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Abstract

In this paper, we study the use of local spatiotemporal patterns in a non-parametric dynamic texture synthesis
method. Given a finite sample video of a texture in motion, dynamic texture synthesis may create a new video
sequence, perceptually similar to the input, with an enlarged frame size and longer duration. In general,
non-parametric techniques select and copy regions from the input sample to serve as building blocks by pasting them
together one at a time onto the outcome. In order to minimize possible discontinuities between adjacent blocks, the
proper representation and selection of such pieces become key issues. In previous synthesis methods, the block
description has been based only on the intensities of pixels, ignoring the texture structure and dynamics. Furthermore,
a seam optimization between neighboring blocks has been a fundamental step in order to avoid discontinuities. In
our synthesis approach, we propose to use local spatiotemporal cues extracted with the local binary pattern from
three orthogonal plane (LBP-TOP) operator, which allows us to include in the video characterization the appearance
and motion of the dynamic texture. This improved representation leads us to a better fitting and matching between
adjacent blocks, and therefore, the spatial similarity, temporal behavior, and continuity of the input can be successfully
preserved. Moreover, the proposed method simplifies other approximations since no additional seam optimization is
needed to get smooth transitions between video blocks. The experiments show that the use of the LBP-TOP
representation outperforms other methods, without generating visible discontinuities or annoying artifacts. The results
are evaluated using a double-stimulus continuous quality scale methodology, which is reproducible and objective.
We also introduce results for the use of our method in video completion tasks. Additionally, we hereby present that
the proposed technique is easily extendable to achieve the synthesis in both spatial and temporal domains.
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Introduction
Texture synthesis is an active research area with wide
applications in fields like computer graphics, image pro-
cessing, and computer vision. The texture synthesis prob-
lem can be stated as follows: given a finite sample texture,
a system must automatically create an outcome with sim-
ilar visual attributes of the input and a predefined size.
Texture synthesis is a useful alternative way to create arbi-
trarily large textures [1]. Furthermore, since it is only
necessary to store a small sample of the desired texture,
the synthesis can bring great benefits in memory storage.
Most texture synthesis research has been focused on the
enlargement of static textures. However, dynamic texture
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synthesis is receiving a growing attention during recent
years.
Dynamic textures are essentially textures in motion and

have been defined as video sequences that show some kind
of repetitiveness in time or space [2,3]. Examples of these
textures include recordings of smoke, foliage and water
in motion. Comparatively to the static texture synthesis,
given a finite video sample of a dynamic texture, a syn-
thesis method must create a new video sequence which
looks perceptually similar to the input in appearance and
motion. The temporal domain synthesis comprises the
duration of the video, while the spatial domain synthe-
sis consists of enlarging the frame size. The synthesis in
both domains must keep a natural appearance, avoiding
discontinuities, jumps and annoying artifacts.
The number of methods for dynamic texture syn-

thesis that have been proposed can be separated into
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two groups: parametric and non-parametric. Parametric
methods address the problem as a modeling of a station-
ary process, where the resulting representation allows to
generate a new video with similar characteristics as the
input sample [2-7]. A clear disadvantage of these meth-
ods is that the estimation of the parameters may not be
straightforward, being time-consuming and computation-
ally demanding. Besides, the synthetic outputs may not
be realistic enough, showing some blurred results. In con-
trast, we have the non-parametric methods, also known
as exemplar-based techniques, which actually have been
the most popular techniques up to now. The success of
these methods comes from their outcomes, which look
more natural and realistic than those of the parametric
methods. Considerable work in non-parametric methods
has been developed for dynamic texture synthesis along
the time domain. Nevertheless, the synthesis in the spatial
domain has not received the same attention.
Non-parametric techniques for texture synthesis were

born only for static textures and are categorized into two
types: pixel-based and patch-based. Pixel-based methods
are the pioneers in non-parametric sampling for static
texture synthesis, starting with the innovating work by
Efros and Leung [8]. As their name says, the pixel-based
methods grow a new image outward from an initial seed
one pixel at a time, where each pixel to be transferred to
the output is selected by comparing its spatial neighbor-
hood with all neighborhoods in the input texture. This
method is time-consuming, and an extension to dynamic
texture synthesis might be impractical. In order to attend
this issue, Wei and Levoy [9] proposed an acceleration
method, and the synthesis of dynamic texture can be
achieved. However, the pixel-based methods are suscep-
tible to deficient results because one pixel might not be
sufficient to capture the large-scale structure of a given
texture [10]. On the other hand, we have the patch-based
methods. These techniques select and copy whole neigh-
borhoods from the input, to be pasted one at a time onto
the output, increasing the speed and quality of the syn-
thesis results. In order to avoid discontinuities between
patches, their representation, selection, and seaming pro-
cesses become key issues. The main research trend in
these methods is to minimize the mismatches on the
boundaries between patches, after their placement in the
corresponding output. The new patch can be blended
[11] with the already synthesized portion, or an optimal
cut can be found for seaming the two patches [12,13].
The patch-based methods have shown the best synthe-
sis results up to now. However, some artifacts are still
detected in their outputs. The reason is that in these
methods, there has been more attention on the patch
seaming than in the patch representation for a better
selection and matching. We must select the patch that
matches the best with the preceding one, depending on a

given visual feature. Usually, only the color features have
been considered. This assumption may result in struc-
tural mismatches along the synthesized video. Recent
approaches for static texture synthesis have proposed the
use of structural features [10,14], thereby preserving the
texture appearance by improving the representation and
selection of patches. Nonetheless, an extension of these
methods to dynamic texture synthesis has not been con-
sidered. To our knowledge, there are no synthesismethods
of dynamic texture that explore the use of features that
consider structure, appearance, and motion for the patch
representation and selection.
In this paper, we propose the use of local spatiotempo-

ral patterns [15], as features in a non-parametric patch-
based method for dynamic texture synthesis. The use
of such features allows us to capture the structure of
local brightness variations in both spatial and temporal
domains and, therefore, describe appearance and motion
of dynamic textures. In our method, we take advantage
of these patterns in the representation and selection of
patches. With this improvement, we capture more struc-
tural information for a better patch matching, preserving
properly the structure and dynamics of the given input
sample. In this way, we can simplify the synthesis method
with a very competitive performance in comparison with
other patch-based methods. The main contributions of
this paper are the following: (1) the extension of a patch-
based approach, previously applied only for static texture,
for its use in dynamic texture synthesis; (2) the dynamic
texture description through local spatiotemporal features,
instead of using only the color of the pixels. With this
improvement, we capture the local structural informa-
tion for a better patch matching, preserving properly the
appearance and dynamics of a given input texture. (3)
A simplified method, where the computation of an opti-
mal seam between patches can be omitted. This can be
achieved because of the fitting and matching of patches.
(4) A robust and flexible method that can lead to differ-
ent kinds of dynamic texture videos, ranging from videos
that show spatial and temporal regularity, those con-
formed by constrained objects and videos that contain
both static and dynamic elements, showing irregularity in
both appearance and motion. (5) A combination with a
temporal domain synthesis method in such a way that we
can perform the synthesis in both the spatial and temporal
domains. (6) The use of suchmethod for video completion
tasks.
It must be mentioned that this is a formal review and

an extension of our previous work on synthesis only in
the spatial domain [16]. In this study, we have carried
out new tests that show our contribution more objec-
tively. New results were obtained to test the boundaries
of our proposal, using different types of dynamic tex-
tures for synthesis. For the evaluation of the results, the
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previous work only includes personal comments of the
quality achieved, while in the current manuscript, the
results are evaluated using a double-stimulus continuous
quality scale (DSCQS) methodology for the video qual-
ity assessment, which is reproducible and objective. A
comparison with other state-of-the-art parametric and
non-parametric approaches, following the same assess-
ment methodology, is also presented in this manuscript.
Furthermore, we hereby present results for the use of
our method in constrained synthesis tasks, where miss-
ing parts in a given video can be considered as holes that
must be filled. Moreover, we also propose results for the
combination of our technique with a temporal synthesis
method, in order to achieve the synthesis in both spatial
and temporal domains. This last change is important since
previous methods are mainly focused only on synthesis in
temporal domain.
This paper is organized as follows: in the section

‘Dynamic texture synthesis using local spatiotemporal
features’, the local spatiotemporal features used in this
work and the proposed approach are defined. In the
‘Experiments and results’ section, we include a set of
tests using a standard database of dynamic textures, a
comparison with other parametric and non-parametric
approaches in order to validate our method, and the appli-
cation of our algorithm in constrained synthesis tasks.
Finally, ‘Conclusions’ section presents a summary of this
work and our concluding remarks.

Dynamic texture synthesis using local
spatiotemporal features
In this section, the spatiotemporal features used for the
representation of dynamic texture patches are defined.
Also, the proposedmethod for the texture synthesis in the
spatial domain is described. After that, with the combina-
tion of a method in spatial domain and a temporal domain
approach, we can achieve a full synthesis in both spatial
and temporal domains.

The spatiotemporal descriptor
The local binary pattern from three orthogonal planes
(LBP-TOP) [15] is a spatiotemporal descriptor for
dynamic textures. The LBP-TOP considers the co-
occurrences in three planes XY, XT and YT, capturing
information about space-time transitions. The LBP-TOP
is an extension of the local binary patterns (LBP) pre-
sented by Ojala et al. [17]. As it is known, the LBP is
a theoretically simple yet an efficient approach to char-
acterize the spatial structure of a local texture. Basically,
the operator labels a given pixel of an image by thresh-
olding its neighbors in function of the pixel intensity and
summing the thresholded values weighted by powers of
two. According to Ojala et al., a monochrome texture
image T in a local neighborhood is defined as the joint

distribution of the gray levels of P(P > 1) image pixels
T = t(gc, g0, . . . , gP−1), where gc is the gray value of the
center pixel and gp(p = 0, 1, . . . , P − 1) are the gray val-
ues of P equally spaced pixels on a circle radius R(R > 0)
that form a circularly symmetric neighbor set. If the coor-
dinates of gc are (xc, yc), then the coordinates of gp are
(xc −R sin(2πp/P), yc+R cos(2πp/P)). The LBP value for
the pixel gc is defined as in Equation 1:

LBPP,R(gc) =
P−1∑
p=0

s(gp−gc)2p, s(t) =
{
1, t ≥ 0,
0, otherwise.

(1)

More details can be further consulted in [17].
For the spatiotemporal extension of the LBP, named

as LBP-TOP, the local patterns are extracted from the
XY, XT, and YT planes, with XY the frame plane and
XT and YT the temporal variations planes. Each code
is denoted as XY -LBP for the space domain, and XT-
LBP and YT-LBP for space-time transitions [15]. In the
LBP-TOP approach, the three planes intersect in the cen-
ter pixel, and three different patterns are extracted in
function of that central pixel (see Figure 1). The local
pattern of a pixel from the XY plane contains informa-
tion about the appearance. In the local patterns from
XT and YT planes, statistics of motion in horizontal
and vertical directions are included. In this case, the
radii in axes X, Y, and T are RX , RY , and RT , respec-
tively, and the number of neighboring points in each
plane is defined as PXY , PXT , and PYT . Supposing that
the coordinates of the center pixel gtc,c are (xc, yc, tc), the
coordinates of the neighbors gXY ,p in the plane XY are
given by (xc−RX sin(2πp/PXY ), yc+RY cos(2πp/PXY , tc).
Analogously, the coordinates of gXT ,p in the plane XT
are (xc − RX sin(2πp/PXT ), yc, tc −RT cos(2πp/PXT ), and
the coordinates of gYT ,p on the plane YT are (xc, yc −
RY cos(2πp/PYT ), tc − RT sin(2πp/PYT ).
For the implementation proposed in this paper, each

pixel in the input sequence Vin is analyzed with the

Figure 1 Creation of the LBP-TOP-coded sequence. Each pixel in
the corresponding LBP-TOP sequence is obtained by extracting the
LBPs from the three orthogonal planes in the input sequence.
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LBP-TOPPXY ,PXT ,PYT ,RXY ,RXT ,RYT operator, in such a way
that we obtain a LBP-TOP-coded sequence VLBP-TOP.
Each pixel in the VLBP−TOP sequence is coded by three
values, comprising each of the space-time patterns of
the local neighborhood, as can be seen in Figure 1.
As we said before, in patch-based methods, each patch
must be carefully selected, depending on a given visual
feature. To accomplish this task, we use VLBP-TOP as
a temporary sequence for the patch description in the
selection process. This means that instead of compar-
ing the similarity of patches using only the intensity, we
compare them using their corresponding LBP values in
VLBP-TOP.

Dynamic texture synthesis in spatial domain
In this paper, as we said before, we propose the synthe-
sis of dynamic textures using local spatiotemporal features
[15] in a patch-based method for dynamic texture syn-
thesis. As mentioned, patch-based algorithms basically
select regions from the input as elements to build an
output. Since our method synthesize textures in motion,
we take video volumes as such building blocks to obtain
the desired sequence. The selection of these volumes is
crucial, in order to obtain a high quality synthesis and
smooth transitions. In our approach, we achieve this by
including local structural information for a better video
volume matching. The use of this information allows us to
consider the local spatial and temporal relations between
pixels and, therefore, get more insight about the structure
of a given dynamic texture.
In general, our method can be described in an algo-

rithmic manner: the synthesized output video is built by
sequentially pasting video volumes or blocks in raster scan
order. In each step, we select a video block Bk from the
input video Vin and copy it to the output Vout. To avoid
discontinuities between adjacent volumes, we must care-
fully select Bk based on the similarity of its spatiotemporal
cues and the features of the already pasted neighbor Bk−1.
At the beginning, a volume B0 ofWx ×Wy ×Wt pixel size
is randomly selected from the input Vin and copied to the
upper left corner of the output Vout. The following blocks
are positioned in such a way that they are partially over-
lapped with the previously pasted ones. The overlapped
volume between two blocks is of sizeOx ×Oy ×Ot pixels.
If the input sample Vin is of Vx ×Vy ×Vt pixel size, we set
the synthesis block size as Wx × Wy × Wt , and the over-
lapped volume of two adjacent blocks as Ox ×Oy ×Ot . In
this process we consider Vt = Wt = Ot .
In Figure 2, the following elements are illustrated: a

video block, the boundary zone, where two video blocks
should match, and an example of the overlapped vol-
ume between two blocks. In Figure 2b, the selected block
Bk has a boundary zone EBk , and the previously pasted
volume in Vout has a boundary zone Eout.

According to our method and in order to avoid dis-
continuities, EBk and Eout should have similar local spa-
tiotemporal structure properties. It could be easy to think
that the video block that matches the best is selected to
be pasted on the output. However, as it was pointed out
by Liang et al. [11], for the case of static texture synthe-
sis, this can lead to a repeatability of patterns, and some
randomness in the output is desirable.
In order to accomplish a better video block selection and

preserve a certain degree of randomness in the outcome,
we build a set of candidate video patches AB. This set
is built by elements which are considered to match with
previously pasted volumes with some tolerance. Then, we
select one block randomly from this set. Let B(x,y,t) be a
volume whose upper left corner is at (x, y, t) in Vin. We
construct

AB = {B(x,y,t)|d(EB(x,y,t) , Eout) < dmax}, (2)

where EB(x,y,t) is the boundary zone of B(x,y,t), and dmax
is the distance tolerance between two boundary zones.
Details on how to compute d(·) are given later.
When we have determined all the potential blocks, we

pick one randomly from AB to be the kth video block Bk
to be pasted on Vout. The cardinality of AB depends on
how many video blocks form the input satisfy the simi-
larity constraints given by dmax. With a low value of dmax,
the output will have a better quality, but few blocks will
be considered to be part of AB. By contrast, with a high
tolerance, a big number of blocks will be part of the set
and there will be more options to select, but the quality of
the output will be compromised. For a given dmax, the set
AB could be empty. In such case, we choose Bk to be the
block B(x,y,t) from Vin, whose boundary zone EB(x,y,t) has
the smallest distance to the boundary zone of the output
Eout. In our implementation, the similarity constrain dmax
is set to be dmax = 0.01VL, where V is the number of pix-
els in the overlapped volume and L is the maximum LBP
value in the sequence.
The final computation of the overlapping distance

between a given block EB(x,y,t) and the output Eout is esti-
mated by using the L2 norm through the corresponding
LBP values for each pixel. As it was mentioned before, we
use the VLBP-TOP representation as a temporary sequence
for the patch description. The input sequence Vin is
analyzed with the LBP-TOPPXY ,PXT ,PYT ,RXY ,RXT ,RYT oper-
ator, in such a way that we obtain a LBP-TOP-coded
sequence VLBP-TOP. Here, we set the operator to be
LBP-TOP8,8,8,1,1,1, and therefore, each pixel from the Vin
sequence is coded in VLBP-TOP by three basic LBP values,
one for each orthogonal plane. The overlapping distance
is defined as

d(EB(x,y,t) ,Eout) =
⎡
⎣1
V

V∑
i=1

3∑
j=1

[
pjB(x,y,t)

(i) − pjout(i)
]2⎤⎦

1/2

, (3)
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Figure 2 Illustration of the building blocks. Examples of (a) a video block, (b) the boundary zone of two different video volumes, and (c) the
overlapped volume between two blocks. The boundary zones must have similar LBP-TOP features.

whereV is the number of pixels in the overlapped volume.
pjB(x,y,t)

(i) and pjout(i) represents the LBP values of the ith
pixel on the jth orthogonal plane, respectively. For color
textures, we compute the LBP-TOP codes for each color
channel. In this paper, we use the RGB color space, and
the final overlapping distance is the distance average for
all the color components.
In summary, the creation of the output is shown in

Figure 3, where the three possible configurations of the
overlapping zones are also shown. Figure 3a presents the
step where the second block is pasted, and the boundary
zone is taken only on the left side. Figure 3b shows when
Bk is the first block in the second or subsequent rows, and
the boundary is taken on the upper side of it. The third
case, illustrated in Figure 3c, is when Bk is not the first on
the second or subsequent rows. Here, the total distance
is the addition of the distances from the above and left
boundaries.
It is important to mention that the size of a given

block and the overlapped volumes are dependent on the
properties of a particular texture. The size of the video
block must be appropriate; it must be large enough to
represent the structural composition of texture, but at
the same time, small enough to avoid redundancies. This

characteristic makes our algorithm flexible and control-
lable. In our proposal, this parameter is adjusted empiri-
cally, but still, it can be automatically approximated with
methods to obtain the fundamental pattern or texel size,
like the ones proposed in [18,19]. In the same way, the
boundary zone should avoid mismatching features across
the borders, but at the same time, be tolerant to the border
constraints. The overlapping volume is a small fraction of
the block size. In our experiments, we take one sixth of the
total patch size volume.
On the overlapped volume, in order to obtain smooth

transitions and minimize artifacts between two adjacent
blocks, we blend the volumes using a feathering algorithm
[20]. This algorithm set weights to the pixels for attenu-
ating the intensity around the blocks’ boundaries using a
ramp style transition. As a result, possible discontinuities
are avoided, and soft transitions are achieved.

Experiments and results
In this section, we present series of tests that have been
accomplished in order to evaluate the performance of
our method. At first, an assessment of performance is
made on a variety of dynamic textures. Next, comparisons
between the proposed approach with other four state-of-

Figure 3 Illustration of our patch-based method process for dynamic texture synthesis. The darker zone is the already synthesized portion of
video. Implicitly, three possible overlapping zones between the output Eout and the new block Ek are also shown: (a) the overlapping zone is on the
left side of Ek , (b) the overlapping zone is taken from the upper side of Ek , and (c) the overlapping zone is taken from the upper and left sides.
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Figure 4 Results of the synthesis in spatial domain. (a to n) Frames taken from the original sequence and the corresponding synthesis results.
The block size used for obtaining such results is shown for each sequence.

the-art methods are made to validate its application. The
comparison is carried out with both parametric and non-
parametric methods. The parametric methods presented
are proposed by Bar-Joseph et al. [21] and by Costantini
et al. [4]. For comparison with non-parametric methods,

we have included the pixel-based technique proposed by
Wei and Levoy [9] and the patch-based approach intro-
duced by Kwatra et al. [13]. The selected baseline methods
were selected for their impact to the dynamic texture
synthesis field. Specifically, the method presented in [13]
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Figure 5 Box plot of the subjective opinion scores of the
synthesized sequences in Figure 4. The outliers are presented as
red crosses.

is the most popular and recent approach that achieves
the synthesis of dynamic textures in both time and space
domains using a non-parametric technique. Moreover, it
is more similar to our proposal, since it uses a patch-based
sampling. Afterwards, we also consider our method for a
video completion task. All the resulting videos are avail-
able on the website https://dl.dropboxusercontent.com/u/
13100121/SynResults.zip.

Performance on a variety of dynamic textures
In the first experiment, a set of 14 videos was selected for
evaluating our approach performance on different types
of dynamic textures. The videos were selected from the
DynTex database [22], which provides a comprehensive
range of high-quality dynamic textures and can be used for
diverse research purposes. In Figure 4, a frame (176× 120
pixel size) taken from each original video is presented. The
selected sequences correspond to videos that show spa-
tial and temporal regularities (a to d), constrained objects
with temporal regularity (e to h), and videos that show
some irregularity in either appearance or motion (i to n).
In this context, the term regularity can be interpreted as
the repeatability of a given pattern along one dimension,
such as of a texture primitive or a movement cycle. Next
to each original frame, the resulting synthesized outputs,
enlarged to 200×200 pixel size, are presented. The spatial
dimensions of the block Wx × Wy used for synthesis are
shown below each image. The temporal dimension Wt of
each block corresponds to the time duration of the given

input sample, so that from now the Wt parameter will be
obviated.
As we can observe in Figure 4a,b,c,d, our method pre-

serves the spatiotemporal regularity of the input, and the
borderlines between blocks are practically invisible. It is
worth mentioning that in our method, we do not need
to compute an additional optimal seam on the borders
between the adjacent video volumes to achieve smooth
transitions, such as the optimal cut used in [13]. This soft
transition in our outcomes is achieved through the proper
selection of blocks that have similar spatiotemporal fea-
tures using the LBP-TOP representation. The sequences
shown in Figure 4e,f,g,h are different in the sense that they
are composed by constrained objects. In these examples,
it is important that the structure of these objects can be
maintained in the output, where we aim to generate an
array of these objects. As it is pointed out by the results,
our method can keep the shape and structure of a given
object without generating any discontinuity.
The last set of examples, shown in Figure 4i,j,k,l,m,n,

is of great interest since it shows videos that contain
both static and dynamic elements, showing irregularity
in both appearance and motion. This is a very common
characteristic in real sequences. As far as we know, there
are no proposals to handle this kind of videos since in
general, previous methods for dynamic texture synthesis
assume some spatial homogeneity. Specifically, the exam-
ple shown in Figure 4m is interesting because it contains
a lattice in front of the flowers in motion. In the result-
ing video, we can see that the structure of the lattice
is completely maintained without any discontinuity. Fur-
thermore, the appearance and dynamics of the rest of the
elements, both static and in motion, from the original
video are preserved.
A quantitative and reliable evaluation of texture syn-

thesis is not an easy task. The final goal of synthesis is
to achieve a high-quality result, able to trick the human
visual perception. However, the perception of quality dif-
fers from person to person, and moreover, there are
usually more than one acceptable outcome. Therefore,
in this paper, we consider that a subjective evaluation is
the most appropriate. We propose to carry a subjective
assessment, where a set of test subjects are asked to give
their opinion about the perceived quality of a given video.
The synthetic sequences are subjectively evaluated using
the DSCQS methodology [23], provided by the Interna-
tional Telecommunication Union through the recommen-
dation ITU-R BT.500-11, for a subjective assessment of

Table 1 Average performance of ourmethod

a b c d e f g h i j k l m n Average

μ 3.8 4.6 4.1 3.6 4.5 4.5 3.6 3.6 4.4 3.7 4.3 4.1 4.3 3.7 4.1

σ 0.78 0.5 0.78 0.86 0.52 0.72 1.22 1.22 0.72 0.44 0.70 0.60 0.70 0.66 0.74

https://dl.dropboxusercontent.com/u/13100121/SynResults.zip
https://dl.dropboxusercontent.com/u/13100121/SynResults.zip
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Figure 6 Visual comparison between the original video and the results of parametric techniques and our method. The original video is
presented in the first column, while the resulting clips of the parametric techniques PM1 and PM2 are shown in the second column. The resulting
sequence of our method STFSyn is presented in the third column.

the quality of videos. This is a measure given by a num-
ber of subjects on how well the image characteristics of
the original clip are faithfully preserved in the synthe-
sized video. The measure is presented as a five-point
quality scale. The scores correspond to the following: 1
BAD, 2 POOR, 3 FAIR, 4 GOOD, and 5 EXCELLENT.
The main advantage of this evaluation method is that it

turns the subjective tests in reproducible and objective
evaluations.
The testing protocol is described as follows. We asked

for 15 non-expert volunteers to participate in the experi-
ments. All of these subjects neither were part of our team
nor are related to texture synthesis work. This is impor-
tant to mention since non-expert observers yield more
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Figure 7 Box plot of the subjective opinion scores of quality for each synthesized sequence in Figure 6. The clips are (a) JELLYFISH, (b)
CROWD, (c)WATERFALL, and (d) RIVER.

critical evaluations about the synthesis quality. We placed
the input texture video and the corresponding output on
a screen side by side and asked our subjects to rate the
quality of the video.
The results for the opinion scores of the synthesized

videos are presented in Figure 5, where each box is the
result of subjective opinions for each sequence presented
in Figure 4. The box plots help indicate the degree of
dispersion of the corresponding data samples, and the
median and outliers (red cross) of the samples can be
easily identified. In this box plot, we can see that the
median of the opinion scores of most of our sequences
ranges between 4 (GOOD) and 5 (EXCELLENT). It was
observed that only the synthetic video (d) has a median
on FAIR. The corresponding output of video (g) not only
has received the lowest score of 2 (POOR) but also has
received the highest of 5 (EXCELLENT). A very low out-
lier of 1 (BAD) is detected in the synthetic video (h).
This means that only one subject considers this video
as bad. The opinion scores were also statistically evalu-
ated; the mean value (μ) and standard deviation (σ ) of
the opinions are computed to determine the total aver-
age results. These data can be consulted on Table 1, where
we can see that the total mean quality achieved by our
method is of 4.1, interpreted as 4 (GOOD), for all the
test sequences. We can also observe that there is a low
variation of opinions, with a value of σ of 0.74.

Performance comparison
The second experiment is a comparison with other
state-of-the-art methods. We have compared our
approach (called STFSyn from now on, for spatiotemporal

feature-based synthesis) with both parametric and non-
parametric approaches. We have borrowed the sequences
used by other methods for testing their approaches and
feed our method with such inputs. This is to compare
the resulting quality achieved by the different methods.
All the synthetic videos created for comparison purposes
were also assessed with the DSCQS methodology. Each
synthetic video is placed next to the original one and sub-
mitted for evaluation of the same 15 non-expert subjects
who would score the perceived quality in comparison
with the original one. In this part of the experiment, each
stimulus is randomly presented to the subjects, without
telling them the method implemented to obtain such out-
come. The parameters used by our method STFSyn are
reported in each description.
For comparison with parametric methods, we have bor-

rowed the sequences presented by Bar-Joseph et al. [21]
and used by Costantini et al. [4] for their experiments, and
execute STFSyn algorithm with such inputs. In Figure 6, a

Table 2 Performance comparison of our method with the
parametric approaches

JELLYFISH CROWD WATERFALL RIVER Average

PM1μ 3.23 3.23 - - 3.23

PM2μ - - 4.41 2.64 3.53

STFSynμ 4.32 4.0 4.58 4.29 4.32

PM1σ 1.56 1.25 - - 1.40

PM2σ - - 0.71 0.93 0.82

STFSynσ 0.49 0.74 0.61 0.58 0.60

The best average results are italicized.



Lizarraga-Morales et al. EURASIP Journal on Image and Video Processing 2014, 2014:17 Page 10 of 15
http://jivp.eurasipjournals.com/content/2014/1/17

Figure 8 Visual comparison between the original video, non-parametric techniques and our method. The original video is presented in the
first column. The resulting clips of the non-parametric techniques NPM1 and NPM2 are shown in the second and third columns, respectively. Finally,
the sequence resulting from our method STFSyn is presented in the fourth column.

frame extracted from the original sequences CROWDand
JELLYFISH (256 × 256 pixel size) used by Bar-Joseph et
al. (called as PM1 for parametric method 1) is presented.
Next to the original frame, a frame extracted from the
sequence obtained from PM1 is also shown. In the third
column, a frame from STFSyn results is displayed. In our
method, the video CROWD was synthesized with a block
of 70 × 70 pixel size, and the JELLYFISH video synthe-
sis required a 80 × 80 pixel size volume. In Figure 6, we
also present a frame of the original sequences, WATER-
FALL and RIVER, reported by Costantini et al. (PM2) in
their experiments. A frame from STFSyn results is also
displayed. The video WATERFALL was synthesized with

a block of 85 × 85 pixel size, and the RIVER video syn-
thesis required a 90 × 90 pixel size block. Here, it is
observed that both parametric methods present artifacts,
discontinuities, and are blurred, while the videos gener-
ated by the proposed method STFSyn keep a natural look
in comparison with the original.
The resulting subjective opinion scores for each syn-

thetic sequence are shown in Figure 7. In this figure, we
can see that STFSyn method achieves better performance
than the parametric methods. The median of the per-
ceived quality of STFSyn is ranked as 4 (GOOD) and
5 (EXCELLENT), while the median by the Bar-Joseph
method (PM1) [21] is only between 3 (FAIR) and 4

Figure 9 Box plot of the subjective opinion scores of the synthesized sequences in Figure 8. The outliers are presented as red crosses.
The clips are (a) SMOKE and (b) OCEAN.
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(GOOD). The sequence WATERFALL synthesized by the
PM2 [4] has received the same median punctuation than
our method as 5 (EXCELLENT). For the video RIVER, the
PM1 received a median ranking of 3 (FAIR), while STF-
Syn was punctuated as 4 (GOOD). The mean (μ) and the
standard deviation (σ ) were also computed from the data
obtained by each method (PM1, PM2, and our STFSyn)
for each video clip. The results are presented in Table 2,
where the best results are highlighted in italics. In this
table, we can see that the STFSyn approach gets the best
average score of 4.32, in comparison to the 3.23 and 3.53
for the PM1 and PM2, respectively. Besides, our approach
presents a lower variation in the perceived quality by the
subjects, with a σ value of 0.6, in comparison with the 1.40
and 0.82 presented by the PM1 and PM2, respectively.
We have also compared our approach with non-

parametric methods. The selected proposals were the two
most representative methods, the pixel-based technique
proposed byWei and Levoy [9] and the well-known patch-
based method proposed by Kwatra et al. [13]. We have
borrowed the sequences named OCEAN and SMOKE
used by bothWei and Levoy (NPM1) and Kwatra (NPM2)
in their experiments for spatiotemporal synthesis and
made a comparison of their quality with our results. The

video OCEAN was synthesized with the STFSyn using a
block of 75 × 75 pixel size, and the SMOKE video syn-
thesis required a 95 × 95 pixel size block. In Figure 8
frames extracted from the original sample, the result from
Wei and Levoy (NPM1) [9], the outcomes by Kwatra et
al. (NPM2) [13], and our results are presented. Here, it is
observed that the videos obtained by NPM1 are consider-
ably blurred, while the videos generated by NPM2 and by
our method keep a natural appearance and motion of the
two phenomena.
The corresponding assessment of the results by NPM1

[9] and NPM2 [13] with the DSCQS methodology is pre-
sented in Figure 9. In this figure, we can see that for the
two sequences, the NPM1 receives a median score of 3
(FAIR); the NPM2 resulting sequences have their median
ranked as 4 (GOOD), while ourmethod achieves amedian
score of 5 (EXCELENT) in both cases.
In a third comparison (see Figure 10), we have bor-

rowed more video sequences reported only by Kwatra et
al. (NPM2) for spatiotemporal synthesis. Here, the tested
sequences are CLOUDS, WATERFALL, and RIVER. The
video CLOUDS was synthesized with a video patch of
80×80 pixel size;WATERFALL and RIVER, as it wasmen-
tioned before, required a block of 85×85 and 90×90 pixel

Figure 10 Visual comparison between the original sequence, the non-parametric technique NPM2 and our method. The original sequence
is shown in the first column. The resulting outcome of the non-parametric method NPM2 is presented in the second column, and our method
resulting video is shown on the third column.
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Figure 11 Box plot of the subjective opinion scores of the synthesized sequences in Figure 10. The clips are (a) CLOUDS, (b)WATERFALL,
and (c) RIVER. The outliers are presented as red crosses.

size, respectively. As it can be seen from the results shown
in Figure 10, both NPM2 and our method have gener-
ated very competitive and pleasant results for the dynamic
texture synthesis. It is very difficult to see if any of the
methods generates artifacts or discontinuities. However,
the assessment carried out with the DSCQS methodol-
ogy (see Figure 9 and Figure 11) highlights the differences
in quality achieved by each method. In Figure 11, we
can observe that both approaches performed with median
rankings of 4 (GOOD) and 5 (EXCELENT). However,
the NPM2 in the WATERFALL sequence has received
evaluations as low as 1 (POOR). It is important to high-
light that the clip RIVER was the only one considered by
NPM2 for increasing the spatial resolution, process that
we have done to every video presented in these compar-
isons. From all these comparisons, we can observe that
the only method that achieves similar quality results is the
one presented by Kwatra et al. (NPM2) [13]. The main
difference and advantage of our method in comparison
with NPM2 is that because of the proper representation of
building blocks, our method does not need to compute an
optimal seam. This characteristic allows us to simplify the
synthesis method.
The corresponding mean (μ) values and standard devi-

ation (σ ) for each video achieved by each non-parametric
method (NP1, NP2, and and STFSyn) are detailed in
Table 3, where the best average performance is highlighted
in italics. In this table, we can see that our method STF-
Syn in most cases receives higher opinion values than the
other non-parametric approaches. Only the NP2 with the
clip WATERFALL achieves a slightly superior mean value
of 4.58 in comparison with our 4.29 mean opinion score.

The total average for the NP1 is a low 2.99; the average
for NP2 is 4.1, while our STFSyn method reaches a total
average mean value of 4.32. In the same manner for the
standard deviation, the STFSyn approach has the lower
value of variation in the scores with a 0.72 total average, in
comparison with the 1.23 value by NP1 and 0.91 obtained
by NP2.

Dynamic texture synthesis in both space and time domains
An extension of the proposed method to achieve a final
synthesis in both spatial and temporal domains was also
considered in this study. Our method provides the flexi-
bility to be integrated with other existing approaches for
synthesis in the temporal domain, like those previously
mentioned in the introduction section [13,24,25].
The idea behind these techniques for extending the

duration of a video is straightforward yet very effective.
The general proposal is to find sets of similar frames that

Table 3 Performance comparison of ourmethod with
non-parametric proposals

SMOKE OCEAN CLOUDS WATERFALL RIVER Average

NPM1μ 3.47 2.52 - - - 2.99

NPM2μ 3.82 4.05 4.58 3.82 4.23 4.1

STFSynμ 4.23 4.58 4.29 3.82 4.58 4.32

NPM1σ 1.23 1.23 - - - 1.23

NPM2σ 0.88 0.96 0.50 1.38 0.83 0.91

STFSynσ 0.66 0.71 0.58 1.07 0.61 0.72

The best average results are italicized.
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Figure 12 Final procedure to achieve the synthesis in both spatial and temporal domains.

could work as transitions and then loops in the origi-
nal video to generate a new video stream, making jumps
between such matching frames. In the first step of these
type of algorithms, the video structure is analyzed for
the existence of matching frames within the sequence.
The frame similarity is measured in a given image rep-
resentation, e.g., the intensities of all pixels [13,25] or
the intrinsic spatial and temporal features [24]. Depend-
ing on the nature of the input video texture, the chosen
frame representation method, and the similarity restric-
tions, the number of matching frames can be either large
or small. The implication of this number of frames is that
if it is large, a varied number of combinations/transitions
can be reached; otherwise, the variability of the trans-
ferred clips to the output is compromised. Moreover,
under certain motion circumstances, as it is pointed out
in [26], some dynamic textures can be pleasantly synthe-
sized in the temporal domain, while others may be not.
The reasons include the motion speed and motion peri-
odicity of the input sample. In general, texture synthesis
methods in temporal domain are more capable to syn-
thesize dynamic texture that shows repetitive motions,
motions with regularity or random motions with fast
speed.
The extension presented here is executed by using the

algorithm proposed by Guo et al. [24], which has shown to
provide high-quality synthesis besides applying LBP-TOP

features in the frame representation. The use of LBP-TOP
features in the method by Guo et al. proves to capture
the characteristics of each frame more effectively, and
thus, the most appropriate pairs of frames are found to
be stitched together. Additionally, this method is able to
preserve temporal continuity and motion without adding
annoying jumps and discontinuities.
As is illustrated in Figure 12, for the complete spa-

tiotemporal synthesis, we apply our method and the
method of Guo et al. [24] in cascade. We first execute
our method for spatial synthesis and the enlargement of
the frame size; after that, we perform the extension in the
temporal domain.
In the experiments, we take sample videos from the

DynTex database that have a duration of 10 s (150 frames),
with a frame size of 176 × 120 pixel size. The final result
after the spatiotemporal synthesis is a video with 20 s (300
frames) of duration and a frame of 200 × 200 pixel size,
noticing that any duration and size can be achieved. In
Figure 13, we show an example of the result. More results
can be consulted in the results repository at the web page
previously cited.

Video completion with dynamic texture synthesis
Video completion is the task of filling in the missing or
damaged regions (in either spatial or temporal domain),

Figure 13 Example of the spatiotemporal synthesis. First row: three frames of the original sequence (frames 30, 60, and 90). Second row: six
frames of the synthesized sequence (frames 30, 60, 120, 180, 240, and 300).
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with the available information from the same video. This,
with the goal of generating a perceptually smooth and
satisfactory result. There is a number of applications for
this task. Such applications may include the following:
video post-production and to fill large holes in dam-
aged videos for restoration. Also, it can be applied to the
problem of dealing with boundaries after a convolution
process. The most common approach to deal with these
problems is the tiling and reflection of the information
in the border; however, this may introduce discontinu-
ities not present in the original image. In many cases,
texture synthesis can be used to extrapolate the image
by sampling from itself, in order to fill these missing
areas.
For testing purposes, we execute our method with sim-

ple examples for video completion. The goal of these
examples consists on fulfill the boundaries (missing parts)
on videos. The boundary constraint is related to the
texture that is surrounding the area to be synthesized.
This constraint is taken into account in order to avoid
subjectively annoying artifacts at the transition between
synthetic and natural textures. Two different examples
for this task are shown in Figure 14. In these cases,
the process is conducted to start the synthesis only
for the black holes. In this way, the original video is
preserved, while the missing parts are completed with
information available in the same sequence. The results
show that our method can be also considered for video
completion tasks.

Conclusions
In this paper, the use of local spatiotemporal features for
dynamic texture synthesis has been studied. This method
explores a patch-based synthesis approach, where the
video patch selection is accomplished by taking the cor-
responding LBP-TOP features, instead of just making use
of the intensity of pixels. The LBP-TOP features have the
capability of describing the appearance and dynamics of
local texture, and thus, a better video block representation
can be achieved. The use of this representation leads us to
a better matching of adjacent building blocks; as a result,
the visual characteristics of the input can be success-
fully preserved.Moreover, the proposedmethod is neither
difficult to implement nor intricate, since no additional
seam optimization is needed to get smooth transitions
between video blocks. A final extension to the synthesis
in both spatial and temporal domains has been also con-
sidered. This extension can be achieved, applying first the
synthesis in space and after that, the elongation in the
temporal domain. As the experimental results show, this
method produces good synthetic clips on a wide range of
types of natural videos. We tested video sequences that
show spatiotemporal regularity, videos conformed by con-
strained objects and those constituted by both static and
dynamic elements. According to the results of the evalua-
tion, the performance of the proposed method has shown
to be better than other parametric and non-parametric
methods. We have also shown that this proposal can be
considered for applications requiring video completion.

Figure 14 Two examples of the use of our method for video completion tasks. (a) The frame of the original video of 140× 100 pixels size is
completed, in order to be of 200 × 100 pixels size. (b) The frame of 176 × 120 pixels size is completed to 200× 200 pixels size.
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