
Garcia-Dopico et al. EURASIP Journal on Image and Video Processing 2014, 2014:18
http://jivp.eurasipjournals.com/content/2014/1/18

RESEARCH Open Access

Parallelization of the optical flow computation
in sequences frommoving cameras
Antonio Garcia-Dopico*, José Luis Pedraza, Manuel Nieto, Antonio Pérez, Santiago Rodríguez
and Juan Navas

Abstract

This paper presents a flexible and scalable approach to the parallelization of the computation of optical flow. This
approach is based on data parallel distribution. Images are divided into several subimages processed by a software
pipeline while respecting dependencies between computation stages. The parallelization has been implemented in
three different infrastructures: shared, distributed memory, and hybrid to show its conceptual flexibility and scalability.
A significant improvement in performance was obtained in all three cases. These versions have been used to
compute the optical flow of video sequences taken in adverse conditions, with a moving camera and natural-light
conditions, on board a conventional vehicle traveling on public roads. The parallelization adopted has been
developed from the analysis of dependencies presented by the well-known Lucas-Kanade algorithm, using a
sequential version developed at the University of Porto as the starting point.

Keywords: Optical flow; Parallelization; Cluster; MPI; Threads; Onboard camera

1 Introduction
Optical flow is an image analysis technique used to detect
motion in video sequences. The detection can be per-
formed in real time while images are being captured, or
afterwards, when they are already stored in video format.
Therefore, the optical flow works on an image sequence.
For each image of the sequence, it generates a vector at
each image pixel representing the apparent motion in the
corresponding sampling period.
To determine the apparent motion of objects in an

image, the information generated by the optical flow
and by a separate process that identifies the different
objects can be used. However, the apparent simplicity by
which the human eye interprets movement in a three-
dimensional space represents a highly complex task when
trying to emulate it with computers - even in the case of a
single motion.
The movement represented by the optical flow is con-

sidered an apparent movement since, in fact, the set of
vectors generated is obtained from a two-dimensional
image arising from projecting the real image (three-

*Correspondence: dopico@fi.upm.es
DATSI, Facultad de Informática, Universidad Politécnica de Madrid
Boadilla del Monte, Madrid 28660, Spain

dimensional) on the plane of the camera. Moreover,
optical flow computation techniques are based on ana-
lyzing the brightness variations of each pixel, making
it impossible to distinguish between true and apparent
motion. In fact, it is not possible to determine whether
a velocity vector is obtained due to an actual motion of
an object or a movement of the camera that has cap-
tured the image or a variation of luminosity due to some
environmental condition such as reflections or shadows.
Technically, optical flow computation is based on

assumptions rarely observed in real cases, but they can
be partially met and so be considered as valid approx-
imations. These are, as described by Beauchemin and
Barron [1], (a) uniform illumination, (b) surfaces with
Lambertian reflectance, and (c) movement limited to the
plane of the image. Since most applications rarely meet
the aforementioned conditions, it is considered that the
method is approximate and that it does not allow the
reconstruction of the original movement produced in
the three-dimensional scene. However, inmany occasions,
the optical flow allows obtaining valid approximations
of the movement being actually recorded.
Determining optical flow is a subject that has been

studied by means of computers for several decades, and
it has been employed in applications, such as (a) three-

© 2014 Garcia-Dopico et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited.

mailto:dopico@fi.upm.es
http://creativecommons.org/licenses/by/2.0

Garcia-Dopico et al. EURASIP Journal on Image and Video Processing 2014, 2014:18 Page 2 of 19
http://jivp.eurasipjournals.com/content/2014/1/18

dimensional image segmentation [2], (b) support for nav-
igation of autonomous robots or, in general, the detection
of obstacles to avoid collisions [3-6], (c) synchronization
and/or ‘matching’ of video scenes [7], and (d) fluid dynam-
ics analysis [8]. In any case, the problem is computation-
ally very complex, so most of the proposed solutions are
based on strong simplifications adapted to the technology
available at the time or to the specific applications they
intend to solve. In some cases, the size of the images is
so small that can hardly represent a real-life scene [9-12].
In other cases, determining parameters in the generation
of optical flow such as the light source (source, intensity,
variation, etc.) or the motion of objects within the scene
are restricted [13-15]. Except for some recent articles
normally associated with the movement of conventional
vehicles [16,17],mobile robots [18,19], and handheld cam-
eras [20,21], the majority of papers describe systems in
which the variation of the scene is limited. This limitation
is determined because they work with images with a static
background and taken with a static camera.
This article focuses on the parallelization of an optical

flow computing system based on the well-known Lucas-
Kanade algorithm [22,23]. The system is applied to an
environment which is particularly hostile in terms of opti-
cal flow computation and has rarely been described by
other authors [19]. It aims to determine the motion visu-
ally perceived by the driver of a conventional vehicle
through roads or streets under real conditions: with real
traffic and moving at speeds ranging from a few kilome-
ters per hour to 120 km/h. Not only do these conditions
rule out the parameter restrictions applied to other sys-
tems (i.e., regarding image size, controlled light sources),
but they in fact all act simultaneously in generating the
optical flow. Thus, image resolution must be sufficient
(in the order of 500 × 300 pixels) to capture multiple
objects of different sizes. Also, the camera moves with the
car because it is located inside it. Finally, the light con-
ditions are natural and highly variable. Hence, applying
the restriction used in other systems is largely impossible.
Moreover, obtaining the optical flow directly during the
driving session requires the analysis of medium- or high-
resolution video sequences in real time which requires
significant computing capacity. This aspect may be exac-
erbated when working with large volumes of information
coming from complete sessions previously stored, for
which the corresponding optical flow has to be obtained.
In these cases, it may be necessary to work faster than real
time to obtain the optical flow of all the stored video in a
reasonable amount of time.
The requirements described above prompted the

authors to choose a well-tested and verified algorithm,
providing the required accuracy. Considering all these
factors and in accordance with the analysis of different
algorithms and their benefits [24,25], the Lucas-Kanade

method, which has good quality results with moderate
computational cost, has been chosen. Specifically, the
sequential implementation by Correia at the Biomedical
Engineering Institute, Engineering School of the
University of Porto [26,27] has been used.
Other authors have addressed the parallelization of opti-

cal flow computing systems. However, in most of the
cases, the chosen solutions require specific hardware,
such as those based on FPGA, on which there is abun-
dant literature [5,28]. By contrast, this article presents
three implementations of a parallelization approachwhich
relies solely on low-cost general-purpose computers. The
implemented versions are all based on the sequential
implementation from Correia [26] and are the follow-
ing: (a) distributed, supported by a cluster of computers;
(b) parallel, supported by a shared memory multiproces-
sor; (c) hybrid, supported by a cluster of multiprocessors.
The paper describes the characteristics of the three par-
allelizations mentioned and analyzes them from the point
of view of their performance, because all of them per-
form the same computations as the sequential algorithm
and thus produce the same results. The specific details
of the sequential implementation of the Lucas-Kanade
algorithm and the results obtained can be found in [26,27].

2 Parallelization of the optical flow
There is a variety of algorithms to perform the computa-
tion of the optical flow. Most of them are based on the
classical and well-established algorithms analyzed in [24],
which usually have an initial premise for their correct
operation, the assumption that the illumination intensity
is constant along the analyzed sequence.
Each algorithm presents some advantages and disadvan-

tages; themain drawback of most of the algorithms is their
high computational and memory costs. Some of them try
to reduce these costs by sacrificing accuracy of results, i.e.,
they balance the cost of the algorithm against the level of
accuracy.
Over the years, a lot of research has been carried out

in the field of optical flow algorithms and the latter have
been continuously improved, sometimes by concentrating
on the algorithm itself [19,29-31], sometimes by combin-
ing two of them [32,33], and sometimes by combining
with other techniques [4,16,34]. Although most optical
flow algorithms were designed with the main objective
of obtaining accurate results, the trade-offs between effi-
ciency and accuracy in optical flow algorithms are high-
lighted in [35] as well as the importance of an efficient
optical flow computation inmany real-world applications.
They also analyze several classical algorithms under both
criteria. Alternative algorithms, designed for implemen-
tation on computers with multiple processors, have been
proposed since the first steps of development of this
technique.

Garcia-Dopico et al. EURASIP Journal on Image and Video Processing 2014, 2014:18 Page 3 of 19
http://jivp.eurasipjournals.com/content/2014/1/18

There have been many alternatives and they have
evolved along with the technology. In some cases, SIMD
processor arrays with specific chips, either existing [36]
or designed ad hoc for the computation of optical flow
[13,17,37-39], have been used. General-purpose MIMD as
the connection machine [40,41], networks of transputers
[42], or cellular neural networks [43,44] were also used in
the past.
In recent years, there have also been many imple-

mentations based on FPGA [5,15,28,45-48] and graphic
processor units (GPU) [6,8,49-51]. The results of a com-
parative study of both technologies for real-time optical
flow computation are presented in [52]. They conclude
that both have similar performance, although their FPGA
implementation took much longer to develop.
Some of the above methods for computing optical flow

can be highlighted since they are based on the same Lucas-
Kanade method used in this paper or their application
appears to be similar to that described in this paper.
A system for driving assistance is presented in [17]. It

detects vehicles approaching from behind and alerts the
driver when performing lane change maneuvers. The sys-
tem is based on images taken by a camera located in
the rear of a vehicle circulating through cities and high-
ways, i.e., under the same hostile conditions as our system.
However, their model is simpler because it is limited to
detecting large objects near the camera and moving in the
same direction and sense. Their method is based on the
determination of the vanishing point of flow from the lane
mark lines and calculating the optical flow along straight
lines drawn from the vanishing point. The optical flow is
computed by a block-matching method using SAD (sum
of absolute differences). The entire system is based on a
special purpose SIMD processor called IMAPCAR imple-
mented in a single CMOS chip that includes an array of
1 × 128 8-b VLIW RISC processing elements. It processes
256 × 240 pixel images at 30 fps. Their experimental
results show 98% detection of overtaking vehicles, with
no false positives, during a 30-min session circulating on
a motorway in wet weather. A real-time implementation
of the Lucas-Kanade algorithm on the graphics proces-
sor MaxVideo200 is presented in [51]. Due to hardware
limitations, some of the calculations are performed on
8- and 16-b integer. Consequently, the results obtained are
substantially worse than those obtained by Barron et al.
for the same Lucas-Kanade method. In terms of real-time
performance, they are able to process 252 × 316 pixel
images in 47.8 ms, equivalent to a throughput of 21 fps.
Another implementation of the Lucas-Kanade algo-

rithm is presented in [28], this time based on FPGA. Their
method is based on the use of high-performance cam-
eras that capture high-speed video streams, e.g., 90 fps.
Using this technology, they are able to reduce the motion
of objects in successive frames. Additionally, variations in

light conditions are smaller due to the high frame rate,
thus moving closer to meeting the constant illumination
condition. In summary, a high frames-per-second rate
allows simplifying the optical flow computation model
and allows obtaining accurate results in real time. The
division of the Lucas-Kanade algorithm into tasks is sim-
ilar to that used in our method, although in [28], the
pipeline is implemented using specific and reconfigurable
FPGA hardware (Virtex II XC2V6000-4 Xilinx FPGA;
Xilinx Inc., San Jose, CA, USA). Each pipeline stage is
subdivided into simpler substages, resulting in over 70
substages using fixed point arithmetic for the most part.
The throughput achieved is 1 pixel per clock cycle. Their
system is capable of processing up to 170 fps with 800 ×
600 pixel images and, although its real-time performance
should be measured relative to the acquisition frame rate,
it appears to be significantly high for the current state of
technology.
In recent years, cluster computing technology has

spread to the extent of becoming the basic platform for
parallel computing. In fact, today, most powerful super-
computers are based on cluster computing [53]. However,
it is unusual to find references to parallel optical flow
algorithms designed to exploit the possibilities offered by
clusters of processors to suit the size of the problems. In
[54-56] some solutions are presented based on clusters
and will be discussed in more detail.
A preliminary version of this paper [54] presents a par-

allelization of the Lucas-Kanade algorithm applied to the
computation of optical flow on video sequences taken
from amoving vehicle in real traffic. These types of images
present several sources of optical flow: road objects (lines,
trees, houses, panels,...), other vehicles, and also heavily
changing light conditions. The method described is based
on dividing the Lucas-Kanade algorithm into several tasks
that must be processed sequentially, each one using a dif-
ferent number of images from the video sequence. These
tasks are distributed among cluster nodes, balancing the
load of their processors and establishing a data pipeline
through which the images flow. The paper presents pre-
liminary experimental results using a cluster of eight
dual processor nodes, obtaining throughput values of 30
images per second with 502 × 288 pixel images and 10
fps with 720 × 576 pixel images. An interpolation method
is also proposed to improve the quality of the optical
flow obtained from video sequences taken by interlaced
cameras.
The work by [55] presents a variational method based

on the domain decomposition paradigm that minimizes
the communication between processes and therefore is
suitable for implementation in PC clusters. The imple-
mentation is based on dividing the problem into n × n
subimages and sending each portion to a processor in the
cluster. Two criteria for decomposition into subdomains

Garcia-Dopico et al. EURASIP Journal on Image and Video Processing 2014, 2014:18 Page 4 of 19
http://jivp.eurasipjournals.com/content/2014/1/18

are analyzed: the Neumann-Neumann (NN) and the
balancing-Neumann-Neumann (BNN) preconditioners
which are applied to a pair of synthetic 2,000 × 2,000
pixel images. Their experimental results show that the
NN approach provides better results than the non-parallel
version on the basis of a decomposition into 5 × 5 sub-
domains, obtaining increasing speed-up factors from 1.23
(5 × 5) to 3.67 (12 × 12) using between 25 and 144 pro-
cessors. Processing time per frame goes from 10 down
to 2 s.
The work in [56] addresses the optical flow calcula-

tion with three-dimensional images by an extension of
the Horn-Shunckmodel to three-dimensional. They study
three different multigrid discretization schemes and com-
pare them with the Gauss-Seidel method. They conclude
that the multigrid method based on Garlekin discretiza-
tion very significantly improves the results obtained using
Gauss-Seidel method. They also perform a parallelization
of the algorithm aimed at its execution in clusters and
apply it to the calculation of three-dimensional motion of
the human heart using sequences of two 256 × 256 ×
256 and 512 × 512 × 512 images taken by C-arm com-
puted tomography. Their method is based on subdividing
the image into several three-dimensional subsets and pro-
cessing each one in a different processor. The analyzed
method is well suited to the proposed application because
the image just include a single object (heart), with highly
localized relative movements of expansion and contrac-
tion. This fact, along with the uniformity of illumination,
requires a very low communication overhead due to par-
allelization. The speedup using 8, 12, and 16 processors is
excellent: 7.8, 11.52, and 15.21, with an efficiency close to
1, but it starts to decrease when reaching 32 processors:
28.46. The experiments were performed on an eight-node
quad-processor cluster.

3 The Lucas and Kanade algorithm
The Lucas and Kanade algorithm [22,23] takes a digital
video as the only data source and computes the optical
flow for the corresponding image sequence. The result is
a sequence of two-dimensional arrays of optical flow vec-
tors, with each array associated to an image of the original
sequence and each vector associated to an image pixel.
The algorithm analyzes the sequence frame by frame
and performs several tasks. Some of them require some
previous and some following images of the image being
processed, so the optical flow is not computed for some of
the images at the beginning and at the end of the sequence.
The Lucas and Kanade algorithm computes the optical

flow using a gradient based approach, so it calculates the
spatiotemporal derivatives of intensity of the images. This
method assumes that image intensity remains constant
between frames of the sequence, a common assumption
in many algorithms:

I (x, y, t) = I (x + u�t, y+ v�t, t + �t) (1)

This expression, using a Taylor series and assuming dif-
ferentiability, can be expressed by the motion constraint
equation:

Ixuδt + Iyvδt + Itδt = O (
u2δt2, v2δt2

)
(2)

In a more compact form, taking δt as the time unit:

∇I (x, t) · v + It (x, t) = O (
v2

)
(3)

where ∇I (x, t) and It (x, t) represent the spatial gradient
and temporal derivative of image brightness, respectively,
and O (

v2
)
indicates second order and above terms of the

Taylor series expansion.
In this method, the image sequence is first convolved

with a spatiotemporal Gaussian operator to eliminate
noise and to smooth high contrasts that could lead to poor
estimates of image derivatives. Then, according to the
Barron et al. implementation, the spatiotemporal deriva-
tives Ix, Iy, and It are computed with a four-point central
difference.
Finally, the two velocity components, v = (

vx, vy
)
, are

obtained by a weighted least squares fit with local first-
order constraints, assuming a constant model for v in each
spatial neighborhoodN and by minimizing∑

x∈N
W2 (x) [∇I (x, t) · v + It (x, t)]2 (4)

whereW(x) denotes a window function that assigns more
weight to the center. The solution is obtained from

v =
(
ATW2A

)−1
ATW2b (5)

where, for n points xi ∈ N at a single time t

– A = [∇I (x1) , ...,∇I (xn)]T
– W = diag [W (x1) , ...,W (xn)]
– b = − (It (x1) , ..., It (xn))T

The product ATW2A is a 2 × 2 matrix given by:

ATW2A =
[∑

W2 (x) I2x (x)
∑

W2 (x) Ix (x) Iy (x)∑
W2 (x) Iy (x) Ix (x)

∑
W2 (x) I2y (x)

]

(6)

where all the sums are taken over points in the neighbor-
hoodN .

3.1 Implementation
In this section, the sequential implementation of the
Lucas-Kanade algorithm proposed by Correia [26,27] is
described because this implementation has been used as
the starting point for the parallelization.
This implementation starts by smoothing the image

sequence with a spatiotemporal Gaussian filter to atten-
uate temporal and spatial aliasing, as shown in [24]. As
it applies a smoothing Gaussian filter with σ = 3.2, it

Garcia-Dopico et al. EURASIP Journal on Image and Video Processing 2014, 2014:18 Page 5 of 19
http://jivp.eurasipjournals.com/content/2014/1/18

requires 25 pixels: the central pixel and 4σ (12) pixels on
each side of this center pixel:

1√
2πσ

e−
x2
2σ2 (7)

This one-dimensional symmetric Gaussian filter is
applied three times, first on the temporal ‘t’ dimension,
then on the spatial ‘X’ dimension, and finally on the spatial
‘Y ’ dimension. Therefore, it needs 12 pixels on each side
of the center pixel, and 4σ images (12) previous and next
to the image being processed.
The result of applying the smoothing Gaussian filter on

an image can be seen in Figure 1, which shows the original
image, Figure 1a, and the three steps, the result for the
temporal filter, Figure 1b, for the spatial filters, Figure 1c,
and the global result, Figure 1d.
After smoothing, the next step of the Lucas and Kanade

algorithm is to compute the spatiotemporal derivatives
for the three dimensions: t, x and y (It , Ix, Iy). Using the
previously computed image, smoothed on t, X and Y,
and applying a numerical approximation, the derivatives
(It , Ix, Iy) are computed separately. Themethod used is the
5-point central differences of Gregory-Newton and the
derivative function for the central point is

f ′ (x3) = f (x1) − 8f (x2) + 8f (x4) − f (x5)
12h

(8)

Taking h = 1 because the distance between two con-
secutive pixels is 1, the one-dimensional array to be used
as convolution coefficient mask in the computation of the
partial derivatives is obtained as follows:

[
1
12

,
−8
12

, 0,
8
12

,
−1
12

]
(9)

Then, for each pixel of the image Itx,y, two addi-
tional pixels on each side of the central one are needed
on each dimension. Two pixels to the right and left(
Itx−2,y, I

t
x−1,y, Itx,y, I

t
x+1,y, I

t
x+2,y

)
are taken, as well as two

pixels above and below
(
Itx,y−2, I

t
x,y−1, Itx,y, I

t
x,y+1, I

t
x,y+2

)
,

and one pixel in the two previous and in the two following
images

(
It−2
x,y , It−1

x,y , Itx,y, It+1
x,y , It+2

x,y

)
. Thus, the temporal gra-

dient of an image requires at least five consecutive images
of the sequence. The results of these convolutions are
the estimates of the partial derivatives, which are shown
in Figure 2, and represent the temporal, Figure 2a, hori-
zontal, Figure 2b, vertical, Figure 2c, and global intensity
changes, Figure 2d.
Finally, the velocity vectors associated to each pixel of

the image are computed from the spatiotemporal partial
derivatives previously computed. This is done by using
a spatial neighborhood matrix of 5 × 5 pixels, centered

Figure 1 Image smoothing in three dimensions: t, x, and y. (a) Original image. (b) Smoothing in t. (c) Smoothing in x and y. (d) Smoothing in t,
x, and y.

Garcia-Dopico et al. EURASIP Journal on Image and Video Processing 2014, 2014:18 Page 6 of 19
http://jivp.eurasipjournals.com/content/2014/1/18

Figure 2 Partial derivatives of an image in three dimensions: t, x and y. (a) Derivative in t. (b) Derivative in x. (c) Derivative in y. (d) Derivatives
in t, x, and y.

on each pixel, and a one-dimensional weight matrix,
(0.0625, 0.25, 0.375, 0.25, 0.0625), [24]. The noise parame-
ters used are σ1 = 0.08, σ2 = 1.0, and σp = 2.0 [57]. The
estimated velocity vectors whose highest eigenvalue of
ATW 2A is less than 0.05 are considered unreliable (noise)
and are discarded [24].

3.2 Results of the sequential algorithm
Figure 3 shows the optical flow computed for the image
of Figure 1a. The processing steps have been analyzed and
are shown in Figures 1 and 2. The original image cor-
responds to a three-lane highway. The vehicle carrying
the camera is overtaking the vehicle on the right while it
is being overtaken (quite fast) by the vehicle on the left.
This introduces some noise in the results, since it would
require a higher temporal resolution to correctly handle
the movement of objects at such speed.
Figure 4 shows two images of a video sequence that

has been processed with this algorithm and also the opti-
cal flow obtained after applying this algorithm. In this
sequence, a vehicle can be observed on the right going
slower than the vehicle where the camera is installed, and
a second vehicle on the left is changing lanes. Finally,
a traffic light panel can be seen above. The optical
flow generated by these three objects and by the road

lines and other elements on the shoulder are shown in
Figure 4.

4 Sequential algorithm tasks and dependencies
This section analyzes in some detail the dependencies
among the tasks of the sequential algorithm described
in Section 3.1. The pseudocode of the algorithm’s main
loop is shown below, including the task list with the task
parameters.

Figure 3 Optical flow obtained for the image in Figures 1 and 2.

Garcia-Dopico et al. EURASIP Journal on Image and Video Processing 2014, 2014:18 Page 7 of 19
http://jivp.eurasipjournals.com/content/2014/1/18

/* Sequential algorithm main loop */
while (readfile (fname, time, raw_pic, ...)> 0) {

T_Smooth (raw_pic, s_T_buff, ...);
X_Smooth (s_T_buff, s_TX_buff, ...);
Y_Smooth (s_TX_buff, s_TXY_buff, ...);
t_derivate (s_TXY_buff, diff_buff.It, ...);
x_derivate (s_TXY_buff, diff_buff.Ix, ...);
y_derivate (s_TXY_buff, diff_buff.Iy, ...);
velocities (diff_buff.Ix, diff_buff.Iy, diff_buff.It, vels_pic, ...);
out_velocities (full_name, "Full", vels_pic, ...);

}

The tasks mentioned in the algorithm’s main loop are as
follows:• read_file reads images from disk and passes them to

T_smooth.
• T_smooth receives images from read_file and

passes them to
X_smooth. Performs the temporal smoothing, using
the current image as well as the n previous images
and n following images, with n = 4 · σ . This
calculation involves a very strong dependence
between each image and all those around it. In fact,
every image depends on another 8 · σ images. With a
value of σ = 3.2 that means the 12 previous and the
12 following frames.

• X_smooth receives images from T_smooth and
passes them to Y_smooth. Performs the spatial
smoothing of the images on the x coordinate.

• Y_smooth receives images from X_smooth and
passes them to t_derivative, x_derivative, and

y_derivative. Performs the spatial smoothing of
the images on the y coordinate.

• t_derivative receives images from Y_smooth,
calculates the partial derivative of the images with
respect to t (It), and passes it to velocities. Five
images are required, two previous and two following
the current one. This calculation is affected by a very
strong dependency of each image with the four
images surrounding it.

• x_derivative receives images from Y_smooth,
calculates the partial derivative of the images with
respect to x (Ix), and passes it to velocities.

• y_derivative receives images from Y_smooth,
calculates the partial derivative of the images with
respect to y (Iy), and passes it to velocities.

• velocities receives the partial derivatives with respect
to t, x, and y of the images (It, Ix, and Iy) from
t_derivative, x_derivative, and

Figure 4 Frames 10 and 20 and optical flow from frame 15.

Garcia-Dopico et al. EURASIP Journal on Image and Video Processing 2014, 2014:18 Page 8 of 19
http://jivp.eurasipjournals.com/content/2014/1/18

y_derivative. Using these partial derivatives, it
calculates each pixel velocity as a pair (vx, vy) and
passes it to out_velocities.

• out_velocities receives velocity vectors from
velocities and processes them to generate the
appropriate output. For example, it calculates
statistics (splitflow) or converts them to
PostScript (psflow) to visualize the results. Finally, it
writes the calculated speeds to disk.

Reviewing the major tasks that make up the application
reveals a problem: the execution of the tasks must fol-
low a strict order. Therefore, the parallel execution of the
tasks inside a single iteration is not possible because their
order must be respected. However, it is possible to over-
lap the execution of tasks over different images.Moreover,
there are strong dependencies between the input data, as
T_smooth and t_derivatives need to know not only
the image being processed but also the neighbouring ones.
Therefore, the optical flow from different images can-
not be calculated in parallel without processing the other
images.

5 Parallel algorithm
In order to parallelize the Lucas-Kanade algorithm, the
dependencies described in Section 4 were the starting
point to build a hybrid scheme. Data and computation
have been parallelized by dividing the input image into
subimages and distributing the tasks to be performed on
each pixel. This form of combined algorithm is much
more flexible than using parallelization on data or on tasks
separately.
If only data parallelization were considered by dividing

the images and executing the algorithm on every data sub-
set on a medium-sized cluster (64 or more processors),
very small images have to be considered. Even if large
images are taken into account (2,000 × 1,200 pixels), the
size of the subimages (250 × 150) is too small. On the
other hand, to obtain correct results, pixel dependencies
have to be considered for smoothing on all three coordi-
nates and also when calculating the derivatives. Solving
these dependencies requires introducing additional pixels,
usually known as border pixels. If many subpictures are
used, the number of border pixels (ghost or halo pixels)
increases and the overhead costs of this algorithm would
become unacceptable.
If only the tasks parallelization analyzed in Section 4

is considered, the task number is too low, even when
the larger tasks are distributed between several nodes for
load balancing. Initially, there are seven starting tasks,
not including I/O. Even if some of those tasks are dou-
bled or tripled, the execution does not benefit from a
cluster with more than 14 to 16 processors. Furthermore,

in this scheme, dependencies do not have to be taken
into account between pixels but between tasks. T_smooth
and t_derivative tasks require knowing all of the
images because previous and further images are needed
when performing these computations. The best way to
solve these dependencies is by using a pipeline. Images
have to progress through the pipeline stages. To balance
the duration of different stages, the longer stages have
to be replicated. This solution solves one of the prob-
lems, dependencies between tasks, but not the scalability
problem.
If both solutions are combined, establishing a task

pipeline and partitioning input images, an easily scalable
and flexible scheme is obtained. The idea is to have a
full pipeline for each subimage, i.e., several pipelines of
N stages, with some of these replicated. The algorithm
dependencies are solved and the border overhead is mini-
mized because images are divided into a small number of
subimages. Adding the border pixels allows treating each
subimage independently. Smoothing on the X and Y coor-
dinates uses 25 pixels, 12 on each side of the central pixel,
hence, each subimage needs 12 more pixels. Therefore, to
divide 1,280 × 1,024 images into four subimages (2 × 2),
four 652 × 524 subimages are necessary, by adding 12 pix-
els on the X and Y axis. In this way, the border pixels are
overlapped, and every subimage is completely indepen-
dent of others.
If the number of processors available is small, the use

of a single pipeline is sufficient. If the number of proces-
sors is lower than the number of pipeline stages, several
tasks can be grouped to balance the load of the stages. This
analysis will be addressed in Subsection 6.1.
If there are many processors available, several pipelines

have to be built so that all processors can work in paral-
lel. The number of pipelines is calculated by dividing the
number of available processors by the number of pipeline
stages.
Section 6 shows how the pipeline could be increased

up to 16 stages. If every image is divided into 64 subim-
ages, 1,024 processors can be used due to the scalability
of this model. Obviously, using 1,024 processors would
make sense for working with a high number of large
images (large sequences or very high temporal resolu-
tion). In most cases, a 16 to 64 processor cluster will be
enough to process the input sequences in a reasonable
time.
To show the flexibility of the proposed algorithm, three

different implementations using 4, 8, and 16 processors,
respectively, are presented in Sections 7, 8, and 9. The first
implementation runs on a shared memory computer, the
second one on a distributed memory computer, and the
last one is a hybrid implementation executed on a dis-
tributed system in which each node is a shared memory
multiprocessor.

Garcia-Dopico et al. EURASIP Journal on Image and Video Processing 2014, 2014:18 Page 9 of 19
http://jivp.eurasipjournals.com/content/2014/1/18

6 Pipeline structure
As shown in Section 5, a pipeline structure is proposed
as the main idea to exploit parallelism. The optical flow
application is divided into independent modules to be
connected in the same sequential order of the tasks to
be executed for each single image. When a module fin-
ishes its processing task for an image, it starts execut-
ing the same task for the next image. This way, each
module is working on a different image at a certain
time.
The objective of this structure is to create a thread for

each of the tasks shown in Section 4. This way, a dif-
ferent thread is assigned to each task and will execute
its function on each of the images, in parallel with other
threads that will be executing their function on different
images.
The derivatives computation is not too demanding.

However, the three tasks that solve the derivatives are
grouped in order to simplify communication because
the three tasks get the same input information from
Y_smooth and send the results to velocities. Conse-
quently, the mapping task-thread is as follows:

• in_th executes the task read_file.
• smoothT_th executes the task T_smooth.
• smoothX_th executes the task X_smooth.

• smoothY_th executes the task Y_smooth.
• diff_th executes the task derivatives that

includes the derivative computation in t, x, and y.
• vels_th executes the task velocities.
• out_th executes the task out_velocities that

includes the psflow, splitflow, and writes results
to the disk.

Because the time taken for each stage is different, sev-
eral synchronizations will be introduced in the pipeline.
As usual, buffers with synchronization mechanisms have
to be introduced between threads to allow commu-
nication between them. Figure 5 shows threads and
buffers used for communication in the shared memory
pipeline.
In order to measure the time spent on each task, a

sequential implementation has been run on a single clus-
ter node. Two image sizes have been used as input data:
720 × 576 and 502 × 288 pixels. The most important
result is the relationship between the times spent by
different tasks, but not the time each task spends indi-
vidually. Table 1 shows the amount of time spent on
each task and its weight on the total time spent by the
algorithm.
An important aspect to be pointed out is that the exe-

cution time ratio for the tasks is constant even when

_

_

STORAGE

STORAGE

_

Figure 5 Pipeline structure in a sharedmemory computer.

Garcia-Dopico et al. EURASIP Journal on Image and Video Processing 2014, 2014:18 Page 10 of 19
http://jivp.eurasipjournals.com/content/2014/1/18

Table 1 Execution time per task (ms)

Task Time 502× 288 Time 720× 576

read_file 0.9 ms 0.1% 0.9 ms 0%

T_smooth 12 ms 6.9% 40 ms 7.6%

X_smooth 8 ms 4.6% 30 ms 5.7%

Y_smooth 7 ms 4.1% 25 ms 4.8%

t_derivative 7 ms 4.1% 25 ms 4.8%

xy_derivatives 3 ms 1.7% 10 ms 1.9%

velocities 130 ms 74.4% 370 ms 70.4%

out_velocities 7 ms 4.1% 25 ms 4.8%

changing the image size. This fact allows using the same
approach when parallelization is addressed, without tak-
ing into account the image size.
Another aspect to be considered is that the temporal

smooth is slower than the spatial smooth tasks. This is
because spatial smooth works with just a single image,
while temporal smooth requires several images preceding
and following the one being processed. The main differ-
ence between the smooth on the X axis and the smooth

on the Y axis is that the image can be in cache memory
when the latter is executed. In the same way that tempo-
ral smooth is slower than spatial smooth, the computation
of the temporal derivative is slower than the computation
of spatial derivatives. The reason is again the need of the
temporal derivative to use several images, clearly spoiling
the memory hierarchy behavior.

6.1 Pipeline stages
Table 1 shows that the execution times for different tasks
are not well balanced, and this situation has to be changed.
Taking into account the time spent on each task, a new
organization of tasks is proposed. The main reason sup-
porting the redesign of the pipeline stages is the high exe-
cution time for the velocities function. The proposed
solution is to parallelize the slower task (velocities)
since it does not depend on other images, but on the
derivatives with respect to t, x, and y, i.e., It, Ix, and Iy.
With the purpose of obtaining a higher speedup, the

pipeline has initially been proposed for 16 processors,
even if there are fewer processors. The scheme is valid as
it is flexible enough to allow grouping tasks to adapt to

Table 2 Pipeline times (ms) and theoretical speedups

Nodes Distribution ms per 502× 288 image ms per 720× 576 image

16 4 nodes execute the _smooth

and _derivatives tasks T = max(12, 8, 7, 7+ 3) = 12 T = max(40, 30, 25, 25+ 10) = 40

12 nodes execute the

velocities and T = 137/12 = 12 T = 395/12 = 33

out_velocities tasks Timg = max(12, 12) = 12 ms Timg = max(40, 33) = 40 ms

Max speedup = 174/12 = 14.5 Max speedup = 525/40 = 13.1

8 1 node executes the

T_smooth and X_smooth tasks T = 12+ 8 = 20 T = 40 + 30 = 70

1 node executes the Y_smooth

and _derivatives tasks T = 7 + 7 + 3 = 17 T = 25 + 25 + 10 = 60

6 nodes execute the

velocities and T = 137/6 = 23 T = 395/6 = 66

out_velocities tasks Timg = max(20, 17, 23) = 23 ms Timg = max(70, 60, 66) = 70 ms

Max speedup = 174/23 = 7.6 Max speedup = 525/70 = 7.5

4 1 node executes every

task except velocities T = 12+ 8 + 7 + 7 + 3 = 37 T = 40 + 30 + 25 + 25 + 10 = 130

3 nodes execute the

velocities and T = 137/3 = 46 T = 395/3 = 132

out_velocities tasks Timg = max(37, 46) = 46 ms Timg = max(130, 132) = 132 ms

Max speedup = 174/46 = 3.8 Max speedup = 525/132 = 4

Garcia-Dopico et al. EURASIP Journal on Image and Video Processing 2014, 2014:18 Page 11 of 19
http://jivp.eurasipjournals.com/content/2014/1/18

Figure 6 Parallel algorithm structure for eight single processor nodes.

other situations. Table 2 shows how the task distribution
is scheduled in the pipeline for 4, 8, and 16 nodes and the
pipeline time per image for every case. Figure 6 details
the task scheduling for each node when using an 8-node
computer.
If a distributed memory computer is used, the commu-

nication time has to be taken into account and will depend
on the network used (Gigabit, Myrinet,...). However, this
time is not negligible and tends to be around several
milliseconds. This approach is also valid for a shared
memory multiprocessor, minimizing the communication
overhead.

7 Shared memory version with hyperthreading
The first implementation described used a shared mem-
ory biprocessor with hyperthreading (i.e., four virtual

Figure 7 Parallel algorithm structure using a shared memory
computer with four processors.

Garcia-Dopico et al. EURASIP Journal on Image and Video Processing 2014, 2014:18 Page 12 of 19
http://jivp.eurasipjournals.com/content/2014/1/18

Figure 8 Comparison between the theoretical and the actual execution times when using a computer with hyperthreading.

processors). Taking into consideration the parallel algo-
rithm proposed in Section 6.1 for four processors, the
following grouping of tasks has been made:

• diff_th performs the tasks read_file, T_smooth,
X_smooth,
Y_smooth and derivatives.

• vels_th performs tasks velocities and
out_velocities.

As the vels_th takes three times as long as diff_th,
the idea is to execute three vels_th threads so that
the delay is compensated. Furthermore, this structure
can be carried out because tasks velocities and
out_velocities do not depend on other images,
instead, they only depend on the partial derivatives of a
single image, It, Ix, and Iy. In this way, execution times
are better balanced and there is a better fit to the archi-
tecture used with four threads running in four virtual
processors. The communication scheme between threads
is shown in Figure 7.
When measuring the execution times, it can be

observed that the behavior of the threads is greatly
influenced by the hyperthreading technology of the
processors. Figure 8 shows the differences between the
execution times theoretically calculated in Section 6 and
the actual execution times measured when executing the
application.
In Figure 8, it can be seen that actual execution times

are much longer than theoretical times. Moreover, it
can be seen that threads vels_th suffer higher delays
(81% slower) than diff_th threads (48% slower). This
is because these threads, being all clones, compete for

the same functional units of virtual processors, producing
conflicts and delays.

8 Message-passing version
The second implementation of the parallelized Lucas-
Kanade algorithm is based on distributed memory with
message-passing communications. This version has been
developed and implemented on an eight-node cluster.
The tasks mentioned in Table 1 have been assigned

to the eight nodes of the cluster, and the MPI message-
passing standard has been used for communications.
To optimize the communications between nodes, asyn-

chronous non-blocking messages have been used so that
communications and computing are overlapped. Conse-
quently, while a node is processing image i, it has already
started a non-blocking send with the results of process-
ing the previous image (i-1), and it has also started a
non-blocking reception to simultaneously receive the next
image to be processed (i+1). In this way, simultaneous
submissions, receptions, and computing are allowed in
each node.
Moreover, persistent messages have been used to avoid

building and destroying the data structures used for each
message. This design decision has been possible because
the information traveling between two given nodes always
has the same structure and the same size so that the
skeleton of the message can be reused.
The general communication scheme between different

nodes is shown in Figure 6.
The scheme employed for the distribution of tasks over

nodes was as follows:

• Node 0: Its pseudocode follows

Garcia-Dopico et al. EURASIP Journal on Image and Video Processing 2014, 2014:18 Page 13 of 19
http://jivp.eurasipjournals.com/content/2014/1/18

/* Node-0 code. Use persistent messages and asynchronous communications */
...

while (n_bytes = readfile (fname, raw_pic, ...)){
MPI_Wait(&request[comp], &status); /* Wait for the oldest send to finish */

T_smooth(raw_pic, s_T_buff[comp], ...);
X_smooth(s_T_buff[comp], s_TX_buff[comp], ...);

comp = (comp + 1) % N_SMOOTH_T_BUFFERS;
out = (out + 1) % N_SMOOTH_T_BUFFERS;

MPI_ISend(&request[out]); /* Start the next asynchronous sending op. */
}

Node-0 code performs the following tasks: it
reads the images of the video sequence from the
disk, then it performs the temporal smoothing
(using the current image as well as the previous
12 and the next 12 images) and performs the
spatial smoothing on the x coordinate. Finally, it
sends the image smoothed on t and on x to
node 1.

• Node 1: The pseudocode representing the job
completed at node 1 follows

Node-1 performs the following tasks: it receives the
images already smoothed on t and x, from node 0,
then it performs the spatial smoothing on the y
coordinate, and computes the partial derivative with
respect to t of the image (using five images, the
current one, plus the previous two and the next two).
Finally, it sends the processed image to the other nodes,
from 2 to 7, selecting the target in a cyclical way.

• Rest of the nodes: The pseudocode that describes
the work done at the rest of the nodes follows

/* Node-0 code. Start an asynchronous receiving operation */
MPI_IRecv(&request_in[in]);

/* Start send/recv operations to overlap communication & computation */
...
while (working) {

in = (in + 1) % N_SMOOTH_Y_BUFFERS;

MPI_IRecv(&request_in[in]); /* Start the next asynchronous receiving operation */

MPI_Wait(&request_in[comp_in], &status); /* Wait for the previous
receive to finish*/

if ((status.MPI_TAG == END) ||
(status.MPI_ERROR != 0)) end();

MPI_Wait(&request_out[dest][comp_out], &status); /* Wait for the oldest send */

Y_smooth(X_s_buff[comp_in], Y_s_buff[comp_in], ...);
t_derivatives(s_Y_buff[comp_in], buff[dest][comp_out].It, ...);

MPI_ISend(&request_out[dest][comp_out]); /* Start the next asynchronous sending
operation*/

comp_in = (comp_in + 1) % N_SMOOTH_Y_BUFFERS;
if (++dest == nprocs) {

dest = FIRST_PROC_VELS;
comp_out = (comp_out + 1) % N_DIFF_BUFFERS;
out = (out + 1) % N_DIFF_BUFFERS;

}
}

Garcia-Dopico et al. EURASIP Journal on Image and Video Processing 2014, 2014:18 Page 14 of 19
http://jivp.eurasipjournals.com/content/2014/1/18

/* Rest of the nodes. Start an asynchronous receiving operation */
MPI_IRecv(&buff[comp], ...);

while (working) {
in = (in + 1) % N_DIFF_BUFFERS;

MPI_IRecv(&request_in[in]); /* Start the next asynchronous receiving operation */

MPI_Wait(&request_in[comp], &status); /* Wait for the previous receive to finish*/

if ((status.MPI_TAG == END) ||
(status.MPI_ERROR != 0)) end();

x_derivative (buff[comp].s_TXY, Ix, ...);
y_derivative (buff[comp].s_TXY, Iy, ...);
velocities (Ix, Iy, buff[comp].It, vels_pic, ...);
out_velocities(full_name, vels_pic, ...);
comp = (comp + 1) % N_DIFF_BUFFERS;

}

Each node from 2 to 7 performs the following tasks:
it receives images already smoothed in t, x, and y, as
well as the derivative with respect to t (It) of the
image from node 1, then it calculates the partial
derivatives with respect to x and y of the image, (Ix
and Iy). Starting from the derivatives in t, x , and y

(It, Ix, and Iy) of the image, it computes the speed of
each pixel as a pair (vx, vy) and formats the computed
velocities (statistics, etc.) before writing them to disk.

Task xy_derivatives has been taken from the inter-
mediate node to the end nodes to reduce the size of the
messages. Instead of sending three matrices per image
(It, Ix, and Iy), two matrices are sent, (It and the image
smoothed on t, x, and y). The task loads are not so well
balanced but, by reducing the network traffic, the perfor-
mance improves due to the communication time being
shorter.
Table 3 shows the mean values for the time spent on

each task and the global computing time spent by each
node with every image.
From the data shown at Table 3, it can be observed that

regardless of the waiting time spent on communication
calls, the load is fairly well balanced between nodes 0 and 2
to 7. Node 1 is out of balance, as envisaged in the previous

Table 3 Mean time per task (ms)

Node 0 1 2-7

Time read_file 1.05 Y_smooth 21.82 xy_derivatives 9.92

per T_smooth 36.29 t_derivative 21.55 velocities 369.88

task X_smooth 25.37 out_velocities 24.92

Global 62.71 43.37 404.72

paragraph, and in actual terms the imbalance is even
higher as will be shown. The theoretical estimates were
made from the times obtained by executing the sequential
version, which executes everything within the same node
(and the same processor). Processing multiple images in
the sequential version implies a heavy use of memory that
can sometimes produce a high rate of page replacements,
and even thrashing. The use of memory is not so heavy in
the message-passing version, since the number of images
handled by each node is much smaller.

9 Message-passing and threads
This section looks at a third implementation, imple-
mented with 16 processors. The idea is based on maxi-
mizing the use of resources available in the machine. As
already mentioned, a cluster of eight dual processors with
hyperthreading nodes is used. However, due to the bad
results obtained with hyperthreading shown in Section 7,
only the real processors have been used instead of the
virtual ones.
This implementation is based on threads and MPI. The

goal is to run several threads in each node, thereby taking
advantage of the existence of two processors on every sin-
gle node. The threads in the different nodes communicate
using MPI.
Due to the single-threaded MPI implementation used,

it is only possible to make invocations to the MPI library
from a single thread. Thus, a single thread responsible for
communications has been assigned to each node to send
and receive messages, and it is the only one interacting
with the MPI library. This thread is normally suspended
and only wakes up when data to send or receive are
available.
The communication between nodes is asynchronous to

overlap communication and computation. Also, messages

Garcia-Dopico et al. EURASIP Journal on Image and Video Processing 2014, 2014:18 Page 15 of 19
http://jivp.eurasipjournals.com/content/2014/1/18

are persistent to reuse their skeleton, as in the implemen-
tation described in Section 8.
A sending window has been implemented in order to

maximize the overlapping of data communication and
computation. A variable pointing to the next element to
be sent and a variable pointing to the next message to be
confirmed by node are maintained. The communication
buffers are circular allowing the same memory locations
to be reused for different images along the execution of
the program.
The division of tasks is based on the algorithm for 16

processors described in Subsection 6.1. In any case, the
distribution of tasks to nodes is the same as in the previ-
ous version, shown in Figure 6. The differences are found
inside each node as described in the following subsections,
since multiple threads run in each node as shown in
Figure 9.

9.1 Node 0
Three of the tasks described in Section 6 run on node 0.
The first two, read_file and T_smooth, are grouped in

Figure 9 Parallel algorithm structure using eight dual processor
nodes, with MPI and threads.

a single thread, since the former takes a very short time,
and X_smooth runs on another thread. A third thread,
mpi0_th, is responsible for communication of this node
with the next one (node 1).

9.2 Node 1
Two of the tasks described in Section 6 run on node 1.
One thread executes the task Y_smooth and an other
thread executes the task t_derivative. A third thread,
mpi1_th, is responsible for communication of this node
with node 0 and with nodes 2 to 7.

9.3 Nodes 2 to 7
Three of the tasks described in Section 6 run on each of
the nodes 2 to 7. An important difference from the other
nodes is the absence of dependencies between images
within these tasks. Consequently, a single thread can han-
dle all three tasks for a given image, reusing the data in
memory.
Specifically, there will be one thread per proces-

sor (velocities_th[0-1]). Each is responsible
for the computation of the derivatives in X and Y
(xy_derivatives), the computation of the velocity vec-
tors (velocities), the formatting of the output (using
psflow and splitflow), and dumping the output to disk
(out_velocities). An additional thread, mpi2-7_th,
will handle communications with node 1.

10 Results
Figure 10 shows the speedup reached by different ver-
sions. This section analyzes the results for each version
implemented.

10.1 Cluster architecture
Parallelization has been carried out in a generic way in
order to be sufficiently general to serve for different archi-
tectures, either based on distributed or on shared mem-
ory. Performance measures have been obtained using an
architecture based on distributedmultiprocessor nodes so
that the evaluation of the different implementations has
been possible.
Specifically, a cluster of eight identical nodes has been

used. Each node contains two Intel Xeon 2.4 GHz proces-
sors and 4 GB of main memory. The system runs under
a Linux operating system - Ubuntu distribution. The
nodes are connected to a Gigabit network, through a con-
ventional switch. This architecture was chosen because
distributed memory systems are economical, easy to
assemble, and of widespread use. Each node is a dual pro-
cessor using hyperthreading, so that it apparently has four
processors. However, although four virtual processors
apparently run as four physical processors, the target per-
formance cannot be as high because only some processor

Garcia-Dopico et al. EURASIP Journal on Image and Video Processing 2014, 2014:18 Page 16 of 19
http://jivp.eurasipjournals.com/content/2014/1/18

Figure 10 Speedup reached with different versions.

components are replicated while others must be shared
between processes or threads.

10.2 Sharedmemory version
With the shared memory version, a speedup of 2.02 was
obtained, i.e., it runs twice as fast as the sequential ver-
sion. Without taking into account the type of operations
performed by the application and the details of the pro-
cessors, a higher improvement would be expected.
A first reason to explain the relatively low speedup is

the amount of memory needed by the application. The
sequential version needs a much lower amount of mem-
ory than the threads version, and memory accesses are
performed in a more sequential way so that processing
of an image finishes before moving on to the next one.
In the case of shared memory, several images are han-
dled simultaneously, each one corresponding to a different
processing time. It also needs to access scattered memory
positions, so it requires a larger memory and uses it in a
less efficient way because of the irregular memory access
pattern.
Another cause for the low speedup is the use of hyper-

threading technology. While every node apparently has
four processors (dual-hyperthreading processor), there
are just two actual processors. Analyzing the application
code, it can be noted that the calculations basically con-
sist of floating point operations (floating point square
roots, multiplications, etc.). Considering the usual struc-
ture of current processors, it is clear that the floating point
functional units are not sufficiently replicated.
In an attempt to distinguish inefficiencies due to the par-

allel implementation - such those due to distribution of
tasks - from speed-up limitations due to the supporting
architecture, a common, highly parallelizable application
example has been used as a reference. The example is
the matrix multiplication and the speedup reached in this
case is 2.7, far from the theoretical maximum 4. From

this result, the application speedup obtained, 2.02, can be
considered as reasonable.

10.3 Message-passing version
Sending a message from one node to another may be
very time-consuming, depending on the network charac-
teristics and the amount of information being transferred.
However, communication between nodes is asynchronous
so, at least in part, it may be possible to overlap com-
munication operations (both sending and receiving) with
CPU processing time. Due to the non-blocking charac-
teristics of the application communications, the program
does not need to wait for sending or receiving operations
to finish, but instead it immediately begins to perform the
calculation on the data already available.
With this communication scheme based on non-

blocking and persistent messages, a higher speedup than
the one shown in Figure 10 could be expected. The analy-
sis of the execution time of all tasks, both in the sequential
and in the message-passing versions, shows that the time
spent was very similar, which points to communications
as the origin of the performance problem. Lower than
expected performance of the message-passing implemen-
tation is mainly due to the large volume of data exchanged.
There are two types of messages: those exchanged

between nodes 0 and 1 and the messages that node 1
sends to the end nodes (2 to 7). Node 0 sends data after
applying a smooth function to the image on coordinates
T and X. The amount of data sent for each image is then
equivalent to a floating point number per image pixel. The
image resolution used for experimentation is 720 × 576
pixels, so the total data sent per image are 720 · 576 =
414, 720 float elements, or 414, 720 float · 4(bytes/float) =
1, 658, 880 B.
The network used is a Gigabit-Ethernet. The per-

formance measured for this network was found to be
between 770 and 880 Mbps. Taking an average rate of 800

Garcia-Dopico et al. EURASIP Journal on Image and Video Processing 2014, 2014:18 Page 17 of 19
http://jivp.eurasipjournals.com/content/2014/1/18

Mbps, the delivery time per message sent from node 0 to
node 1 would be

1, 658, 880 B · 8(bits/byte)/800 Mbps = 16.58 ms.

As for the size of the message sent by node 1 to pro-
vide end nodes with the data they need, it must be noted
that it is sent after t derivatives are computed (It). In
fact, not only such derivatives but also smoothed images
have to be sent to allow computing x and y derivatives.
Therefore, two matrices as large as the matrix sent from
node 0 to node 1 have to be sent, needing twice as much
time.
Summarizing, the large amount of data transferred

explains why the performance achieved is lower than the
theoretical maximum.
Anyway, with this parallelization scheme, the computa-

tion of the optical flow achieves a throughput of 30 images
per second with 502×288 pixel images. For 720×576 pixel
images, the throughput obtained is ten images per second.

10.4 Message-passing and sharedmemory version
The last version considered tries to take advantage of the
previous two. This combined version parallelizes at node-
level using threads and at the network level by making use
of MPI.
Comparing this version with the message-passing one,

it must be noted that the task distribution among nodes is
the same in both versions. It was considered important to
compare both versions in order to analyze the benefit of
introducing sharedmemory mechanisms. In this case, the
number of threads created, as well as their features, makes
it easier to appreciate the performance reachable with this
technique. In comparison with the message-passing ver-
sion, the speedup of the final version is 1.47, which is quite
significant.
With this version, the computation of the optical flow

achieves a throughput of 45 images per second with 502×
288 pixel images. For the 720 × 576 resolution, 15 images
per second throughput is obtained. Note that in both cases
the optical flow is computed for every image.

11 Conclusion
This paper addresses the parallelization of optical flow
calculation. A flexible and scalable parallelization scheme
has been described, based on dividing each image into
several subimages in order to process each one through
a software pipeline. This pipeline allows to respect
dependencies between different computation stages. Each
pipeline step performs an optical flow computation stage.
Stages exhibiting a greater need for computation are repli-
cated to balance the time spent on each pipeline stage.
The number of subimages which each image is divided
into depends on the number of processors available, thus
ensuring high scalability. This parallelization scheme has

been developed starting from a dependency analysis of the
Lucas-Kanade algorithm, using a sequential implementa-
tion developed at the University of Porto.
Three different versions of the proposed scheme have

been implemented and executed on a cluster of dual
hyperthreading processor nodes to evaluate its flexibility
and scalability. These versions are as follows:

• A shared memory version, using threads. It yields a
speedup of 2.02 on a four-processor system.

• A distributed memory version using MPI. In an
eight-processor system it yields a speedup of 5.72.

• A hybrid version, using threads and MPI to take
advantage of the fact that each node is a
multiprocessor - a dual hyperthreading processor. In
an eight-node system, with two processors per node,
the speedup reached is 8.41.

The speedup obtained in all three cases is very satis-
factory, clearly showing the feasibility of the proposed
scheme, as well as its flexibility and scalability. If more
than 16 processors are going to be used, this task pipeline
can be combined with image partitioning, having a full
pipeline consisting of 16 stages per subimage.
Once implemented, these versions have been used to

calculate optical flow video sequences taken in variable
natural-light conditions and with a moving camera. In
fact, the camera was installed on board a vehicle travel-
ing on conventional open roads. Despite the challenging
conditions of these experiments, the results obtained were
satisfactory.
This parallelization scheme can be combined with

GPUs. Each task of the pipeline can be implemented as a
kernel in a GPU to improve the performance, as current
GPUs are very powerful and affordable. As three different
versions of the task pipeline have been proposed, with 4,
8, or 16 processors, the solution can be easily adapted to
a different number of GPUs to take advantage of a GPU
cluster.
Also this parallelization scheme can be easily trans-

ported to many processor architectures as the Intel MIC
(Many Integrated Core) architecture (Intel Corp, Santa
Clara, CA, USA). The Intel MIC has 60 cores, it is based
on 4-way SMT (simultaneous multithreading) cores, each
one containing a 512-b vector unit (SIMD). In this archi-
tecture, both vectorization and a high degree of paral-
lelism (240 threads) are required to achieve good per-
formance. The proposed parallelization that we have
described in this paper can be easily adapted to this Intel
MIC architecture because image pixels are contiguous
in memory allowing to use vectorization, and combin-
ing task-pipelining with image partitioning a high degree
of parallelism can be achieved (15 subimages, each one
having a full pipeline of 16 stages, imply 240 threads).

Garcia-Dopico et al. EURASIP Journal on Image and Video Processing 2014, 2014:18 Page 18 of 19
http://jivp.eurasipjournals.com/content/2014/1/18

The use of these kinds of coprocessors, MICs or GPUs,
can improve drastically the performance of the paralleliza-
tion scheme described in this paper.

Competing interests
The authors declare that they have no competing interests.

Received: 22 July 2013 Accepted: 13 February 2014
Published: 28 March 2014

References
1. SS eauchemin, JL Barron, The computation of optical flow. ACM Comput.

Surv. 27(3), 433–466 (1995)
2. X Feng, P Perona, Scene segmentation from 3D motion, in IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, Santa
Barbara, 23–25 June 1998 (IEEE Computer Society Los Alamitos, 1998),
pp. 225–231

3. S Temizer, Optical flow based local navigation. (PhD thesis, Massachusetts
Institute of Technology, Cambridge, MA, 2001)

4. JS Zelek, Towards Bayesian real-time optical flow.Image Vis. Comput.
22(12), 1051–1069 (2004)

5. Z Wei, DJ Lee, BE Nelson, KD Lillywhite, Accurate optical flow sensor for
obstacle avoidance, in Proceedings of the 4th International Symposium on
Advances in Visual Computing, Las Vegas, 1–3 December 2008, LNCS,
vol. 5358 (Springer Berlin, 2008), pp. 240–247

6. J Marzat, Y Dumortier, A Ducrot, Real-time dense and accurate parallel
optical flow using CUDA, in 17th International Conference WSCG, Plzen,
2–5 February 2009, pp. 105–111

7. P Sand, SJ Teller, Videomatching. ACMTrans, Graph. 23(3), 592–599 (2004)
8. F Champagnat, A Plyer, G Le Besnerais, B Leclaire, B Davoust, Y Le Sant,

Fast and accurate PIV computation using highly parallel iterative
correlation maximization. Exp. Fluids. 50(4), 1169–1182 (2011)

9. F Valentinotti, GD Caro, B Crespi, Real-time parallel computation of
disparity and optical flow using phase difference. Mach Vis. Appl.
9(3), 87–96 (1996)

10. F Weber, H Eichner, H Cuntz, A Borst, Eigenanalysis of a neural network for
optic flow processing. New J. Phys. 10(1), 015013 (2008)

11. K Sakurai, S Kyo, Okazaki S, Overtaking vehicle detection method and its
implementation using IMAPCAR highly parallel image processor. IEICE
Trans. 91-D(7), 1899–1905 (2008)

12. T Röwekamp, M Platzner, L Peters, Specialized architectures for optical
flow computation: a performance comparison of ASIC, DSP, and
multi-DSP, in Proceedings of the 8th ICSPAT, San Diego, 14–17 September
1997, pp. 829–833

13. J Kramer, Compact integrated motion sensor with three-pixel interaction.
IEEE Trans. Pattern Anal. Mach. Intell. 18(4), 455–460 (1996)

14. M Fleury, AF Clark, AC Downton, Evaluating optical-flow algorithms on a
parallel machine. Image Vis. Comput. 19(3), 131–143 (2001)

15. JH Barrón-Zambrano, FM del Campo-Ramírez, M Arias-Estrada, Parallel
processor for 3D recovery from optical flow, in International Conference on
Reconfigurable Computing and FPGAs, Cancun, 3–5 December 2008 (IEEE
Computer Society Los Alamitos, 2008), pp. 49–54

16. S Tan, J Dale, A Anderson, A Johnston, Inverse perspective mapping and
optic flow: a calibration method and a quantitative analysis. Image Vis.
Comput. 24(2), 153–165 (2006)

17. K Sakurai, S Kyo, S Okazaki, Overtaking vehicle detection method and its
implementation using IMAPCAR highly parallel image processor. IEICE
Trans. 91-D(7), 1899–1905 (2008)

18. C Braillon, C Pradalier, J Crowley, C Laugier, Real-time moving obstacle
detection using optical flow models, in 2006 IEEE Intelligent Vehicles
Symposium, Tokyo, 13–15 June 2006, pp. 466–471

19. K Pauwels, MM Van Hulle, Optic flow from unstable sequences through
local velocity constancy maximization. Image Vis. Comput. 27(5), 579–587
(2009)

20. G Zhang, J Jia, HBao WHua, Robust bilayer segmentation and
motion/depth estimation with a handheld camera. IEEE Trans. Pattern
Anal. Mach. Intell. 33(3), 603–617 (2011)

21. YS Hsieh, YC Su, LG Chen, Robust moving object tracking and trajectory
prediction for visual navigation in dynamic environments, in IEEE

International Conference on Consumer Electronics (ICCE), Las Vegas, 13–16
June 2012, pp. 696–697

22. B Lucas, T Kanade, An iterative image registration technique with an
application to stereo vision, in Proceedings of the 7th International Joint
Conference on Artificial Intelligence (IJCAI), Vancouver, 24–28 August 1981,
pp. 674–679

23. B Lucas, Generalized imagematching by method of differences. (PhD thesis,
Department of Computer Science, Carnegie-Mellon University, 1984)

24. J Barron, D Fleet, SS Beauchemin, Performance of optical flow techniques.
Int. J. Comput. Vis. 12(1), 43–47 (1994)

25. A Bainbridge-Smith, R Lane, Determining optical flow using a differential
method. Image Vis. Comput. 15(1), 11–22 (1997)

26. M Correia, A Campilho, J Santos, L Nunes, Optical flow techniques applied
to the calibration of visual perception experiments, in Proceedings of the
13th International Conference on Pattern Recognition, ICPR96, Vienna, 25–29
August 1996 vol.1, (1996), pp. 498–502

27. M Correia, A Campilho, Implementation of a real-time optical flow
algorithm on a pipeline processor, in Proceedings of the International
Conference of Computer Based Experiments, Learning and Teaching,
Szklarska Poreba, 28 September to 1 October, (1999)

28. J Díaz, E Ros, R Agís, JL Bernier, Superpipelined high-performance
optical-flow computation architecture. Comput. Vis. Image Underst.
112(3), 262–273 (2008)

29. T Brox, A Bruhn, N Papenberg, J Weickert, High accuracy optical flow
estimation based on a theory for warping, in European Conference on
Computer Vision (ECCV),Prague, 11–14 May 2009, LNCS,vol. 3024, ed. by
T Pajdla, J Matas (Springer Berlin, 2004), pp. 25–36

30. SN Tamgade, VR Bora, Motion vector estimation of video image by
pyramidal implementation of Lucas Kanade optical flow, in 2nd
International Conference on Emerging Trends in Engineering and Technology
(ICETET),16–18 December 2009 (IEEE Computer Society Piscataway,
2009), pp. 914–917

31. A Doshi, AG Bors, Smoothing of optical flow using robustified diffusion
kernels. Image Vis. Comput. 28(12), 1575–1589 (2010)

32. A Bruhn, J Weickert, C Schnörr, Lucas/Kanade meets Horn/Schunck:
combining local and global optic flow methods. Int. J. Comput. Vis.
61(3), 211–231 (2005)

33. M Drulea, IR Peter, S Nedevschi, Optical flow a combined local-global
approach using L1 norm, in Proceedings of the 2010 IEEE 6th International
Conference on Intelligent Computer Communication and Processing, ICCP
’10, Cluj-Napoca, 26–28 August 2010 (IEEE Computer Society Piscataway,
2010), pp. 217–222

34. T Brox, J Malik, Large displacement optical flow: descriptor matching in
variational motion estimation. IEEE Trans. Pattern Anal. Mach. Intell.
33(3), 500–513 (2011)

35. H Liu, TH Hong, M Herman, R Chellappa, Accuracy vs. efficiency trade-offs
in optical flow algorithms, in 4th European Conference on Computer Vision,
Cambridge, 15–18 April 1996, LNCS, vol. 1065, ed. by B Buxton, R Cipolla
(Springer Berlin, 1996), pp. 271–286

36. B Buxton, B Stephenson, H Buxton, Parallel computations of optic flow in
early image processing. Commun. Radar Signal Process. IEE Proc. F.
131(6), 593–602 (1984)

37. PE Danielsson, P Emanuelsson, K Chen, P Ingelhag, C Svensson, Single-
chip high-speed computation of optical Flow, inMVA’90 IAPRWorkshop on
Machine Vision Applications, Tokyo, 28–30 November 1990, pp. 331–336

38. G Adorni, S Cagnoni, M Mordonini, Cellular automata based optical flow
computation for “just-in-time” applications, in International Conference on
Image Analysis and Processing, Venice, 27–29 September 1999,
pp. 612–617

39. A Stocker, R Douglas, Computation of Smooth Optical Flow in a Feedback
Connected Analog Network. (MIT Press, Cambridge, 1998).
http://cogprints.org/82/

40. H Bulthoff, J Little, T Poggio, A parallel algorithm for real-time
computation of optical flow. Nature. 337(6207), 549–553 (1989)

41. Del Bimbo A, P Nesi, Optical flow estimation on Connection-Machine 2, in
Proceedings of Computer Architectures for Machine Perception, New Orleans,
15–17 December 1993, pp. 267–274

42. H Wang, J Brady, I Page, A fast algorithm for computing optic flow and its
implementation on a transputer array, in Proceedings of the BritishMachine
Vision Conference - BMVC90,Oxford, 24–27, September 1990, pp. 175–180

http://cogprints.org/82/

Garcia-Dopico et al. EURASIP Journal on Image and Video Processing 2014, 2014:18 Page 19 of 19
http://jivp.eurasipjournals.com/content/2014/1/18

43. C Colombo, A Del Bimbo, S Santini, A multilayer massively parallel
architecture for optical flow computation, in Proceedings of the 11th IAPR
International Conference on Pattern Recognition, 1992. Vol. IV. Conference D:
Architectures for Vision and Pattern Recognition, The Hague, 30 August to 3
September 1992, pp. 209–213

44. MG Milanova, AC Campilho, MV Correia, Cellular neural networks for
motion estimation, in 15th International Conference on Pattern Recognition
(ICPR‘00), Barcelona, 3–7 September 2000 (IEEE Computer Society
Los Alamitos, 2000), pp. 819–822

45. H Niitsuma, T Maruyama, High speed computation of the optical flow, in
Proceedings of the 13th International Conference Image Analysis and
Processing - ICIAP 2005,Cagliari, 6–8 September 2005, LNCS, vol. 3617,
ed. by F Roli, S Vitulano (Springer Berlin, 2005), pp. 287–295

46. J Sosa, J Boluda, F Pardo, R Gómez-Fabela, Change-driven data flow
image processing architecture for optical flow computation. J. Real-Time
Image Process. 2(4), 259–270 (2007)

47. T Browne, J Condell, G Prasad, T McGinnity, An investigation into optical
flow computation on FPGA hardware, in International Conference on
Machine Vision and Image Processing, 2008. IMVIP ’08, Portrush, 3–5,
September 2008, pp. 176–181

48. N Devi, V Nagarajan, FPGA based high performance optical flow
computation using parallel architecture. Int. J. Soft Comput. Eng.
2(1), 433–437 (2012)

49. Y Mizukami, K Tadamura, Optical flow computation on compute unified
device architecture, in Proceedings of the 14th International Conference
Image Analysis and Processing - ICIAP 2007,Modena, 10–14 September
2007, pp. 179–184

50. M Gong, Real-time joint disparity and disparity flow estimation on
programmable graphics hardware. Comput Vis. Image Underst.
113(1), 90–100 (2009)

51. MV Correia, AC Campilho, A pipelined real-time optical flow algorithm, in
Proceedings of Image Analysis and Recognition ICIAR (2), Porto, 29
September to 1 October 2004, LNCS, vol. 3212, ed. by AC Campilho,
MS Kamel (Springer Berlin, 2004), pp. 372–380

52. J Chase, B Nelson, J Bodily, Z Wei, DJ Lee, Real-time optical flow
calculations on FPGA and GPU architectures: a comparison study, in
16th International Symposium on Field Programmable CustomComputing
Machines, Palo Alto, 14–15 April 2008 (IEEE Los Alamitos, 2008),
pp. 173–182

53. (2014). http://www.top500.org Accessed 6 Mar 2014
54. A García Dopico, M Correia, J Santos, L Nunes, Distributed computation of

optical flow, in 4th International Conference on Computational Science
(ICCS 2004): 6-9 Jun 2004; Krakow, LNCS, vol. 3037, ed. by M Bubak,
G van A lbada, P Sloot, J Dongarra (Springer Berlin, 2004), pp. 380–387

55. T Kohlberger, C Schnorr, A Bruhn, J Weickert, Domain decomposition
for variational optical-flow computation. IEEE Trans. Image Process.
14(8), 1125–1137 (2005)

56. EM Kalmoun, H Köstler, U Rüde, 3D optical flow computation using a
parallel variational multigrid scheme with application to cardiac C-arm CT
motion. Image Vis. Comput. 25(9), 1482–1494 (2007)

57. E Simoncelli, E Adelson, D Heeger, Probability distributions of optical flow,
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition,Maui, 3–6 June 1991, pp. 310–315

doi:10.1186/1687-5281-2014-18
Cite this article as: Garcia-Dopico et al.: Parallelization of the optical flow
computation in sequences frommoving cameras. EURASIP Journal on Image
and Video Processing 2014 2014:18.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://www.top500.org

	Abstract
	Keywords

	1 Introduction
	2 Parallelization of the optical flow
	3 The Lucas and Kanade algorithm
	3.1 Implementation
	3.2 Results of the sequential algorithm

	4 Sequential algorithm tasks and dependencies
	5 Parallel algorithm
	6 Pipeline structure
	6.1 Pipeline stages

	7 Shared memory version with hyperthreading
	8 Message-passing version
	9 Message-passing and threads
	9.1 Node 0
	9.2 Node 1
	9.3 Nodes 2 to 7

	10 Results
	10.1 Cluster architecture
	10.2 Shared memory version
	10.3 Message-passing version
	10.4 Message-passing and shared memory version

	11 Conclusion
	Competing interests
	References

