boxes on each
scale show the principle orientations obtained by the pro-
posed algorithm. Similarly, Figure 11 shows the same
curvelet transforms with yellow boxes representing the
reference points based on the algorithm of [13]. A close
look immediately reveals that both algorithms have com-
mon reference points. But it can also be observed that the
proposed algorithm captures the boxes where orientation
at each scale is the same, whereas the algorithm of [13]
may not detect the correct orientation at the scale 2 for
this particular example. This is due to the fact that the
texture of this figure does not have a uniform pattern, and
rotation may cause the curvelet transform to capture the
most dominant edges for that orientation. Since the pro-
posed algorithm focuses on the amount of change in the
rotation, it manages to capture the correct orientation at
each scale.

In the second example, we consider the image ‘000480.
ras’ of Outex TC12_t184 database and its rotated image of
‘000649.ras’. The images and their corresponding kernel
density estimations are given in Figure 12. As can be ob-
served from the figure, coefficients of right column are
cycle-shifted around the highest cross-energy coefficient
block, second from the top and highlighted by a bold
frame. As a result, this coefficient block, level =2 and
angular parameter = 2, is reordered (cycle-shifted) in a
way that this set gets angular parameter value of 1 (the
one at the top of the middle column) and all the others
move into the position of prior angular parameter in a
cyclic manner.

It should also be noted that the curvelet coefficients of
unrotated and rotated images show some differences

a
=

.

L]

Figure 10 Reference rotation points marked by yellow boxes based on the proposed principle orientation. (a) 0° (no rotation).

(b) 30° rotation. (c) 60° rotation.
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rotation. (c) 60° rotation.
A\

Figure 11 Reference rotation points marked by yellow boxes based on the rotation invariance of [13]. (a) 0° (no rotation). (b) 30°

even after principle orientation alignment. This can also
be observed by comparing the first and second columns
of Figure 12. This is due to the fact that the curvelet co-
efficients of these images may be similar; however, it is
hardly likely that they will be the same. Hence, the pur-
pose of the alignment is to make the curvelet coeftfi-
cients of two images comparable as much as possible.

4.5. PO-aligned feature vectors
The mean standard deviation, F,; and kernel density,
Fype, feature vectors are aligned according to principle
orientation, following the principle orientation detection.
The aligned feature vectors are cycle-shifted versions of
the initial ones. The PO-aligned mean-standard deviation
feature vector and kernel density feature vector are de-
noted as F;? and F}2;, respectively. The rotation-invariant
mean-standard deviation feature vector without scaling,
F/;’EO, is also used in our simulations for comparison pur-
poses. The proposed PO-aligned feature vectors are used
in the classification process in this study.

5. Classification

The classification is performed based on nearest neigh-
bor (NN) classifier. In NN, the query image is compared
against the training images of all the classes and the
image is assigned to the class which has the minimum
distance with. Separate distance measures are used in
this study for each proposed feature vector. Euclidian
distance is used with the mean and standard deviation
feature vector and Kullback-Leibler distance measure
with kernel density feature vector.

5.1. Distance measures

Euclidian distance

The PO-aligned feature vectors of training and query
images are compared to find the best match based on
Euclidian distance measure. The Euclidian distance, d;;",

between the ith query image and the jth database image
is calculated by Equation 18.

2 T
euc _ PO PO PO PO .o
(d’7 ) - (Pi,uo_]‘:j,ﬂo) (Fi,ﬂo_l:j,ﬂo) ) 7]

where Ff,?a and F}?/?U are the feature vector of query image

(ith image of the database) and the training image (the fea-
ture vector of the jth database image), respectively.

(18)

Symmetric Kullback-Leibler distance

Kullback-Leibler divergence is a common method to
measure the distance between two PDFs and is given by
Equation 19:

dyy = | p@)In %) dx

. KL . . KL .. .
Since d,,, is not necessarily equal to d,,,, it is more

(19)

appropriate to use symmetric Kullback-Leibler (SKL)
distance, given by Equation 20;

3= ] (g s+ 5 7 n (55
(20)

The SKL distance between the kernel density feature
vectors of query image, FE%DE, and the training images,

F}TI?DE is then given by Equation 21, in which # is the di-

mension of the feature vector.

n

dSKoL o = § SK(I; o

P P — P P

F; xoe-Fj ke 1 Fixoe(m).F j.KDE
m=

()2 1% (21)

6. Experimental results

The proposed algorithm is evaluated over various data-
bases, Brodatz [24], Outex TC10 [25], Outex TCI12-
horizon [25], Outex TC12-t184 [25], KTH-TIPS [26],
and UIUCTex [19]. The setup for each database is as
follows: 100 simulations are run for each database, and
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Outex_TC12_t184
image:000480.ras

Outex_TC12_t184
image:000649.ras
After Rotation inv.

Outex_TC12_t184
image:000649.ras
Before rotation inv.
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Figure 12 The effect of the proposed rotation invariance. Unrotated figure (left column), rotated figure (middle column) with PO alignment,
and rotated figure without PO alignment (right column).
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average precision-recall and classification performances
are reported for all the simulation setups.

512 image into 16 nonoverlapping 128 x 128
regions; then, 12 rotated test images are obtained
for multiple of 30° rotations. The reason for 30°
rotations is to obtain results, comparable with [24]
which uses the same database with the same setup.
A database of 21,504 images (112 x 16 x 12) is
constructed in this way. In this setup, each class
includes 192 images.

(d) Outex TC10 database: The database is proposed in
[25] and includes 24 classes each with 180 images. The
images are recorded under incandescent (inca)
illumination. Each class consists of 20 non-overlapping
portions of the same texture with 9 different
orientations (0, 5, 10, 15, 30, 45, 60, 75, 90). The

(a) Training images: They are selected randomly from
each class of each database. Number of training
images is varied from 10 to 70 in increments of
10 s. The results are reported separately for various
numbers of training images.

(b) Query images: Training images are excluded from
the database, and the remaining images are used
as queries. The average classification and
precision-recall results are reported.

(c) Brodatz database: The database is proposed in [24]
and includes 112 classes, each with 192 images. In

order to create large enough database with
translations and rotations, first nonrotated test
images are created by dividing each original 512 x

database includes a total of 4,320 images (24 x 20 x 9).
(e) Outex TC12-horizon database: The database is
proposed in [25] and includes 24 classes and 180

Precision
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Figure 13 Precision-recall curves. (a) Brodatz. (b) TC-10. (c) TC12-t184. (d) TC12-horizon. (e) UIUCTex. (f) KTH-TIPS. Comparisons for Ff9 (red),
7Y (blue), F;ﬁo (green), F'*! (black), Wavelet (magenta) and rotation-variant curvelet (yellow) are included.
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Figure 14 Precision-recall curve for D1 image of the Brodatz database.

J

images for each class. The same setup of Outex
TC10 database is used except that the images are
recorded under horizon (horizon sunlight)
illumination.

(f) Outex TC12-t184 database: The database is
proposed in [25] and includes 24 classes and 180
images for each class. Same setup is used as Outex
TC10 database except that the images are recorded
under t184 (fluorescent 184) illumination.

(g) KTH-TIPS database: The database is proposed in
[26] and includes 10 classes and 81 images for each
class. The images are recorded under varying
illumination, pose, and scale. The database includes
total of 810 images (10 x 81).

(h) UIUCTex database: The database is proposed in
[19] and includes 25 classes and 40 images for each
class. The images include significant scale and
viewpoint variations as well as rotations. The
database includes a total of 1,000 images (25 x 40).

The experimental results are reported under two main
performance measurement categories, precision-recall
curves and classification accuracies. The studies in the

literature make use of both performance measures. In
order to make our work easily comparable with future
works as well as the literature, we have provided our re-
sults under these two categories. In order to see only the
effect of principle orientation alignment and perform-
ance of two feature vectors of this study, the results of
the proposed methods are compared generally with only
one reference from the literature. The results of [13] are
used for general comparison purposes with our results
since the authors of [13] also use curvelet features. We
make a broader comparison with the literature in the
discussion section.

6.1. Precision-recall curves
Precision is the ratio of number of relevant retrieved im-
ages to number of all retrieved images whereas recall is
the ratio of number of relevant retrieved images over
total number of relevant images in the database. The
precision-recall curves for all the databases are provided
in Figure 13. Figure 13a compares the performances of
the proposed rotation-invariant Fg3; and F, features
"PO
FW

with the feature where scaling is not used, the

W

-
-
o

|
LLYR

x

%100 precision | 82% precision

| 98% recall 9 fecall ] 98% eall
53% precision

L LR T

t s

'.-_,'a'

51% precision | 36% precision

Figure 15 Mixed classes for the query image of D1 when rotation-invariant FZS is used.
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7% recall
100% precision
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86 % precision

| 41 % recall
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Figure 16 Mixed classes for the query image of D1 when F''3 of [13] is used.

Table 1 Classification rates (%)

Classification TC10 TC12-horizon TC12-t184 KTH-TIPS Brodatz UIUCTex
Train 10 Fioe 91.94 92.06 90.24 80.70 95.39 65.63
Fo 91.15 9148 88.37 7541 92.73 65.21
F.0 89.47 8939 85.78 69.21 90.86 52.10
') 82.97 8248 7823 68.11 82.27 46.82
Train 20 Fioe 94.87 95.66 93.59 86.69 97.24 7141
Fro 94.80 95.15 9332 82.56 95.81 7036
F.0 92.83 9281 90.22 7636 94.23 57.95
'3 8872 87.94 8478 76.20 8369 5173
Train 30 Froe 96.60 96.64 95.25 8831 98.02 74.08
Fro 96.12 96.50 95.06 87.92 96.88 73.79
F.o 9462 94.46 91.91 79.57 95.72 61.81
Fi'¥ 90.77 90.99 87.39 7737 91.08 53.95
Train 40 Fioe 9753 9753 95.94 90.83 9847
Fo 96.86 97.49 95.86 8942 97.70
F.0 95.24 9541 92.85 8327 96.71
') 9258 9236 83.89 82.15 93.04
Train 50 Fioe 97.82 98.05 96.62 92.19 9891
Fro 97.60 97.82 96.46 91.10 98.05
F.0 95.90 95.99 9374 84.32 97.53
F'3 93.30 93.20 90.23 82.77 94,01
Train 60 FiSe 98.00 9840 97.20 92.84 99.04
Fro 97.73 98.22 96.92 9152 9837
F.0 9.16 96.40 94.54 84.00 97.64
F'3 94.10 93.74 91.03 83.14 94.76
Train 70 Fioe 9833 9846 97.44 93.09 99.18
Fro 98.22 98.29 97.28 92.36 98.72
F0 96.52 9644 94.86 86.00 98.10
') 94.40 9463 9179 85.64 9534

All the databases are evaluated for various (10,20,...,70) number of training images except the UIUCTex database since it only includes 40 images per class.
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Figure 17 Scale and pose variations of (a) UIUCTex and (b) KLH-TIPS databases.
.

J

algorithm of [13] represented by F [13], wavelet, and
rotation-variant features of curvelet in Brodatz database.
Since the algorithm of [13] is already better than Gabor
and ridgelet transforms and shown in detail in the litera-
ture, they are not included in this figure. As can be seen
from this figure, the performance of FLJ. is better than
that of the other methods. It should be kept in mind that
using i3, instead of FE? increases the complexity due to
the increased feature size. Hence, the better performance
against Fﬁf,) comes in the expense of complexity. The re-
sults for Outex TC10, TC12-t184, and TC12-horizon are
given in Figure 13b,c,d, respectively. It can be observed
from these figures that the proposed algorithm with the
feature vector Fp3. provides the best results followed by
the feature vector FES. Although the same performance
order is preserved for the results of UIUCTex and KTH-
TIPS, given in Figure 13e,f, respectively, a lower precision-
recall performance is observed compared to that of Outex
database. The reason for that both UIUCTex and KTH-
TIPS databases include scale and viewpoint variations
and the proposed algorithm does not perform as well

Table 2 Comparison of classification rates with KLD of
[15] for number of training images of 60 and 70

Train 60 Train 70
Classification KTH-TIPS KTH-TIPS
FiS 92.84 9840
Fo 91,52 98.22
KLD of [15] 83.60 86.90

under viewpoint and scale variations as it does for rota-
tion variations.

We now provide a more depth analysis based on the
precision-recall curve for a particular image taken from
Brodatz database. Figure 14 shows the precision-recall
curve of D1 query image of Brodatz database given in
Figure 9. As it can be followed from Figure 14, the
proposed feature vector F}:UO

provides much better precision-recall curve on this par-
ticular image. Figure 15 includes intermediate results
and gives the mixed classes that are not relevant with
the query image and the point where they are included
in the precision-recall curve. Figure 15 shows that the
first irrelevant image comes at the 26% recall and 100%
precision point. It means that 50 relevant images (192 x
0.26) are retrieved before an irrelevant image is re-
trieved. This break point can also be seen on the blue
line in Figure 14. Similarly, Figure 16 provides inter-
mediate results for the algorithm of [13]. The first irrele-
vant image is retrieved at 7% recall and 100%. It means
that 13 relevant images (192 x 0.07) are retrieved before
an irrelevant one is retrieved.

with rotation invariance

6.2. Classification rates

In this section, classification rates are provided. If the
query image is classified to its own class, then this classi-
fication is marked as true, if not, then it is marked as
false. The percentage of correctly marked ones gives the
classification rate. The training images are selected ran-
domly from each class, and then, the remaining images
are used as queries to get the classification rate. This
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Figure 18 Precision-recall comparison with KLD of [15] for Brodatz database.

rotation with feature FW

process is repeated 100 times, and the average results
are reported in Table 1 where classification rates of the
proposed feature vectors Ff3. and FES

feature vectors FP'{‘LI;O and F'® of [13] are included. As

PO
1:KDE

formance followed by F/I:(?. Brodatz database provides

and nonscaled

can be seen from the table, has the superior per-

the highest performance in terms of classification since
it only contains the rotated replica of the cropped im-
ages. Outex database provides the next best results
followed by TC12-horizon, TC10, and TC12-t184 with
slight differences. The differences among the subclasses
of Outex database are not much, and overall perform-
ance for this database is good since it also includes only
rotations and does not have scale or viewpoint varia-
tions. The UIUCTex and KTH-TIPS databases are the
ones with the worst results among all. This is due to the
fact that both databases include scale and pose variations
as can be seen from Figure 17. The proposed feature
vectors perform well for these databases as well, as can
be seen from Table 1.

Table 3 Comparison of classification rates with LBP
variants of [20] for training number of 20

Classification Feature TC10 TC12-horizon TC12-t184
dimension
Fioe 840 94.87 95.66 93.59
Fro 84 94.80 95.15 9332
FiS out of class 840 94.87 8735 86.25
Fio out of class 84 94.80 86.73 85.51
LBPYS / VAR 3 [20] 416 98.15 87.03 87.15
LBPE /VARg, [20] 160 96.66 77.98 79.25
LBPY; ;GMes [20] 13251 97.76 95.57 95.39
LBPY? GMes [20] 451 73.64 7657 7247
LBPVY; 5GMep; [20] 2211 9755 94.18 94.23
LBPVg GMepy [20] 227 7299 76.15 72.19

7. Discussion

In this section, a broader comparison with the most re-
cent and successful works in the literature is provided.
The proposed rotation-invariant texture retrieval algo-
rithm is evaluated by using the proposed PO-aligned fea-
ture vectors Ff3; and F,I:C? and observed that they really

perform well even though the feature dimensions are
considerably low compared to those of the literature. In
[15], following an energy-based cycle shift based on only
one level, GGD estimations of curvelet coefficients are
used with Kullback-Leibler distance (KLD) measure. Al-
though the size of the feature dimensions is not elabo-
rated in [15], we presume that it is close to size of F}3.
which is 840 in our case. As can be seen from Table 2,
both proposed methods outperform KLD in KTH-TIPS
database. The precision recall curve is also provided in
Figure 18 for comparison in the Brodatz database. The
superior performance of the proposed methods over
KLD can be observed from this figure.

In [20], LBP variance features provide really promising
results. We compare our results with the results of [20]

FE%E and FE(? re-

in Table 3. The classification results for
flect in-class training. That is, the training images and
the query images belong to the same class. However, the
authors of [20] used in-class training for TC10 while
they use out of class training for TCl2-horizon and
TC12-t184 for which they choose 20 images from TC10
database and use it for the queries of the other databases.
Hence, we have run the simulations for these settings as
well. ‘53 out of class’ and ‘F/I:? out of class’ reflect the re-

sults of these simulations. As can be seen from Table 3,
variants of LBP with low feature sizes perform worse than
the proposed algorithm, but for high feature sizes, they
outperform our algorithm especially in out of class classi-
fications. The main reason for this outcome is that our al-
gorithm is computationally efficient with its small feature
size, and good results of LBP come in the expense of in-
creased computational complexity.
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Table 4 Comparison of classification rates with [16] for
indicated training numbers

Classification Feature size UIUCTex KTH-TIPS Brodatz

Fio 840 7141 90.83 92.00
Flo 84 7036 89.42 90.78
HSR+LSR SIFT [16]  40x 128=5,120  98.00 92.70 94.00
HSR+LSRRIFT [16] 40x 100=4,000  96.00 86.70 89.60

Number of training images for UIUCTex, 20; KTH-TIPS, 40; Brodatz, 3.

The authors of [16] use Laplace and Harris detectors
for salient region detection. SIFT is also used for scale
invariance, and RIFT is used for rotation invariance. Al-
though the results are good, feature vector dimensions
are considerably large, 5,120 (40 x 128) for SIFT descrip-
tor with EMD. It should also be noted that support vec-
tor machine (SVM) classification, a strong classifier
requiring learning effort, is used in [16]. Since we are
not using SVM, we are not exactly able to tell how much
of the better performance is obtained due to SVM. It is
worth noting that using rotation-invariant technique
RIFT and decreasing the feature size in their work also
cause decrease in performance, and this effect can be
seen from HSR + LSR of RIFT [16] in Table 4 where our
proposed algorithm has better performance in KTH-
TIPS and Brodatz databases.

Table 5 is included for easy comparison with the litera-
ture in terms of computational load and performance.
The proposed algorithms, especially mean and standard
deviation feature vector, have small feature dimensions.
This is important as execution of the distance calcula-
tion at each comparison is proportional to the feature
size. The computational complexity based on feature
sizes are depicted as low, medium, and high in Table 5,
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and the table is arranged in an increasing complexity
manner. That is, top rows have lower complexity and
bottom rows have higher complexity. Since the compu-
tational complexity of SVM is much higher than that of
NN, SVM-based algorithms are placed at the bottom of
Table 5. The proposed FE? feature vector has quite low
dimension, 84, and it provides really good results. The
other proposed vector FF3. also provides good results
with 840 feature dimension.

Table 5 gives a comparison of the proposed algorithm
with the rest of the literature in terms of performance,
dimension, and complexity in related databases. The al-
gorithms in the top three rows are based on curvelet
transformation, which are shown to outperform earlier
multiscale-based texture classification methods. It is
clear from the table that although they have similar fea-
ture sizes and complexities with the proposed algo-
rithms, the proposed algorithms outperform all of them.
The variants of LBP proposed in [20] are given in the
table as well. It is seen that for dimension size of 160,
LBPy4*/VARg; algorithm provides worse results than
the proposed algorithms in TC12-horizon and TC12-
t184- databases but better result in TC-10 database. The
performance of the proposed algorithms are better than
VgiGMng, whose dimension size is 227, in all of the
compared databases. LBPVQ?IGMPDZ and LBP%SGMES
whose dimensions are 2,211 and 13,251, respectively,
provide better results than the proposed algorithms at a
high cost of increased feature size. The algorithms of
[16] are provided in the 10th and 11th rows. It should
be noted that their classification algorithm is based on
SVM, an algorithm with higher computational complexity.
Moreover, their feature vectors have higher dimensions

Table 5 Performance comparison of the proposed algorithms with the literature

Algorithm Feature size Comput. Class. method Better than Comparable with Worse than the
complexity of the proposed the proposed proposed
feature algorithms algorithms algorithms

1 Flo 84 Low NN - abcdef

2 i3 84 Low NN - - abcdef

3 LBPE“? /VARg 1 [20] 160 Medium NN b - cd

4 LBP\/g’ﬁGMPDz [20] 227 Medium NN - bcd

5 LBPY:% /VAR,4 3 [20] 416 Medium NN b cd -

6 LBPE’ GMes [20] 451 Medium NN - - bcd

7 KLD [15] 840 Medium NN - - ae

8 LBPV4Z ;GMpp; [20] 2211 High NN bcd - -

9 LBPYZ ;GMes [20] 13,251 High NN b,cd -

10 HSR + LSR [16] RIFT 4,000 High SVM f - ae

1 HSR + LSR [16] SIFT 5,120 High SVM aef - -

The table does not include the proposed algorithms and is ordered in the increasing complexity and feature size order (top to bottom). The databases are
represented with as follows: a, Brodatz; b, TC10, ¢, TC12-horizon; d, TC12-t184; e, KTH-TIPS; f, UIUCTex. The italicized letters indicate the databases where the

proposed methods are superior.
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than those of the proposed algorithms. Even though their
algorithm provides better results for HSR + LSR + SIFT,
the proposed algorithms outperform HSR + LSR + RIFT in
Brodatz and KTH_TIPS databases. This result is sus-
pected to arise from the deduced feature size and less sat-
isfactory performance of RIFT in scale-variant database
(KTH-TIPS). In general, the proposed algorithms of this
study outperform all of the multiscale-based texture
classification algorithms. They also outperform LBP
variants of [20] with small dimensions. The perform-
ance of the algorithm of [20] with high dimensions is
better as expected. Proposed algorithms also outper-
form the algorithms of [16] in smaller dimensions espe-
cially in rotation-variant databases.

Finally, we mention one of the latest works in the rota-
tion and scale-invariant texture retrieval published by Li
et al. [21]. They provide scale invariance by finding opti-
mal scale of each pixel. They modify Outex and Brodatz
databases to include enough scale and rotation variations
and report their results on these databases. For scale and
rotation invariance feature, they report average precision
rates around 69% for Brodatz and 60% for Outex data-
base. Since they use a modified database, including this
database will extend the scope of this study considerably,
and we are leaving the scale invariance and the compari-
son with their database as our future work.

8. Conclusions

Low-dimensional and rotation-invariant curvelet features
for multiscale texture retrieval are proposed through two
feature vectors in this study. This study is important since
it provides the best results for multiscale texture retrieval
in the literature to the best of our knowledge. Moreover,
the results are comparable with the state-of-the-art tech-
niques in low and medium feature dimension sizes. Rota-
tion invariance is provided by using the cross energies of
curvelet blocks at adjacent orientations. The orientations
with maximum cross energy are defined as the principle
orientation of an image, which is the least affected location
by rotation. The corresponding location is selected as the
reference point for the image, and the feature vector is
cycle-shifted based on this reference point. The feature
vector FE(U) has 84 elements. The other proposed feature

vector Fp9 uses KDE, and it has 840 elements. It provides
better results than FE? in the expense of increased com-
plexity. The texture retrieval results of the proposed
method are better than earlier works which make use of
other rotation-invariant curvelet features and are compar-
able with the state-of-the-art works in the literature, espe-
cially in the low and medium feature dimension ranges.
As a result, we provide a novel rotation invariance method
for curvelets and two separate feature vectors for texture
retrieval in this study. The proposed methods suggest
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highly effective discriminative power for texture retrieval.
The comparisons with the literature show the effectiveness
of the proposed algorithms since they provide good per-
formances with low complexity. Addition of scale invari-
ance for curvelet features may provide better results.
Thus, we plan to extend this study for scale-invariant fea-
tures of curvelet transform as our future work.
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