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Abstract

Sensor pattern noise (SPN) has been recognized as a reliable device fingerprint for camera source identification
(CSI) and image origin verification. However, the SPN extracted from a single image can be contaminated largely by
image content details from scene because, for example, an image edge can be much stronger than SPN and hard
to be separated. So, the identification performance is heavily dependent upon the purity of the estimated SPN. In
this paper, we propose an effective SPN predictor based on eight-neighbor context-adaptive interpolation algorithm
to suppress the effect of image scene and propose a source camera identification method with it to enhance the
receiver operating characteristic (ROC) performance of CSI. Experimental results on different image databases and on
different sizes of images show that our proposed method has the best ROC performance among all of the existing CSI
schemes, as well as the best performance in resisting mild JPEG compression, especially when the false-positive rate is
held low. Because trustworthy CSI must often be performed at low false-positive rates, these results demonstrate
that our proposed technique is better suited for use in real-world scenarios than existing techniques. However,
our proposed method needs many such as not less than 100 original images to create camera fingerprint; the
advantage of the proposed method decreases when the camera fingerprint is created with less original images.
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1. Introduction
Digital images are easy to modify and edit via image-editing
software. Image content becomes unbelievable. Using
this kind of forged image should be avoided as evidence
in a court of law, as news, as part of a medical record,
or as financial documents. There are some works focused
on image component forensics in recent years [1-3]. The
work in [3] first proposed using the imaging sensor
pattern noise (SPN) to trace back the imaging device
and solve the camera source identification (CSI) problem.
They extracted SPN from wavelet high-frequency coeffi-
cients using the wavelet-based denoising filter [4]. A
camera reference SPN is built by averaging residual
noise from multiple images taken by the same camera.
In [5], an innovative and recently introduced denoising
filter, namely, a sparse 3D transform-domain collaborative
filtering (BM3D) [6], is used to extract the SPN. This
filter is based on an enhanced sparse representation in
a transform domain. A maximum likelihood method is
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proposed in [7] to estimate the camera reference SPN.
It will be named the MLE CSI method for short in this
paper. Later, [8] proposed a more stable detection statistic,
the peak-to-correlation energy measure (PCE), to suppress
periodic noise contamination and enhance CSI perform-
ance. The authors of [9] proposed a forgery-detection
method using SPN to determine if an image is tampered.
Li [10] demonstrated that the SPN extracted from a single
image can be contaminated by image scene details and
proposed some models to attenuate the strong signal
component of noise residue. However, attenuating strong
components from scene details may also attenuate the
useful SPN components [11]. Kang et al. [11] proposed a
detection statistic correlation over circular correlation
norm (CCN) to lower the false-positive rate and a white-
camera reference SPN to enhance the ROC performance
[12]. The noise residues extracted from the original
images are whitened first and then averaged to generate
the white-camera phase reference SPN. We call it the
phase CSI method for short in the rest of this paper.
Although there have been some prior studies dedicated

to improving the performance of CSI based on SPN in
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Figure 1 Neighborhood of the center pixel to be predicted.
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recent years, an effective method to eliminate the contam-
ination of the image scene details is still lacking. In order
to reduce the impact of scene details while preserving
SPN at the same time, an edge-adaptive SPN predictor
based on a four-neighbor context-adaptive interpolation
(PCAI4) [13] was proposed and has been proved to have
improvement on CSI performance via extensive experi-
ments. This paper is an extension work of our conference
paper [13]. Because the method PCAI4 only predicts
the center pixel from its four-neighboring pixels, in this
paper, we will extend this method by making use of all
the eight-neighboring pixels and propose an edge-adaptive
SPN predictor based on eight-neighbor context-adaptive
interpolating prediction, as well as a CSI method with this
advanced predictor. We have also conducted extensive
experiments on different image datasets and reported
new results in this paper. Thanks to its adaptability to
image edge and context, the predicted SPN is much purer
and performs better for CSI. The experimental results on
different image databases show that our proposed method
can achieve the best ROC performance among all of the
existing CSI schemes on different sizes of images and has
the best performance in resisting mild JPEG compression.
The rest of this paper is organized as follows. In Section

II, we will first introduce our context-adaptive interpolat-
ing prediction algorithm. Then, an eight-neighbor SPN
predictor is proposed to improve the CSI performance. In
Section III, we evaluate the performance of our proposed
algorithm and compare its performance with state-of-
the-art CSI methods on different image databases. The
conclusion of this paper is made in Section IV.

2. Advance SPN predictor based on adaptive
interpolation
2.1 Context-adaptive interpolator
The context-adaptive interpolation (CAI) method predicts
a center pixel from its four-neighbor pixels. We will call it
the ‘CAI4’ in this paper. The SPN predictor using CAI4
[13] is based on the CAI [14] interpolation algorithm
which is adapted from the gradient-adaptive predictor
(GAP) [15]. In the CAI4 method, the local regions are
classified into four types: smooth, horizontally edged,
vertically edged, and other. A mean filter is used to estimate
the center-pixel value in smooth region; in edged regions,
the center pixel is predicted along the edge. In other
regions, a median filter is applied. Taking p to be a center-
pixel value to be predicted, and t = [n, s, e,w]T to be a vector
of its four-neighboring pixels as in Figure 1, the predicted
pixel value p ̂ using CAI4 method can be formulated as

p̂ ¼
mean tð Þ max tð Þ−min tð Þ≤20ð Þ
nþ sð Þ=2 e−wj j− n−sj j > 20ð Þ
eþ wð Þ=2 n−sj j− e−wj j > 20ð Þ
median tð Þ otherwiseð Þ :

8>><
>>:

ð1Þ
In (1), a smooth region will never be estimated as the
edged region, and the interpolation prediction in the
edged regions are adapted from the GAP [15]. The center
pixel is predicted according to different types of edge
regions, which is classified by the four-neighboring pixel
values with an empirical threshold. The threshold has little
impact on the experimental results and set to be 20
according to the former work [15].
2.2 Extending CAI4 to CAI8
The CAI4 method only predicts the center pixel from its
four-neighbor pixels because it is proposed as an adaptive
interpolation algorithm and is not aware of the other four
diagonal pixels. As we are using it to predict SPN knowing
all the neighbor pixels in Figure 1, we can extend and
enhance the CAI4 method by making use of all the
eight-neighboring pixels. We call this method ‘CAI8’ in
short form.
In CAI8 method, the local regions are classified into

six types: smooth, horizontally edged, vertically edged,
left-diagonal edge, right-diagonal edge, and others. In
the smooth region, a mean filter is used to estimate the
center pixel from the eight-neighboring pixels; in the
horizontal and vertical edge regions, the center-pixel
value is predicted along the edge as the same as CAI4.
In the diagonal-edge region, the center-pixel value is also
estimated along the corresponding edge; in other regions,
a median filter is applied. Taking p′ to be the center-pixel
value to be predicted by CAI8, t′ = [n, s, e,w, en, es,wn,ws]T

to be a vector of its eight-neighboring pixels as shown in
Figure 1, then the predicted pixel value p ̂ 0 using the CAI8
method can be formulated as follows:
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p̂′ ¼

mean t′
� �

max t′
� �

−min t′
� �

≤20
� �

nþ sð Þ=2 e−wj j− n−sj j > 20ð Þ
eþ wð Þ=2 n−sj j− e−wj j > 20ð Þ
esþ wnð Þ=2 en−wsj j− es−wnj j > 20ð Þ
enþ wsð Þ=2 es−wnj j− en−wsj j > 20ð Þ
median t′

� �
otherwiseð Þ:

8>>>>>><
>>>>>>:

ð2Þ

In (2), the center-pixel value is predicted along different
directions of the edge, including in the diagonally edged
region which is ignored by CAI4. So, the predicted result
can suppress the interference of image edge better and
has less prediction error.

2.3 Source camera identification with SPN predictor based
on CAI8
SPN can be contaminated largely by the image scene,
especially in the texture regions. Method CAI8 can predict
a center-pixel value accurately in allusion to different local
regions because it is adaptive to image edge and local con-
text. So, the difference between the predicted value and
actual value can suppress the impact of image edge better
while preserving the SPN components at the same time.
Let y = {yi | i = 0, 1, …, N-1} be the camera reference

SPN, and x = {xi} be the noise residue extracted from a
test image. For the null hypothesis, y is not the correct
camera reference SPN of the noise residue x extracted
from a test image, i. e., the test image is not taken by
the reference camera. In other words, x is a negative
sample for y. For the affirmative hypothesis, y is the
correct camera reference SPN of the noise residue x
extracted from a test image, i.e., the test image is taken
by the reference camera. In other words, x is a positive
sample for y.
In the following, we will propose a context-adaptive

SPN predictor based on CAI8, which is called PCAI8 in
short form, and a source camera identification method
with PCAI8.

(1) Firstly, we take the difference D of the predicted
value and actual value,

D ¼ I−CAI Ið Þ; ð3Þ
where CAI(⋅) means the pixel-wise CAI8 prediction as
shown in Equation 2.

(2) In order to further eliminate the impact of the
image scene and extract a more accurate camera
reference SPN, we then perform a pixel-wise adaptive
Wiener filter based on the statistics estimated from
the neighborhood of each pixel, assuming that the
SPN is a white Gaussian signal corrupted by image
content. For each pixel (i, j), the optimal predictor
for the estimated SPN is
W i; jð Þ ¼ D i; jð Þ σ2
0

σ̂ 2 i; jð Þ þ σ20
; ð4Þ

where σ ̂ 2 represents the estimated local variance for the
original noise-free image, and σ20 represents the overall
variance of the additive white Gaussian noise (AWGN) sig-
nal, i.e., the SPN here. To a large extent, the performance
of the predictor depends on the accuracy of the estimated
local variance. We use the maximum a posteriori prob-
ability (MAP) estimation to estimate the local variance as
following:

σ̂ 2 i; jð Þ ¼ max 0;
1
m2

X
p;qð Þ∈Nm

D2 p; qð Þ−σ20

0
@

1
A; ð5Þ

where m is the size of a neighborhood Nm for each pixel.
Here, we take m = 3. The overall variance of the SPN σ20
is also unknown. The detailed discussion of the choice
of the parameter σ20 can be found in [3]; the authors of
[3] found that the choice of the parameter σ20 has little
impact on the experimental results, and our experiments
also verified this point. We follow the work in [3] and
use σ20 ¼ 9 in all experiments to make sure that the pre-
dictor extracts a relatively consistent level of the SPN.
Our proposed SPN predictor PCAI8 is adaptive to dif-

ferent image edge regions according to all eight-neighbor
pixels, and the PCAI8 method is more accurate than
PCAI4 in classifying edge's area, so it is expected that the
predicted SPN has less scene noise from the original
image than PCAI4 and other denoising filters.

(3) The estimated camera reference SPN y' is obtained
by averaging all the residual noise Wk {Wk(i, j)} (the
estimated SPN from each image) extracted from the
same camera as follows:

y′ ¼

XL−1
k¼0

Wk

L
; ð6Þ

where L denotes the total number of images used for the
extraction of camera reference SPN. The residual noise
Wk(i, j) is extracted pixel-wise according to Equation 4.

(4) In order to further suppress the unwanted artifacts
caused by camera processing operations such as
color interpolation and JPEG compression blocking
artifacts, we adopt two pre-processing operations
proposed in [7] to enhance the estimated SPN before
it is used for identification. So, the final estimated
camera reference SPN y can be expressed as

y ¼ WF ZM y0ð Þð Þ; ð7Þ



Table 1 Cameras used in the experiments

Camera branda Sensor Resolution Format

Canon PS A3000 IS 1/2.3'' CCD 3,648 × 2,736 JPEG

Canon PS A610 1/1.8'' CCD 2,592 × 1,944 JPEG

Canon PS A620 1/1.8'' CCD 3,072 × 2,304 JPEG

Panasonic lumix DMC-FZ30 1/1.8'' CCD 3,264 × 2,448 JPEG

Nikon D300 23.6 × 15.8 mm CMOS 4,288 × 2,848 JPEG

Nikon D40 23.7 × 15.6 mm CCD 3,040 × 2,012 NEF

Minolta A2 2/3'' CCD 3,272 × 2,454 MRW
aCanon Inc., Tokyo, Japan; Panasonic Corp., Kadoma, Japan.
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where the ZM(⋅) operation makes y' to have zero mean
in every row and column, and the WF(⋅) operation makes
ZM(y') to have a flat frequency spectrum using the
Wiener filter in Fourier domain.

(5) Finally, calculate the detection statistic c(x, y)
between the camera reference SPN y and the noise
residue x extracted from a test image with
Equation 4. We use the detection statistic CCN to
measure the similarity between the image noise
residue x and a camera's reference SPN y. We use
CCN instead of PCE [8] because it can lower the
false-positive rate at the same true-positive rate
(please refer to [11] for details). The CCN value
c(x, y) is defined as:

c x;yð Þ ¼ xy=Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N− Aj j
X
m∉A

r2xy mð Þ
r ¼ rxy 0ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N− Aj j

X
m∉A

r2xy mð Þ
r ð8Þ
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Figure 2 The overall ROC curves on 128 × 128 image blocks in our ow
where A is a small neighbor area around zero where rxy

0ð Þ ¼ 1
N xy ¼ 1

N

XN−1

i¼0

xiyi , and |Α| is the size of A. The

size of A is chosen to be a block of 11 × 11 pixels. The
circular shift vector ym = {yi⊕m}, where the operation⊕ is
modulo N addition in ℤN. The circular cross-correlation
rxy(m) is defined as

rxy mð Þ ¼ 1
N
xym ¼ 1

N

XN−1

i¼0

xiyi⊕m: ð9Þ

In the next section, we will evaluate the CSI perform-
ance of our proposed method.

3. Experimental results
In this section, we will compare the CSI performance of
the proposed PCAI8 method with the existing state-of-
the-art methods on two different image databases. In ‘Part
A’ section, an image database built by ourselves is used. In
this database, blue sky images can be used to extract more
10-1 100
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Figure 3 The overall ROC curves on 256 × 256 image blocks in our own database.
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accurate reference patterns. In ‘Part B’ section, we use a
public image database, the ‘Dresden Image Database’
(DID) [16], which can be downloaded from the internet
[17]. Cameras in this image database cover different cam-
era brands or models and different devices of the same
camera model. We choose two of Li's models, ‘model 3’
and ‘model 5', in our experimental comparison because
they show better results according to Li's work [10].
Furthermore, all model parameters are chosen the same
as those in Li's work, and we use model 3 or model 5
to denote the image noise residue attenuated by model
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Figure 4 The overall ROC curves on 512 × 512 image blocks in our ow
3 or model 5 in our results. As a result, we compare
our PCAI8 method with the MLE method from [7],
BM3D method [5], PCAI4 method [13], phase method
[11], and Li's method [10] (i.e., model 3 and model 5).
The CSI experiments are performed on the image

block with different sizes cropped from the center of the
full-size images. Our experiments are performed in the
luminance channel of all images because the luminance
channel contains information of all the three RGB chan-
nels. In fact, experiments in the other channel are also
performed and have similar results.
C curves, 512x512
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Model3
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10-1 100

ositive rate

n database.



Table 2 The TPR of the different methods at a low FPR
of 10−3

Method Image size (pixels)

128 × 128 256 × 256 512 × 512

PCAI4 0.838 0.986 1.000

PCAI8 0.848 0.993 1.000

Phase 0.803 0.980 1.000

MLE 0.727 0.968 0.995

BM3D 0.601 0.922 0.993

Model 3 0.781 0.974 0.999

Model 5 0.716 0.969 0.998
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The detection statistic CCN is used to measure the
similarity between the image noise residue x and a cam-
era's reference SPN y for all methods. In order to make
a fair comparison, before the calculation of detection
statistic, for all four methods, we performed the same
pre-processing operations as shown in (7) on the estimated
reference PRNU/SPN y before the calculation of detection
statistic. The experiments on different image databases
demonstrate that our method always has the best per-
formance among all existing methods regardless of using
CCN, PCE, or correlation as a detection statistic. So, we
report the experimental results with detection statistic
CCN to measure the similarity between the image noise
residue x and a camera's reference SPN y for all methods.

3.1 Part A
On the first image database, we use seven different cameras
in our experiments. Table 1 shows the image format, native
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Figure 5 The overall ROC curves with JPEG QF being 90%.
resolution, and imaging sensor property of the cameras (PS
means PowerShot). All images are in JPEG format with the
highest JPEG quality factor provided by the cameras, except
in raw data format for the Nikon D40 (Shanghai, China)
and Minolta A2 (Konica, Tokyo, Japan). For each camera,
we have two sub-image datasets which are the test image
dataset and original image dataset, respectively. The ori-
ginal image dataset is used for camera reference SPN ex-
traction. It has been proved that a more accurate camera
reference SPN can be extracted by using blue sky images
[7]. So, the original images are taken on a sunny day of
the blue sky whose content is flat or near flat. The test
images are taken under a variety of environments, from
indoor furniture to outdoor sight. The images in the test
image dataset are used as test samples for CSI. The CSI
experiment is performed on the image block with different
sizes from 128 × 128 to 512 × 512. The image block is
cropped from the center of a full-size photo.
For each chosen camera, we extract the camera refer-

ence SPN using L = 100 images from the original image
dataset, 200 test images of this camera are selected as
the positive samples, and 1,200 test images of the other
six cameras (each camera is responsible for 200) are
selected as the negative samples. All the test images are
chosen randomly from the test image dataset. Totally,
we get 200 positive and 1,200 negative samples of CCN
values for each chosen camera.
To obtain the overall ROC curve, for a given detection

threshold, we count the number of true-positive decisions
and the number of false-positive decisions for each camera
and then sum them up to obtain the total number of true-
positive decisions and false-positive decisions. Then, the
rves, 512x512, JPEG90
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Figure 6 The overall ROC curves on images with size of 256 × 256 pixels.
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total true-positive rate (TPR) and total false-positive rate
(FPR) are calculated to draw the overall ROC curve.
The overall ROC curve performances of our proposed

PCAI method compared with other SPN CSI methods
are shown in Figures 2, 3 and 4. In practical applications,
it is often necessary to ensure a sufficiently low FPR;
Table 3 Cameras in the Dresden Image Database

Camera branda Device ID Image no. Resolution

Casio_EX-Z150 C0 181 3,264 × 2,448

C1 189

C2 187

C3 187

C4 181

FujiFilm_FinePixJ50 C5 210 3,264 × 2,448

C6 205

C7 215

Olympus_mju_1050SW C8 204 3,648 × 2,736

C9 209

C10 218

C11 207

C12 202

Sony_DSC-T77 C13 181 3,648 × 2,736

C14 171

C15 189

C16 184
aCasio Electronics Co., Tokyo, Japan; Fujifilm Holdings Corp., Tokyo, Japan;
Olympus Corp., Tokyo, Japan; Sony Corp., Tokyo, Japan.
therefore, the ROC performance in low FPR case is more
critical. So, the horizontal axis of all the ROC curves in
this paper is in logarithmic scale, in order to show the
detail of the ROC curves with a low FPR.
The experimental results show that the proposed PCAI8

method outperforms the others and enhances the ROC
performance of CSI for images of different sizes. The
proposed PCAI8 method, the PCAI4 method, and the
phase SPN method can achieve a 100% TPR at a low
FPR on an image block of 512 × 512 pixels in our ex-
perimental environment. From Figures 2, 3 and 4, we
also notice that both PCAI methods, including PCAI4
and PCAI8, achieve better ROC performance than
other methods because of the SPN predictor PCAI has
less scene noise residue. Compared to PCAI4, PCAI8
always achieves better performance than PCAI4, which
means that the PCAI8method can suppress the scene
noise better than PCAI4.
Table 2 shows the TPR of the different methods at a

low FPR of 10−3. From the table data, we find that the
TPR of the proposed method is always the largest
regardless of the image size. The experimental results
indicate that the proposed method raises the TPR
prominently in the case of trustworthy identification
which is with a low FPR. For example, on small image
block size of 256 × 256, the TPR of our proposed
PCAI8 method is 99.3%, the TPR of the MLE, phase,
PCAI4, BM3D, model 3, and model 5 methods is
96.8%, 98%, 98.6%, 92.2%, 97.4%, and 96.9%, respectively.
The improvement is 2.5%, 1.3%, 0.7%, 7.1%, 1.9%, and
2.5%, respectively.
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When an image is JPEG-compressed, the SPN is im-
paired at the same time, so it becomes more difficult
to use SPN for CSI. Figure 5 shows the overall ROC
curves performance on JPEG-compressed images of
512 × 512 pixels, with a quality factor (QF) of 90%. The
number of test images is the same as that mentioned
above. The results with the other sizes are not shown here
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Figure 8 The overall ROC curves on 128 × 128 image blocks in the DI
because they are also similar. The experimental results
show that the proposed PCAI8 method also has the best
performance in resisting mild JPEG compression and
achieves perfect detection.
Although camera fingerprint can be created with as

much as possible original images, sometime we cannot
have as much as 100 original images for camera finger-
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print creation. So, we also investigate the performance
when camera fingerprint is extracted using less than
100, e.g., 30, original images from the original image
dataset; the other setup is the same as Figure 3. It is ob-
served from Figure 6 that the advantage of the proposed
PCAI decreases when the camera fingerprint is extracted
using only 30 original images, but it still achieves similar
performance as the state-of-the-art MLE method.
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Figure 10 The overall ROC curves on 512 × 512 image blocks in the D
3.2 Part B
In this part, we report the experimental results on 3,320
images of 17 cameras from the Dresden Image Database.
This image database contains some images with some
special shooting environment and setting, such as a
high ISO value which results in high shooting noises. It
makes the CSI challenging on this image database. The
17 camera devices belong to four camera brands or
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Table 4 The TPR of the four methods at a low FPR of 10−3

Method Image size (pixels)

128 × 128 256 × 256 512 × 512

PCAI4 0.423 0.784 0.887

PCAI8 0.462 0.794 0.890

MLE 0.391 0.772 0.881

Phase 0.377 0.741 0.881

BM3D 0.377 0.713 0.859

Model 3 0.322 0.724 0.878

Model 5 0.268 0.661 0.858

Table 5 Computational time of the different methods

Methods Time (s)

PCAI4 0.14

PCAI8 0.22

BM3D 0.34

Phase 1.73

MLE 1.73

Model 3 1.78

Model 5 1.75
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models. Each camera model has 3 to 5 different camera
devices. The different camera devices with the same
camera model have the same in-camera processing,
such as JPEG compress and color filter array (CFA)
interpolation. Table 3 shows the information of each
device. Device ID is the unique identification for each
camera device. Image no. denotes the number of images
in the camera devices, and the resolution is the native
resolution of the camera devices.
Most settings of the experiments in this part are similar

with the ones in ‘Part A’ section. We use the luminance
channel of all the images to extract sensor pattern noises
of test images and reference SPN of each camera device.
All the image blocks are of three sizes (i.e., 128 × 128,
256 × 256, and 512 × 512 pixels) and are all cropped from
the center of full-size images. In this image database,
exactly blue sky images are not available. All the images
are ordinary scene pictures in daily life. There are about
200 images of each camera device (Table 3).
In our experiments, we use the five-fold cross-validation

method. Assume that one database contains N ×K images
taken by N cameras; each camera is responsible for K
images. Firstly, we divide the images of each camera device
into five groups averagely. In each fold, we randomly
choose one group as the test image dataset (about K/5
images for each camera), and the other four groups as
original images dataset (about K × 4/5 images for each
camera). The original image dataset is used for extracting
the camera reference SPN, and images from the test image
dataset may be used as positive test samples or negative
test samples. For each chosen camera, we extract the
camera reference SPN using its original image dataset;
the test images (about K/5 images) of this camera are
selected as the positive samples, and the test images of the
other N − 1 cameras (each camera is responsible for K/5
images) are selected as the negative samples. So, we get
K/5 CCN values of positive samples and K/5 × (N − 1)
CCN values of negative samples for each chosen camera.
After five folds, totally, we get K CCN values of positive
samples and K × (N − 1) CCN values of negative samples
for each camera. At last, the overall ROC curve is obtained
in a similar way as mentioned in ‘Part A’ section.
An obvious characteristic of this database is that some

camera devices belong to the same brand. Most of the
previous works, including the experiments in ‘Part A’ sec-
tion, only considered different camera brands. It might
lead to a problem that we cannot make a clear division
of camera source identification and camera model iden-
tification because the extracted SPN might contain part
of camera model noises, which could be regarded as
fingerprints of a special camera model. These noises
play different roles in experiments dependent on the
models of tested cameras. So, if all the tested cameras
come from different camera brands, the SPN with more
camera model noises might give a better performance
than the more accurate one which is with less camera
model noises in it. And, the results of such experiments
are not very reliable when different camera devices of
the same camera model are considered.
In order to make the experiments more convincing,

we first compare the performance between our method
and other methods in the same camera brand. Figure 7
shows the overall ROC curve performance on images of
five camera devices (device ID: C0 to C4) in Casio_EX-
Z150. We use the five-fold cross validation method in
this experiment. Only the results on 512 × 512 sizes are
showed since the results in other sizes are similar.
The experimental results show that our proposed

method has the best performance in identifying the source
of images taken by the same camera brand and model.
The proposed method can achieve a high TPR of 97% at a
low FPR of 10−3 for images with size of 512 × 512, which
means that only few images are misjudged.
In the following, we report the CSI experimental results

on the whole DID database. In plotting the overall ROC
curves on all the images in the DID database, we totally
get 3,320 CCN values of positive samples and 53,120 CCN
values of negative samples. The results with three different
image sizes are shown in Figures 8, 9 and 10.
The experimental results also show that both PCAI8 and

PCAI4 have better performance than the other methods
in identifying images of different source camera models
regardless of different image sizes. Table 4 shows the TPR
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of the different methods at a low FPR of 10−3. It shows
that the TPR of the proposed PCAI8 method is always the
largest at a low FPR. For example, on small image block of
size 128 × 128, the TPR of the PCAI8 method is 46.2%,
the TPR of the MLE, phase, PCAI4, BM3D, model 3, and
model 5 methods is 39.1%, 37.7%, 42.3%, 37.7%, 32.2%,
and 26.8%, respectively. The improvement is 7.1%, 9.5%,
3.9%, 9.5%, 14.0%, and 19.4%, respectively. The perform-
ance of PCIA8 achieves little better than that of PCAI4.
The experimental results in both ‘Part A’ and ‘Part B’

sections show that the propose method achieves better
performance for CSI whether the influence of camera
model is considered or not. In ‘Part A’ section, we com-
pare all methods on seven cameras with different camera
models in our image database. In ‘Part B’ section, we test
all methods on five camera devices with the same model
and also test all methods on 17 camera devices with the
same model or different models. All the experiments on
images with different sizes show that our proposed
method has the best ROC performance among all of the
existing CSI schemes.
The computation time to get the noise residue x from

a test image of each method with Intel® (Santa Clara,
CA, USA) Xeon®CPU E5-2603 1.80 GHz and Matlab
(MathWorks, Bangalore, India) is shown in Table 5. It is
observed that both PCAI4 and PCAI8 methods have the
best efficiency.
4 Conclusion
In this paper, we propose a source camera identification
scheme based on an eight-neighbor context-adaptive SPN
predictor to enhance the ROC performance of CSI. The
SPN predictor can suppress the effect of image content
better and lead to a more accurate SPN estimation because
of its adaptability of different image edge regions. Extensive
experiment results on different image databases and on
different sizes of images show that our proposed PCAI
method achieves the best ROC performance among all
of the state-of-the-art CSI schemes and also has the
best performance in resisting mild JPEG compression (e.g.,
with a quality factor of 90%) simultaneously, especially
when the false-positive rate is held low (e.g., Pfp = 10−3).
Because trustworthy CSI must often be performed at low
false-positive rates, these results demonstrate that our
proposed technique is better suited for use in real-world
scenarios than existing techniques. However, our proposed
method needs many such as not less than 100 original
images to create a camera fingerprint; the advantage of the
proposed method decreases when the camera fingerprint
is created with less original images.
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