
Ahn et al. EURASIP Journal on Image and Video Processing 2014, 2014:16
http://jivp.eurasipjournals.com/content/2014/1/16
RESEARCH Open Access
Implementation of fast HEVC encoder based on
SIMD and data-level parallelism
Yong-Jo Ahn1, Tae-Jin Hwang1, Dong-Gyu Sim1* and Woo-Jin Han2
Abstract

This paper presents several optimization algorithms for a High Efficiency Video Coding (HEVC) encoder based on
single instruction multiple data (SIMD) operations and data-level parallelism. Based on the analysis of the
computational complexity of HEVC encoder, we found that interpolation filter, cost function, and transform take
around 68% of the total computation, on average. In this paper, several software optimization techniques, including
frame-level interpolation filter and SIMD implementation for those computationally intensive parts, are presented
for a fast HEVC encoder. In addition, we propose a slice-level parallelization and its load-balancing algorithm on
multi-core platforms from the estimated computational load of each slice during the encoding process. The
encoding speed of the proposed parallelized HEVC encoder is accelerated by approximately ten times compared to
the HEVC reference model (HM) software, with minimal loss of coding efficiency.

Keywords: HEVC; HEVC encoder; SIMD implementation; Slice-level parallelism; Load balancing
1 Introduction
Along with the development of multimedia and hard-
ware technologies, the demand for high-resolution video
services with better quality has been increasing. These
days, the demand for ultrahigh definition (UHD) video
services is emerging, and its resolution is higher than
that of full high definition (FHD), by a factor of 4 or
more. Based on the market demands, ISO/IEC Moving
Picture Experts Group (MPEG) and ITU-T Video Coding
Experts Group (VCEG) have organized Joint Collaborative
Team on Video Coding (JCT-VC) and standardized High
Efficiency Video Coding (HEVC), whose target coding
efficiency was twice better than that of H.264/AVC [1].
In the near future, HEVC is expected to be employed
for many video applications, such as video broadcasting
and video communications.
Historically, MPEG-x and H.26x video compression

standards employ the macro-block (MB) as one basic
processing unit [2], and its size is 16 × 16. However,
HEVC supports larger sizes of the basic processing unit,
called coding tree unit (CTU), from 8 × 8 to 64 × 64. A
CTU is split into multiple coding units (CU), in a quad-
* Correspondence: dgsim@kw.ac.kr
1Department of Computer Engineering, Kwangwoon University,
Wolgye-dong, Nowon-gu, Seoul 447-1, South Korea
Full list of author information is available at the end of the article

© 2014 Ahn et al.; licensee Springer. This is an
Attribution License (http://creativecommons.or
in any medium, provided the original work is p
tree fashion [3]. Along with the CU, the prediction unit
(PU) and transform unit (TU) are defined, and their
sizes and shapes are more diverse than the prior stand-
ard technologies [4,5]. On top of them, many advanced
coding tools that improve prediction, transform, and
loop filtering are employed to double the compression
performance compared with H.264/AVC. However, the
computation requirement of HEVC is known to be sig-
nificantly higher than that of H.264/AVC because HEVC
has more prediction modes, larger block size, longer
interpolation filter, and so forth.
Typically, a huge number of rate-distortion (RD) cost

computations are required to find the best mode from
64 × 64 to 8 × 8 block sizes in the encoder side for HEVC.
With respect to applications, HEVC would be employed
for ultrahigh-resolution video services. For such cases, fast
video coders are required to process more data with a
given processing power. Thus, parallelization techniques
would be crucial, with multiple low-power processors
or platforms. The single instruction multiple data (SIMD)
implementation of the most time-consuming modules
on HM 6.2 encoders was proposed [6]. This work
implemented the cost functions, transformation, and
interpolation filter with SIMD, and it reported that the
average time saving obtained is approximately 50% to
80%, depending on the modules. Wavefront parallel
open access article distributed under the terms of the Creative Commons
g/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
roperly cited.

mailto:dgsim@kw.ac.kr
http://creativecommons.org/licenses/by/2.0

Ahn et al. EURASIP Journal on Image and Video Processing 2014, 2014:16 Page 2 of 19
http://jivp.eurasipjournals.com/content/2014/1/16
processing (WPP) for HEVC encoders and decoders
was introduced [7]. For the decoder case, they achieved
parallel speed-up by a factor of 3. The acceleration fac-
tor of the wavefront parallelism is in general saturated
into 2 or 3 due to data communication overhead, epilog,
and prolog parts. There are no works that incorporate
all the parallel algorithms, with maximum harmonization
for fast HEVC encoders. In this paper, we focus on
load-balanced slice parallelization, with optimization
implementation of HEVC. This paper presents several
optimization techniques using SIMD operations for the
RD cost computations and transforms for variable block
sizes. In addition, motion estimation is also efficiently
implemented with a frame-based processing to reduce
the number of redundant filtering. For data-level pa-
rallelization, this paper demonstrates how to allocate
encoding jobs to all the available cores through the use
of complexity estimation. As a result, it is possible to
achieve load-balanced slice parallelism in HEVC en-
coders to significantly reduce the average encoding
time. With all the proposed techniques, the optimized
HEVC encoder achieves a 90.1% average time saving
within 3.0% Bjontegaard distortion (BD) rate increases
compared to HM 9.0 reference software.
The paper is organized as follows. Section 2 presents a

complexity analysis of HEVC encoder, and Section 3 in-
troduces basic data-level parallelisms for video encoders.
In Section 4, the SIMD optimization for cost functions
and transform, as well as frame-level implementation of
interpolation filter, is explained in detail. A slice-level
parallelization technique with a load-balancing property
is proposed in Section 5. Section 6 shows the perform-
ance and numerical analysis of the proposed techniques.
Fn

Picture
Buffer

F’n-1

F’n-2

F’n

Inter prediction

- Motion
estimation
- AMVP

- Motion
compensation
- Block merge

- DCT based
interpolation
filter (DCT-IF)

Intra prediction

- Reference
sample
padding

- Planar
- DC
- Angular

- Mode dependent
intra smoothing
(MDIS)

Loop filter

- Sample
adaptive
offset (SAO)

- De-blocking
filter

++

-

Rn

R

Figure 1 Block diagram of HEVC reference model (HM) encoder.
Finally, Section 7 concludes the work, with further re-
search topics.

2 HEVC and its complexity analysis
Figure 1 shows a block diagram of HM encoder [8]. The
HEVC encoder consists of prediction, transformation,
loop filters, and entropy coder, which are the same cores
as the prior hybrid video coders. However, HEVC em-
ploys more diverse block sizes and types, named CU,
PU, and TU. The CU sizes range from 8 × 8 to 64 × 64,
when the CTU is set to 64 × 64. The CU structure is
partitioned in a quad-tree fashion, and each CU can
have one of several PU types inside it. This allows each
CU to be predicted with diverse block sizes and shapes.
In addition, advanced motion vector prediction (AMVP)
[9] and block merging techniques [10,11] are adopted to
effectively represent the estimated motion vectors. For
residual coding, the transform block sizes and shapes are
determined based on a rate-distortion optimization (RDO).
The quad-tree transform is used for each CU, and it is
independent of the PU type. Transform coefficients are
quantized with a scalar quantizer. To improve coding
efficiency, the rate-distortion optimized quantization
(RDOQ) is often employed, during the quantization
process. Finally, the reconstructed blocks are filtered
with two-stage loop filters: the de-blocking filter (DBF)
and sample adaptive offset (SAO).
As mentioned before, HEVC supports hierarchical

block partitioning. Figure 2 shows an example of diverse
CU and PU realizations in a slice, when the CTU size is
set to 64 × 64. A slice is divided into multiple CTUs,
and each CTU is again partitioned into multiple CUs.
The quad-tree structure is effectively represented by
Transform

- TU size:
32× 32 - 4× 4

- Residual quad tree
(RQT)

Quantization

- Delta QP
- Rate-distortion
optimized
quantization (RDOQ)

Entropy coding

- Context adaptive binary
arithmetic coding (CABAC)

Quantization-1

Transform-1

’n

Bitstream

CU32×32

CU16×16 CU16×16

CTU64

CU8×8 CU8×8

CU16×16

CU8×8 CU8×8

CU16×16 CU16×16

CU8×8 CU8×8 CU8×8 CU8×8

CU8×8 CU8×8 CU8×8 CU8×8

CU16×16 CU16×16 CU16×16

CU8×8 CU8×8

CU8×8 CU8×8

CTU64×64 CTU64×64 CTU64…

TU depth 0 TU depth 1

TU depth 2

Transform unit (TU)

2N×2N

2N×nU

2N×N

nL×2N2N×nD nR×2N

Prediction unit (PU)

N×2N N×N

Figure 2 Example of CU, PU, and TU partitions for a CTU in HEVC.

Table 1 Percentages of computational cycles of HM 9.0
encoder

Module RA (%) LD (%) Average (%)

Entropy coding 2.98 2.40 2.69

Intra prediction 2.25 1.95 2.10

Inter prediction 79.03 82.23 80.63

Transform quantization 14.48 12.50 13.49

In-loop filter (de-blocking filter) 0.08 0.08 0.08

In-loop filter (sample adaptive offset) 0.10 0.10 0.10

Others 1.28 0.93 1.10

Ahn et al. EURASIP Journal on Image and Video Processing 2014, 2014:16 Page 3 of 19
http://jivp.eurasipjournals.com/content/2014/1/16
hierarchical flag syntaxes. HEVC has one identical syn-
tax for diverse CU block sizes. The size of a CU block
can be derived with quad-tree split flags. In addition,
one CU can be coded with one of the several PUs. For a
current CU of 2 N × 2 N, the CU can have one of seven
PU splitting types: 2 N × 2 N, 2 N × N, N × 2 N, or four
asymmetric shapes (2 N × nU, 2 N × nD, nL × 2 N, and
nR × 2 N) [12]. The residual signal is transformed in
TU, which can be recursively split into multiple level
quadrants. HEVC supports diverse TU sizes, from 4 × 4
up to 32 × 32, and the maximum TU size depends on
the CU size. However, quadtree-based TU partitioning
is conducted independent of PU partitioning.
In this section, the complexity of HEVC encoder is in-

vestigated, and critical modules can be identified based on
the complexity analysis. In this work, HM 9.0 reference
software [13] was used for HEVC encoder analysis. Note
that it was used as the base software for our optimization.
A HEVC encoder can be mainly modularized into five
parts: entropy coding, intra prediction, inter prediction,
transform quantization, and loop filter. The cycle analyzer,
Intel® VTune™ Amplifier XE 2013 [14] on Intel® Core™ i7-
3960 K processor, was employed to measure the number
of cycles for each module, in cases of the random access
(RA) and low-delay (LD) test configurations, under the
common test conditions [15]. Note that class B (1,920 ×
1,080) and class C (832 × 480) sequences were used.
Table 1 shows the percentages of computation cycles
of all the key modules, for two configurations, RA and
LD. We found that the inter prediction takes around
68.4% to 89.1% of the total cycles, whereas the intra pre-
diction takes only 1.2% to 3.3%. For the transform
quantization and entropy coding, the percentages of
cycles are counted as 10.1% to 20.7% and 0.3% to 6.6%,
respectively. Note that quantization is one of the key
modules in terms of functionality, but its computational
cycle is not significant for measuring it independently.
In this paper, the total computational cycles of trans-
form and quantization were measured. As shown in
Table 1, the inter prediction, which consists of motion
estimation and compensation, is the dominant module

Table 3 Percentages of computational cycles of top four
functions

Module RA (%) LD (%) Average (%)

Interpolation filter 35.74 36.00 35.87

SATD 12.99 18.57 15.78

SAD 15.33 13.26 14.30

Transform/inverse transform 3.52 3.08 3.30

Total (%) 67.58 70.91 69.25

Ahn et al. EURASIP Journal on Image and Video Processing 2014, 2014:16 Page 4 of 19
http://jivp.eurasipjournals.com/content/2014/1/16
in computational complexity. For HEVC inter predic-
tion coding, a large number of coding modes for various
size blocks are evaluated and coded by computing rate-
distortion costs. In addition, the hierarchical block par-
tition is traversed in a recursive fashion in HM.
Table 2 shows percentages of the cycles for intra pre-

diction, inter prediction, and skip modes, depending on
the CU sizes. Regardless of the CU sizes, the percentage
of inter prediction coding is about 73.7% to 83.4%. For
the CU of 8 × 8, the cycle percentage of the intra predic-
tion coding is approximately 2 to 3 times higher than the
others, because 4 × 4 and 8 × 8 intra prediction modes are
tested for RDO.
Table 3 shows the percentiles of the numbers of cycles

for the top four functions. The interpolation filter, sum of
absolute differences (SAD), sum of absolute transformed
differences (SATD), and discrete cosine transform (DCT)/
inverse DCT (IDCT) take approximately 67% to 71% in
the total cycles. The interpolation filter is the most com-
plex function of HEVC encoders and is used for motion
estimation and motion compensation. SAD and SATD are
cost functions to calculate distortions between original
and prediction blocks. In particular, SAD and SATD are
the metrics for motion estimation of integer-pels and
fractional-pels, respectively. In addition, SATD is also used
for intra prediction. DCT/IDCT is applied to the residual
signal from intra or inter prediction for data compaction
in the DCT domain. We can say that optimization of the
four functions is inevitable in order to accelerate HEVC
encoder.

3 Data-level parallelization of video encoders
Data-level and function-level parallelization approaches
are widely used for high-speed video codecs. In particular,
function-level parallel processing is frequently used for
Table 2 Percentages of computational cycles, depending
on CU sizes and modes

Size Mode RA (%) LD (%) Average (%) Ratio in each
CU size (%)

64 × 64 Intra 2.1 1.0 1.6 5.6

Inter 19.0 31.9 25.5 82.3

Skip 3.9 3.4 3.7 12.1

32 × 32 Intra 1.9 0.7 1.3 4.5

Inter 25.0 27.4 26.2 83.4

Skip 4.5 3.2 3.9 12.2

16 × 16 Intra 2.3 0.2 1.3 4.4

Inter 17.0 12.5 14.8 82.9

Skip 3.2 1.7 2.5 12.7

8 × 8 Intra 2.4 0.4 1.4 13.5

Inter 8.7 4.9 6.8 73.7

Skip 1.7 0.6 1.2 12.8
hard-wired implementations. Note that function-level
parallel processing is not easily implemented mainly
due to difficulties of load balancing and longer develop-
ment period. Data-level parallel processing is relatively
easy to be employed for video encoders because the
data processing flows are the same for all the data. The
data-level parallelism for HEVC can be conducted in
terms of CU-, slice-, and frame-level ones. In addition,
HEVC contains a parallel tool, called tile, which divides
a picture into multiple rectangles [16]. In tile partition-
ing, the number of CTUs adjacent to boundaries of tile
partitions is less than that of slices. From this fact, tile
partitioning can yield slightly lower coding loss in com-
pression efficiency compared to an implementation with
the same number of slices [17].
For parallel implementations, we need to consider sev-

eral factors, such as throughput and core scalability, as
well as coding efficiency. Note that the core scalability
means how much we need to change an implementation,
depending on an increasing or decreasing number of
cores. In addition, the throughput can be improved with
parallel processing as compared with the single process-
ing unit. However, many video coding algorithms, in
general, have dependencies among neighboring coding
units, neighboring frame, earlier-coded syntaxes, and so
on. At the same time, we need to consider the coding
efficiency degradation from the parallelization. Even
though the throughput can be improved with parallel
processing, it is not desirable that the coding efficiency
is significantly degraded. Regarding the core scalability,
it is better to employ a scalable parallelization method
that can be easily extended for an increasing number of
cores. If not, we are required to change the implementa-
tion, depending on the number of cores.
The 2D wavefront algorithm [18] has been used for the

parallelization of video coding in CTU level. This coding
tool does not impact the coding gain, but there is a limita-
tion in the parallelization factor, even with many cores,
due to coding dependence. Frame-level parallelization can
be also used for non-reference bidirectional pictures; how-
ever, it depends on the encoding of reference structures.
The slice-level parallelism is widely used because we can

assume any dependencies among multiple slices. However,
we need to realize that the coding gain can be degraded

Ahn et al. EURASIP Journal on Image and Video Processing 2014, 2014:16 Page 5 of 19
http://jivp.eurasipjournals.com/content/2014/1/16
with increased number of slices. In this paper, we evalu-
ated bitrate increases in terms of the number of slices in
the HM encoder software. Figure 3 shows the bitrate in-
creases in terms of the number of slices, for four sequence
classes. In our evaluation, class A (2,560 × 1,600), class B
(1,920 × 1,080), class C (832 × 480), and class D (416 × 240)
of the HEVC common test sequences [15] were used,
under HEVC common test conditions. As shown in
Figure 3, we can see the bitrate increases in terms of
the number of slices. The bitrate increase becomes less
significant as video resolution increases. In general,
multiple slices are widely used for larger sequences due
to parallel processing and error resilience. Regarding
many commercial applications, the slice-level parallel
processing is one of the good approaches for such large
resolution videos.
As mentioned before, the slice-level parallelism has

relatively high coding losses of around 2% to 4% com-
pared to tile-level parallelism and wavefront processing
[19]. However, slice-level parallelism has an advantage that
the slice partitioning is more flexible and accurate for pic-
ture partitioning, by adjusting the number of CTUs, com-
pared to the tile partitioning. Note that the tiles within
the same row and column should use the same tile
width and height, respectively. Slice-level parallelism
of a fine-grained load balancing can yield additional
1 2 4
100

105

110

115

120

125

130

Numbe

R
at

io
 o

f
bi

tr
at

e
in

cr
em

en
ts

ClassD
ClassC
ClassB
ClassA

Figure 3 Bitrate increment in terms of the number of slices, for four s
1,600; class B, 1,920 × 1,080; class C, 832 × 480; class D, 416 × 240.
encoding speed-up compared to the tile levels. WPP
has the advantage that the loss of parallelization is rela-
tively small compared to other parallelization methods.
However, the acceleration factor of WPP is not so high
compared to slice- or tile-level parallelism because WPP
has prolog and epilog so that parts of the cores are inacti-
vated. It is not easy to utilize all the cores with WPP on
average. In our work, slice-level parallelism was chosen for
the acceleration of parallelization. In addition, slice parti-
tioning is widely used for the packetizing of bitstreams for
error resiliencies, in practical video encoders and services.
There are two main criteria to divide a picture into

multiple slices. One is an equal bitrate, and the other is
the same number of CTUs for all the slices. The first one
cannot be easily employed for parallel encoding because
we cannot define the target bit prior to actual encoding.
For the second method, we can easily use the same num-
ber of CTUs at a time.

4 Optimization for fast HEVC encoder
In this section, two software optimization methods, frame-
level processing and SIMD implementation, for three most
complex functions at the function-level are presented.
The proposed software optimization methods have sev-
eral advantages to accelerate HEVC encoders without
any bitrate increase.
8 16 32
r of slices

equence classes. HEVC common test sequences [15]; class A, 2,560 ×

Ahn et al. EURASIP Journal on Image and Video Processing 2014, 2014:16 Page 6 of 19
http://jivp.eurasipjournals.com/content/2014/1/16
4.1 Frame-level interpolation filter in HEVC encoder
The HEVC DCT-based interpolation filter (DCT-IF),
which is used for obtaining fractional sample positions,
is the most complex function, especially with motion esti-
mation in encoders. Instead of using 6-tap and bilinear
interpolation filters of H.264/AVC, HEVC adopts 8(7)-tap
DCT-IF for luminance components, and 4-tap DCT-IF for
chrominance components [20]. Furthermore, all of the
fractional position samples are derived by increasing the
number of filter taps without intermediate rounding oper-
ations which can reduce potential rounding errors com-
pared to H.264/AVC. In order to determine the optimal
CU size and coding modes, HM encoder uses a recursive
scheme for the RD optimization process. In particular,
the PU-level interpolation filter causes iterative memory
accesses for the same positions redundantly. Excessive
memory accesses significantly increase encoding time
due to the limit of memory bandwidth. Actually, the
DCT-IF occupies approximately 30% to 35% of the
total cycles in the HM encoder. We adopt a frame-
level interpolation filter to reduce redundant memory
accesses. The frame-level interpolation filter avoids re-
dundant execution that occurs in the RD optimization
process and enables parallel process with independency
among neighboring blocks. However, it requires the add-
itional amount of memory for 15 factional samples per
i15 i14 i13 i12 i11 i10 i9 i8

j15 j14 j13 j12 j11 j10 j9 j8

i7 i6 i5 i4

i15 i14 i13 i12

j7 j6 j5 j4

j15 j14 j13 j12

PACKUSWB

0×0 0×0 0×0 SAD[15-8]

127 637995111

127 637995111

127 637995111

127 637995111

127 637995111

127 637995111

127 637995111

PSAD

Figure 4 Computation steps of SAD using SIMD instructions.
integer sample in an entire frame. In addition, SIMD in-
structions and multi-thread processes using OpenMP
and GPU can be easily used for fast encoding.

4.2 SIMD implementation of cost function and
transformation
SAD, SATD, and DCT are the most complex functions
in the HEVC encoder, except for DCT-IF. Several cost
functions are used to decide the best coding mode and
its associated parameters. SAD and SATD are the two
main metrics to find integer and quarter-pel motion vec-
tors in the motion estimation process, respectively. SAD
takes around 10% to 12% of the total cycles in HEVC en-
coder, and SATD takes 15% to 16%. These two cost
functions are defined by

SAD ¼
XI;J
i;j

O i; jð Þ−P i; jð Þj jj j ð1Þ

SATD ¼
XI;J
i;j

H i; jð Þj jj j
 !

=2 ð2Þ

where i and j are the pixel indices, and their ranges are
determined by a block size. O(i,j) and P(i,j) are the ori-
ginal and predicted pixel values, respectively. Note that
i7 i6 i5 i4 i3 i2 i1 i0

j7 j6 j5 j4 j3 j2 j1 j0

i3 i2 i1 i0

i11 i10 i9 i8

j3 j2 j1 j0

j11 j10 j9 j8

PACKUSWB

0×0 0×0 0×0 SAD[7-0]

0153147

0153147

0153147

0153147

0153147

0153147

0153147

BW

c0 c1 c2 c3

c4 c5 c6 c7

PUNPCKLWD

c0 c4 c1 c5 c2 c6 c3 c7

c8 c9 c10 c11

c12 c13 c14 c15

PUNPCKLWD

c8 c12 c9 c13 c10 c14 c11 c15

c0 c4 c8 c12 c1 c5 c9 c13 c2 c6 c10 c14 c3 c7 c11 c15

PUNPCKLDQ PUNPCKHDQ

PUNPCKLQDQ PUNPCKHQDQ PUNPCKLQDQ PUNPCKHQDQ

c0 c4 c8 c12 c0 c4 c8 c12 c1 c5 c9 c13 c1 c5 c9 c13 c2 c6 c10 c14 c2 c6 c10 c14 c3 c7 c11 c15 c3 c7 c11 c15

k0 k4 k8 k12 k1 k5 k9 k13

k2 k6 k10 k14 k3 k7 k11 k15

c0*k0+
c4*k4

c8*k8+
c12*k12

c0*k1+
c4*k5

c8*k9+
c12*k13

c0*k2+
c4*k6

c8*k10+
c12*k14

c0*k3+
c4*k7

c8*k11+
c12*k15

c1*k0+
c5*k4

c9*k8+
c13*k12

c1*k1+
c5*k5

c9*k9+
c13*k13

c1*k2+
c5*k6

c9*k10+
c13*k14

c1*k3+
c5*k7

c9*k11+
c13*k15

c2*k0+
c6*k4

c10*k8+
c14*k12

c2*k1+
c6*k5

c10*k9+
c14*k13

c2*k2+
c6*k6

c10*k10+
c14*k14

c2*k3+
c6*k7

c10*k11+
c14*k15

c3*k0+
c7*k4

c11*k8+
c15*k12

c3*k1+
c7*k5

c11*k9+
c15*k13

c3*k2+
c7*k6

c11*k10+
c15*k14

c3*k3+
c7*k7

c11*k11+
c15*k15

c0*k0+
c4*k4+
c8*k8+
c12*k12

c0*k1+
c4*k5+
c8*k9+
c12*k13

c0*k2+
c4*k6+
c8*k10+
c12*k14

c0*k3+
c4*k7+
c8*k11+
c12*k15

c1*k0+
c5*k4+
c9*k8+
c13*k12

c1*k1+
c5*k5+
c9*k9+
c13*k13

c1*k2+
c5*k6+
c9*k10+
c13*k14

c1*k3+
c5*k7+
c9*k11+
c13*k15

c2*k0+
c6*k4+
c10*k8+
c14*k12

c2*k1+
c6*k5+
c10*k9+
c14*k13

c2*k2+
c6*k6+

c10*k10+
c14*k14

c2*k3+
c6*k7+

c10*k11+
c14*k15

c3*k0+
c7*k4+
c11*k8+
c15*k12

c3*k1+
c7*k5+
c11*k9+
c15*k13

c3*k2+
c7*k6+

c11*k10+
c15*k14

c3*k3+
c7*k7+

c11*k11+
c15*k15

PHADDD

PMADDWD

PMADDWD

k0 k4 k8 k12 k1 k5 k9 k13

k2 k6 k10 k14 k3 k7 k11 k15

k0 k4 k8 k12 k1 k5 k9 k13

k2 k6 k10 k14 k3 k7 k11 k15

k0 k4 k8 k12 k1 k5 k9 k13

k2 k6 k10 k14 k3 k7 k11 k15

PHADDD

PMADDWD

PMADDWD

PHADDD

PMADDWD

PMADDWD

PHADDD

PMADDWD

PMADDWD

Figure 5 Computation steps of HEVC inverse transform using SIMD instructions.

Table 4 Normalized complexity for variable CU size and
mode

CU size Skip Inter Intra

64 × 64 109 760 52

32 × 32 42 280 16

16 × 16 9 71 3

8 × 8 2 19 1

Ahn et al. EURASIP Journal on Image and Video Processing 2014, 2014:16 Page 7 of 19
http://jivp.eurasipjournals.com/content/2014/1/16
H(i,j) is the Hadamard transformation of the prediction
error, O(i,j) − P(i,j) [8]. Because only addition and sub-
traction operations are involved for the cost functions,
SATD can yield an accurate cost in the transform do-
main with relatively small complexity compared to DCT.
Since both apply the same operations on multiple data,
vector instructions are quite useful to reduce the required
clock cycles. This work uses SSE2 and SSE3 instructions
defined in Intel SIMD architecture, which are widely
employed for many DSP processors [21]. In the case of
the SAD operation, we employed PSADBW (packed sum
of absolute differences), PACKUSWB (packed with un-
signed saturation), and PADDD (add packed double word
integers) instructions. Sixteen SAD values can be com-
puted by PSADBW instruction at once. Figure 4 shows
how to compute SAD with SIMD instructions. Data pack-
ing is conducted with sixteen 16-bit original pixels (ix) and
sixteen 16-bit reference pixels (jx) using PACKUSWB in-
struction. For 8-bit internal bit depth, the data packing is
conducted to form 16-bit short data. For 10-bit internal
bit depth, the data packing process is not required. Sixteen
original pixels and reference pixels are packed into two
128-bit registers, and PSADBW is performed. The com-
puted SAD from i0-j0 to i7-j7 is stored in the lower 16 bits,
and the SAD from i8-j8 to i15-j15 is stored at bit position
64 to 79. Acceleration of 4 × 4 to 64 × 64 SAD
computations can be achieved using the aforementioned
instructions based on instruction-level parallelism. The
4 × 4 and 8 × 8 SATD operations are implemented using
interleaving instructions, such as PUNPCKLQDQ (unpack
low-order quad-words), PUNPCKHWD (unpack high-
order words), PUNPCKLWD (unpack low-order words),
and arithmetic instructions, such as PADDW (add packed
word integers), PSUBW (subtract packed word integers),
and PABSW (packed absolute value).
Not only the cost function but also the forward trans-

form and inverse transform can be implemented with
SIMD instructions. The forward transform and inverse
transform in HEVC are implemented by partial butterfly
or matrix multiplication. In this paper, the matrix multi-
plication is chosen due to its simplicity and regularity.
Transform and inverse transform are accelerated using
interleaving instructions such as PUNPCKLDQ (unpack

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

Frame number

Slice 0
Slice 1
Slice 2
Slice 3

R
at

io
 o

f
ac

tu
al

 e
nc

od
in

g
tim

e

(a)

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

Frame number

R
at

io
 o

f
pr

ed
ic

te
d

en
co

di
ng

 ti
m

e

Slice 0
Slice 1
Slice 2
Slice 3

(b)

Figure 6 Ratios of actual encoding time and predicted complexity for BasketballDrive sequence. (a) Ratios of actual encoding time for
the four slices. (b) Ratios of predicted complexity for four slices.

Ahn et al. EURASIP Journal on Image and Video Processing 2014, 2014:16 Page 8 of 19
http://jivp.eurasipjournals.com/content/2014/1/16

Table 5 Pearson product moment correlations of the
actual and predicted times

Class Sequence
name

Pearson product moment
correlation

Class A (2,560 ×
1,600)

Traffic 0.9495

PeopleOnStreet 0.9083

Class B (1,920 ×
1,080)

Kimono 0.9859

ParkScene 0.9689

Cactus 0.9382

BasketballDrive 0.9456

BQTerrace 0.9093

Class C (832 × 480) BasketballDrill 0.9568

BQMall 0.9723

PartyScene 0.9326

RaceHorses 0.9484

Average 0.9469

Ahn et al. EURASIP Journal on Image and Video Processing 2014, 2014:16 Page 9 of 19
http://jivp.eurasipjournals.com/content/2014/1/16
low-order double words), PUNPCKHDQ (unpack high-
order double words), PUNPCKLQDQ, PUNPCKHQDQ
(unpack high-order quad words), and arithmetic in-
structions such as PMADDWD (packed multiply and
add), PADDD, and shift instruction such as PSRAD
(packed shift right arithmetic). For HEVC forward and
backward transformation, we need to consider the data
range and the center value in computing matrix multipli-
cations, unlike SAD and SATD implementations. Figure 5
shows how to compute the HEVC inverse transform using
SIMD instructions. Data packing is conducted with
sixteen 16-bit coefficients (cx) using PUNPCKLWD
instruction. The 16 coefficients are packed into two
128-bit registers. For reordering coefficients, the packed
coefficient signals are repacked using PUNPCKLQDQ and
PUNPCKHQDQ instructions. Repacked coefficients and
the kernel (kx) of the inverse transform are multiplied
for eight 16-bit data in 128-bit registers. Then, the re-
sults of multiplications are added into 128-bit registers
using PMADDWD instruction. Finally, the results of
PMADDWD are added into the 128-bit destination
register to compute inverse-transformed residuals using
PHADD instruction. Input data for transformation range
from −255 to 255. As a result, the data should be repre-
sented by at least 9 bits. Data ranges of coefficients of
HEVC transform kernels depend on the size of the trans-
form kernels. However, they can be represented in 8 bits
for the 32 × 32 kernel because they range from −90 to 90
[22]. For computation of one transform coefficient, the re-
quired number of addition and multiplication operations
is as many as the size of the transform kernel along the
horizontal and vertical directions. A downscale should
be employed to keep 16 bits in every operation for each
direction. To avoid overflow and underflow, four 32-
bit data should be packed into the 128-bit integer
register of SSE2. In addition, the transform matrix is
transposed in advance to reduce memory read/write
operations.

5 Proposed slice-level parallelism with load
balance
To reduce the computational load of the RD optimization,
early termination and mode competition algorithms have
been adopted in HM reference software [23-25]. However,
these fast encoding algorithms cause different encoding
complexities among different slices. To maximize parallel-
ism of the data-level task partition, an accurate load bal-
ance for slice parallelization is required. Several works
[26,27] have been conducted to achieve accurate load bal-
ance for slice parallelization. In Zhang's algorithm [26],
the adaptive data partitioning for MPEG-2 video encoders
was proposed by adjusting computational loads based on
the complexity of a previously encoded frame of the same
picture type. In Jung's algorithm [27], the adaptive slice
partition algorithm was proposed to use early-decided
coding mode for macro-blocks in H.264/AVC. In the con-
ventional algorithm, a quantitative model was designed to
estimate the computational load associated with each can-
didate MB mode group. However, in order to apply slice-
level parallelism to a HEVC encoder, we need to focus on
CTU structures, variable block sizes, and coding modes.
In this section, a complexity estimation model and adap-
tive slice partition algorithm to achieve load-balanced slice
parallelization are proposed.
5.1 Complexity estimation model
In this section, a load-balancing technique for a slice
parallelization is proposed by allocating the proper num-
ber of CTUs for each core after estimating the computa-
tional load for one slice. For this purpose, this work
introduces a model of computational load for CU-level
RD optimization process, in terms of diverse coding tools
such as CU size, skip mode, AMVP, and many intra pre-
diction directions. Table 4 shows normalized computa-
tional complexities by setting the complexity of 8 × 8 intra
prediction to 1, as shown in Table 2. The normalized com-
putational complexities for variable CU sizes and modes
are computed by

R s;mð Þ ¼ r s;mð Þ � 2w CTUð Þ=w sð Þ ð3Þ

CEM s;mð Þ ¼ R s;mð Þ �NF ð4Þ

where R(s,m) and r(s,m) represent the complexity per
unit and the complexity ratio of each CU size and mode,
respectively. w(s) and CEM(s,m) are the width of CU
size and the complexity estimation model in Table 4, re-
spectively. Note that NF is a normalization factor for

0 50 100 150 200 250

0.1

0.2

0.3

0.4

0.5

Frame number

R
at

io
 o

f
pr

ed
ic

te
d

en
co

di
ng

 ti
m

e

Slice 0
Slice 1
Slice 2
Slice 3

20 40 80 100 120

0.1

0.2

0.3

0.4

0.5

60
Frame number

R
at

io
 o

f
pr

ed
ic

te
d

en
co

di
ng

 ti
m

e

0

Slice 0
Slice 1
Slice 2
Slice 3

10 20 40 50 60

0.1

0.2

0.3

0.4

0.5

30

Frame number

R
at

io
 o

f
pr

ed
ic

te
d

en
co

di
ng

 ti
m

e

0

Slice 0
Slice 1
Slice 2
Slice 3

10 20 40 50 60

0.1

0.2

0.3

0.4

0.5

30

Frame number

R
at

io
 o

f
pr

ed
ic

te
d

en
co

di
ng

 ti
m

e

0

Slice 0
Slice 1
Slice 2
Slice 3

a

b

c

d

Figure 7 Ratios of predicted complexity for each temporal layer. (a) Temporal layer 3. (b) Temporal layer 2. (c) Temporal layer 1.
(d) Temporal layer 0.

Ahn et al. EURASIP Journal on Image and Video Processing 2014, 2014:16 Page 10 of 19
http://jivp.eurasipjournals.com/content/2014/1/16

0 50 100 150 200 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

250
Frame number

R
at

io
 o

f
ac

tu
al

 e
nc

od
in

g
tim

e

Slice 0
Slice 1
Slice 2
Slice 3

(a)

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

Frame number

R
at

io
 o

f
pr

ed
ic

te
d

en
co

di
ng

 ti
m

e

Slice 0
Slice 1
Slice 2
Slice 3

(b)

Figure 8 Ratios of actual encoding time and predicted complexity for BasketballDrive sequence. (a) Ratios of actual encoding time for
the four slices. (b) Ratios of predicted complexity for the four slices.

Ahn et al. EURASIP Journal on Image and Video Processing 2014, 2014:16 Page 11 of 19
http://jivp.eurasipjournals.com/content/2014/1/16

Ahn et al. EURASIP Journal on Image and Video Processing 2014, 2014:16 Page 12 of 19
http://jivp.eurasipjournals.com/content/2014/1/16
fixed-point operation. The complexity of the lth CTU is
defined by

CCi lð Þ ¼
X
s∈S

X
m∈M

CEM s;mð Þ � CHK s;m lÞjð ð5Þ

CHKðs;mjlÞ ¼ 1; if selectedðs;mjlÞ
0; otherwise

�
ð6Þ

where CHK(s,m|l) represents the selected mode for the
CTU. S and M are defined by {64 × 64, 32 × 32, 16 × 16,
8 × 8} and {Skip, Inter, Intra}, respectively. The predicted
complexity for each slice is computed by summation of
complexity for CTU and is defined by

SCi kð Þ ¼
XL kð Þ−l

l¼0

CCi lð Þ ð7Þ

The proposed estimated complexity for a slice is eval-
uated with the Pearson product moment correlation
with HEVC common test sequences [15]. The HEVC
common test sequences are the most widely used video
sequences for tool experiments of HEVC standard. In
our evaluation, we used three classes of sequences (class
A, class B, and class C). The size of class A is 2,560 ×
1,600, and it consists of two sequences (Traffic and
PeopleOnStreet). The sequences are formed by crop-
ping 4 K videos for storage and evaluation time. Class B
(1,920 × 1,080) is for full HD sequences and class C
(832 × 480) is widely used for mobile devices. For this
evaluation, we employed these sequences, and they are
coded with multiple quantization parameters (QPs) of
22, 27, 32, and 37, under the HEVC common test condi-
tion [15]. The QP values were selected to cover many
video applications, such as broadcasting, video commu-
nication, and high-quality media players, by considering
the quality of reconstructed videos and bitrates. Figure 6
shows the ratio of an actual encoding time and the
Table 6 Test sequences

Class Sequence
number

Sequence
name

Frame
count

Frame
rate

Class B
(1,920 × 1,080)

S01 Kimono 240 24

S02 ParkScene 240 24

S03 Cactus 500 50

S04 BasketballDrive 500 50

S05 BQTerrace 600 60

Class C
(832 × 480)

S06 BasketballDrill 500 50

S07 BQMall 600 60

S08 PartyScene 500 50

S09 RaceHorses 300 30
predicted complexity for the ‘BasketballDrive’ sequence
under random access setting with the proposed model
for four slices. Table 5 shows the Pearson product mo-
ment correlation of the actual and predicted times for
the test sequences. Note that the correlation coefficients
can vary, depending on the coding parameters. In this
paper, the correlation coefficients are computed from
HM software under the common test conditions that
are widely used for practical HEVC encoder. As shown
in Table 5, the correlation coefficient is about 0.95, and
it is quite high in predicting computational complexity,
in the case of slice partitioning.
5.2 Adaptive slice partitioning using characteristics of
temporal layers
In the current frame, the number of CTU for each slice is
adaptively determined based on the complexity of the co-
located slice in previously coded frames. In the proposed
algorithm, the hierarchical temporal coding structure is
considered to select the coded frame for the complexity
prediction of each slice. Figure 7 shows the ratio of the
predicted complexity of each slice in terms of temporal
layers for the BasketballDrive sequence. In this evaluation,
four temporal layers are used for the hierarchical coding
structure, with four reference frames, based on the com-
mon test conditions. HEVC adopts a temporal layer cod-
ing structure to improve coding efficiency and temporal
scalability, and each temporal layer has a different
quantization parameter. The ratio of skip mode and the
characteristics of CU split appear differently over the dif-
ferent temporal layers, and the same temporal layer has a
high similarity of the actual encoding time and the pre-
dicted encoding time. As shown in Figures 6 and 7, the
complexity of each slice, without considering the temporal
layers, has a large fluctuation compared to that with con-
sidered temporal layers. In order to compare the complex-
ity fluctuation of each slice, the statistical variance of
complexities of each slice was measured. In the case in
Figure 6, the variances of the complexity ratio of each slice
are 29.23, 27.83, 61.25, and 57.87, respectively. The cases
classified by the temporal layer, as shown in Figure 7, have
the low variances of the complexity ratio of each slice of
(a) 10.74, 17.85, 33.80, and 31.10; (b) 13.45, 23.85, 33.34,
and 38.89; (c) 18.02, 16.29, 30.51, and 25.62; and (d) 3.78,
4.61, 3.30, and 6.61. The number of CTU in each slice is
adjusted by an offset based on the predicted complexity
of the slice in the same temporal layer of the hierarch-
ical structure. The number of CTU in a slice, L(k), and
the offset to control the number of CTU in a slice, offset
(k), are defined by

Lji kð Þ ¼ CTUinFrame

N
þ offset ji kð Þ ð8Þ

Table 7 HM 9.0 vs. optimized HEVC encoder software

Sequence RA LD

SIMD (A) Frame-level IF (B) A + B SIMD (A) Frame-level IF (B) A + B

B S01 14.13 17.79 31.92 15.74 19.44 35.18

S02 12.38 20.18 32.56 14.78 21.10 35.88

S03 14.09 19.56 33.65 16.23 20.26 36.49

S04 15.16 16.85 32.01 17.62 17.12 34.74

S05 11.93 20.35 32.28 13.59 21.58 35.17

C S06 14.33 18.51 32.84 16.49 19.60 35.99

S07 13.84 20.90 34.74 16.02 20.95 36.97

S08 11.88 18.49 30.37 13.44 19.94 33.38

S09 14.67 15.03 29.70 17.23 15.54 32.77

Average (B) 13.54 18.95 32.48 15.59 19.90 35.49

Average (C) 13.68 18.23 31.91 15.80 18.98 34.78

Ahn et al. EURASIP Journal on Image and Video Processing 2014, 2014:16 Page 13 of 19
http://jivp.eurasipjournals.com/content/2014/1/16
offset ji kð Þ ¼ offset ji−1 kð Þ þ 1
N
−

SCj
i−1 kð ÞXN−1

n¼0

SCj
i−1 nð Þ

0
BBBB@

1
CCCCA

� CTUinFrame ð9Þ

where L(k) is the number of CTU in the kth slice, i is
the frame index, j is the temporal layer index, and k is
the slice index. Also, N is the number of slices in a
frame, and CTUinFrame is the number of CTUs in the
frame. In Equation 9, the CTU offset for each slice is set
to the additional number of CTUs. The proposed algo-
rithm adopts the adaptive slice partitioning method, with
the difference between the ideal complexity for each slice,
and the ratio of predicted complexity, which achieves the
speed-up of slice-level parallelism. Figure 8 shows the ac-
tual encoding time and predicted encoding time using the
proposed load-balanced slice parallelization. This shows
Table 8 HM 9.0 vs. slice parallelization using OpenMP

Sequence RA

BD-BR (%) BD-PSNR (dB)

B S01 1.79 −0.05

S02 1.00 −0.03

S03 1.38 −0.03

S04 2.06 −0.05

S05 1.39 −0.02

C S06 3.41 −0.14

S07 3.78 −0.14

S08 1.58 −0.07

S09 2.96 −0.11

Average (B) 1.52 −0.04

Average (C) 2.93 −0.12
that the complexity load is quite well balanced compared
to that shown in Figure 6. In addition, the maximum dif-
ference between the ratios of actual encoding time and the
predicted one is 0.09363, and the minimum difference is
4 × 10−5.
6 Experimental results
In this section, we show the performance of the proposed
optimization techniques for HEVC encoder in terms of
Bjontegaard distortion-bitrate (BD-BR) [28], Bjontegaard
distortion peak signal-to-noise ratio (BD-PSNR) [28], and
average time saving (ATS). In order to evaluate the
efficiency of the proposed methods, HM 9.0 reference
software was utilized. A PC equipped with an Intel® Core™
i7-3930 K CPU (six cores, 12 threads are supported with
hyper-threading) and 16 GB memory was used for this
evaluation. Intel® C++ 64-bit compiler XE 13.0 and VTune
analyzer (performance monitoring tool) were used in a
LD

ATS (%) BD-BR (%) BD-PSNR (dB) ATS (%)

70.25 1.49 −0.05 70.60

71.53 0.89 −0.03 70.61

71.08 1.29 −0.03 71.60

68.03 1.53 −0.04 68.65

70.27 1.35 −0.03 70.23

68.95 2.60 −0.10 69.26

66.98 2.89 −0.11 66.98

68.04 1.45 −0.06 69.61

68.53 2.03 −0.08 68.75

70.23 1.31 −0.03 70.34

68.13 2.24 −0.09 68.65

Ahn et al. EURASIP Journal on Image and Video Processing 2014, 2014:16 Page 14 of 19
http://jivp.eurasipjournals.com/content/2014/1/16
Windows 7 64-bit operating system. The encoding config-
uration of this evaluation is set as follows:

(a)According to HEVC common test condition [15]
(b)Profile: HEVC main profile (MP) [1]
1 2 4
1

2

3

4

5

6

7

Number o

Sp
ee

d
up

(a)

1 2 4
1

2

3

4

5

6

7

Number o

Sp
ee

d
up

(b)

Figure 9 Average speed-up in terms of the number of slices for class B.
(c)Level: Level 4.1 [1]
(d)Encoding structure: RA and LD
(e)QP value: 22, 27, 32, 37
(f) Test sequences: HEVC common test sequences

(classes B and C) in Table 6
8 16 32
f slices

Kimono
ParkScene
Cactus
BasketballDrive
BQTerrace

8 16 32
f slices

Kimono
ParkScene
Cactus
BasketballDrive
BQTerrace

(a) Random access case. (b) Low-delay case.

Ahn et al. EURASIP Journal on Image and Video Processing 2014, 2014:16 Page 15 of 19
http://jivp.eurasipjournals.com/content/2014/1/16
In this work, we define the average load balance saving
(ALS) to measure the prediction accuracy of the pro-
posed load balance performance against an anchor. ALS
is calculated by

ALS %ð Þ ¼ AMLanchor−AMLproposed

AMLanchor
� 100 %ð Þ ð10Þ

where AMLanchor is the average of the maximum ratio of
complexity load over all the slices for the anchor, and
AMLproposed is the average of the maximum ratio of
complexity load over all the slices for the proposed al-
gorithm. In addition, BD-BR (%) for bitrate increase,
BD-PSNR (dB) for objective quality decrease, and ATS
(%) for average time saving were evaluated. Note that
the ATS is defined by

ATS %ð Þ ¼ Etimeanchor−Etimeproposed
Etimeanchor

� 100 %ð Þ ð11Þ

where Etimeanchor is the encoding time of the anchor
encoder and Etimeproposed is the proposed method.
Firstly, the ATS comparison between the anchor and

the proposed software optimizations will be shown. Sec-
ondly, the coding efficiency of the slice parallelism using
OpenMP will be presented for the four-slice case. Thirdly,
the coding efficiency of the proposed load-balanced slice
parallelism will be presented. Finally, the coding efficiency
of the overall proposed encoder based on software optimi-
zation and parallelization will be evaluated, comparing to
the HM 9.0 reference encoder.
Table 7 shows ATS performances of SIMD implementa-

tion for cost functions and the frame-level interpolation
filter on HM 9.0. As mentioned in Section 2, interpolation
filter, SAD, SATD, transform, and inverse-transform are
the main sources of computation load of HEVC encoder,
and they take 35.87%, 14.30%, 15.78%, and 3.30% of the
overall encoder time, respectively. In Table 7, the ATS gain
Table 9 BD-BR, ATS, and ALS for slice and load-balanced slice

Sequence RA

BD-BR (%) ATS (%)

B S01 −0.01 13.44

S02 0.01 11.31

S03 0.05 0.46

S04 0.16 18.05

S05 −0.01 10.90

C S06 0.16 5.64

S07 0.33 17.71

S08 0.18 8.01

S09 −0.01 8.72

Average (B) 0.04 10.83

Average (C) 0.17 10.02
of the developed SIMD implementations is found to be
from 13.54% to 15.80%; and the ATS gain of frame-level
interpolation is from 18.23% to 19.90%. With the opti-
mized SIMD implementation, the computational com-
plexities of SAD, SATD, and transform/inverse-transform
reduce by approximately up to 50%. In addition, the
amount of complexity reduction with the frame-level
interpolation filter is about 60% to 70%. Through software
optimization, the total ATS gain of the developed
optimization method is 31.91% to 35.49%, without any loss
in coding efficiency.
Table 8 shows performance evaluation results of the

slice parallelization using OpenMP for the four slices.
Compared to cases without parallelization, four-slice
parallelization for an entire frame with HM 9.0 encoder
yields an ATS gain of 70.06% with only 1.52% BD-BR
increase and 0.037 dB BD-PSNR reduction for class B
and an ATS gain of 69.21% with only 3.36% BD-BR in-
crease and 0.128 dB BD-PSNR reduction for class C,
respectively.
Figure 9 illustrates average speed-up factors of the

slice parallelization, in terms of the number of slices (2,
4, 8, 16, and 32). As shown in Figure 9, the speed-up
also increases up to 6, as the number of slices increases.
We can see that the increasing trend becomes slow,
from the eight-slice case. The speed-up factor according
to the number of slices does not linearly increase due to
data communication; memory accesses; context switch-
ing overhead; complexity imbalance over the slices; and
frame-level sequential processes, such as DBF, SAO, and
entropy coding. Note that we used an Intel processor
that has six cores, with hyper-threading technology. The
hyper-threading technology can somehow reduce the con-
text switching overhead to improve parallel performance.
However, the speed-up factor is saturated to nearby 5.5 to
6.0 due to the communication and other overheads
[29,30]. For class B sequence, the speed-up factors are
parallelization

LD

ALS (%) BD-BR (%) ATS (%) ALS (%)

16.33 −0.04 12.03 11.72

14.94 −0.02 12.44 13.25

2.95 −0.01 −0.16 14.86

22.58 0.05 17.82 20.83

11.16 −0.08 14.63 16.18

6.29 0.10 6.50 7.88

15.99 0.23 19.13 18.55

10.17 0.08 8.02 8.89

10.62 0.02 8.90 9.65

13.59 −0.02 11.35 15.37

10.77 0.11 10.64 11.24

Table 10 HM 9.0 vs. the proposed accelerated and parallelized HEVC encoder

Sequence RA LD

BD-BR (%) BD-PSNR (dB) ATS (%) BD-BR (%) BD-PSNR (dB) ATS (%)

B S01 3.88 −0.12 90.13 3.29 −0.10 89.34

S02 3.45 −0.11 91.33 3.56 −0.11 90.47

S03 4.81 −0.10 89.12 3.96 −0.09 88.77

S04 4.34 −0.10 88.26 3.08 −0.07 87.93

S05 4.52 −0.07 91.28 3.32 −0.06 90.19

C S06 5.44 −0.22 86.86 3.84 −0.15 86.72

S07 7.46 −0.28 88.92 5.41 −0.21 88.31

S08 4.30 −0.18 86.75 3.65 −0.15 86.10

S09 6.10 −0.23 85.44 3.76 −0.15 85.46

Average (B) 4.20 −0.10 90.02 3.44 −0.09 89.34

Average (C) 5.83 −0.23 86.99 4.17 −0.17 86.65

Ahn et al. EURASIP Journal on Image and Video Processing 2014, 2014:16 Page 16 of 19
http://jivp.eurasipjournals.com/content/2014/1/16
higher than those for any other sequences, in cases of four
to eight slices parallelization. Based on the speed-up fac-
tors for Class B, we can predict that speed-up factors with
eight or more slice parallelization for ultrahigh-resolution
sequences such as 4 K (3,840 × 2,160) can be higher than
those for lower resolution videos.
Table 9 shows the performance comparison between

slice parallelism with OpenMP and the proposed load-
balanced slice parallelism. A frame is partitioned into
four slices for fair evaluation; and two fast encoding
algorithms, CFM [23] and ECU [24], adopted for HM,
are employed for the evaluation of the proposed load-
balanced parallelization. In Table 9, the proposed load-
balanced algorithm achieves 10.5% ATS gain, on average
(minimum −0.16% and maximum 19.13%), by adaptively
controlling the number of CTUs in a slice. Moreover,
the ratio of the maximum complexity load is highly
reduced in ALS gain by 12.89% to 14.94%. Note that the
bottleneck of parallelization is the maximum computa-
tional load for one, over all the slices, and it is crucial to
reduce the ratio of the maximum complexity load for
overall performance. In our implementation, we found
that the ALS reduces by load balancing; as a result, the
overall encoding speed is moderately improved. The
average ratio of encoding time saving is 0.15%, which is
relatively small, for sequences whose complexity load
gap over multiple slices, for example, ‘Cactus’ sequence,
Table 11 BD-BR, BD-PSNR, and ATS of the proposed HEVC en

Sequence RA

BD-BR (%) BD-PSNR (dB) AT

Traffic 3.66 −0.12 9

PeopleOnStreet 2.80 −0.09 9

Average 3.23 −0.11 9
is small before the load balancing. However, the amount
of encoding time saving is about 12% to 18% for sequences
whose complexity load gap among slices, such as Basket-
ballDrive and ‘Kimono’ sequences, is large, without load
balancing. In terms of coding gain, it is confirmed that
BD-BR and BD-PSNR losses are quite small compared to
uniform slice partition.
BD-BR, BD-PSNR, and ATS of the proposed fast

HEVC encoder against HM 9.0 encoder are shown in
Table 10. A frame is partitioned into four slices. The
proposed fast HEVC encoder yields 89.34% to 90.02% in
ATS compared to HM 9.0 encoder with only 3.44% to
4.20% BD-BR increase and 0.09 to 0.10 dB BD-PSNR
decrease for class B sequences. For class C sequences,
we found that BD-BR increases by 4.17% to 5.83% and
BD-PSNR decreases by 0.17 to 0.23 dB. We found that
coding loss for lower resolution videos is moderate higher
than that for higher resolution ones. In addition, we evalu-
ated BD-BR, DB-PSNR, and ATS of the proposed HEVC
encoder, on top of HM9.0, for class A (2,560 × 1,600).
Note that class A consists of two sequences (Traffic and
PeopleOnStreet). As shown in Table 11, we found that
BD-BR increases by 2.29% to 3.72%, and BD-PSNR de-
creases by 0.09 to 0.17 dB, on top of HM9.0, with ATS
gains of 85.48% to 91.14%. Figure 10 illustrates the RD
comparison of HM 9.0 and the proposed accelerated
and parallelized HEVC encoder. Thinking about the
coder for class A (2,560 × 1,600)

LD

S (%) BD-BR (%) BD-PSNR (dB) ATS (%)

1.14 3.72 −0.17 85.48

0.43 2.29 −0.11 85.80

0.79 3.01 −0.14 85.64

0 0.5 1 1.5 2 2.5

x 10
4

33

34

35

36

37

38

39

40

Bitrate (kbps)

PS
N

R
 (

dB
)

BasketballDrive

HM 10.0 (RA)
Proposed (RA)
HM 10.0 (LD)
Proposed (LD)

(a)

0 1000 2000 3000 4000 5000 6000
34

35

36

37

38

39

40

41

42
Kimono

Bitrate (kbps)

PS
N

R
 (

dB
)

HM 10.0 (RA)
Proposed (RA)
HM 10.0 (LD)
Proposed (LD)

(b)

Figure 10 RD comparison of HM 9.0 and the proposed accelerated and parallelized HEVC encoder. (a) BaksetballDrive sequence.
(b) Kimono sequence.

Ahn et al. EURASIP Journal on Image and Video Processing 2014, 2014:16 Page 17 of 19
http://jivp.eurasipjournals.com/content/2014/1/16

Ahn et al. EURASIP Journal on Image and Video Processing 2014, 2014:16 Page 18 of 19
http://jivp.eurasipjournals.com/content/2014/1/16
90.0% ATS performance gain, the RD performance loss,
as shown in Table 10, is quite negligible, even contain-
ing the loss from the fast encoding algorithm and slice
partitioning.

7 Conclusions
In this paper, the computational complexity of the HM 9.0
encoder was analyzed for acceleration and parallelization
of the HEVC encoder. We identified five key modules
for the HM 9.0 encoder, requiring dominant computing
cycles. Based on the complexity analysis, two software
optimization methods were used for acceleration: the
frame-level interpolation filter and SIMD implementation.
In addition, load-balanced slice parallelization is proposed.
Software optimization methods achieve 33.56% of the
average time saving, with any coding loss. In addition, load
balancing for the slice parallelization method achieves
about 10% of average time saving compared to uniform
slice partition. The overall average time saving of the pro-
posed HEVC encoder yields approximately 90% compared
to HM 9.0 with acceptable coding loss. HEVC encoder
with the proposed methods can compress full HD videos
at approximately 1 fps speed in a commercial PC environ-
ment, without any hardware acceleration.
Further study will be focused on additional software

optimization, fast encoding algorithm, and tile-level par-
allel processing for real-time encoder of HEVC.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
This research was partly supported by the IT R&D program of MSIP/KEIT
[10039199, A Study on Core Technologies of Perceptual Quality based
Scalable 3D Video Codecs], the MSIP (Ministry of Science, ICT & Future
Planning), Korea, under the ITRC (Information Technology Research Center)
support program (NIPA-2013-H0301-13-1011) supervised by the NIPA
(National IT Industry Promotion Agency), and the grant from the Seoul
R&BD Programs (SS110004M0229111).

Author details
1Department of Computer Engineering, Kwangwoon University,
Wolgye-dong, Nowon-gu, Seoul 447-1, South Korea. 2Department of
Software Design and Management, Gachon University, Seongnam, Gyeonggi
461-701, South Korea.

Received: 18 June 2013 Accepted: 5 March 2014
Published: 26 March 2014

References
1. B Bross, W-J Han, GJ Sullivan, JR Ohm, T Wiegand, High Efficiency Video

Coding (HEVC) text specification draft 9, ITU-T/ISO/IEC Joint Collaborative Team
on Video Coding (JCT-VC) document JCTVC-K1003, 2012

2. ITU-T and ISO/IEC JTC 1, Advanced video coding for generic audiovisual
services, ITU-T Rec. H.264/and ISO/IEC 14496–10 (MPEG-4 AVC), versions
1-16, 2003-2012

3. H Samet, The quadtree and related hierarchical data structures. ACM
Comput Surv (CSUR) 16(2), 187–260 (1984)

4. W-J Han, J Min, I-K Kim, E Alshina, A Alshin, T Lee, J Chen, V Seregin, S Lee,
YM Hong, MS Cheon, N Shlyakhov, K McCann, T Davies, JH Park, Improved
video compression efficiency through flexible unit representation and
corresponding extension of coding tools. Circuits Syst Video Technol, IEEE
Trans 20(12), 1709–1720 (2010)
5. T Wiegand, J-R Ohm, GJ Sullivan, W-J Han, R Joshi, TK Tan, K Ugur, Special
section on the joint call for proposals on High Efficiency Video Coding
(HEVC) standardization. Circuits Syst Video Technol, IEEE Trans
20(12), 1661–1666 (2010)

6. K Chen, Y Duan, L Yan, J Sun, Z Guo, Efficient SIMD optimization of HEVC
encoder over X86 processors, in Signal & Information Processing Association
Annual Summit and Conference (APSIPA ASC) (Asia-Pacific, Hollywood, CA,
2012), pp. 1–4

7. G Clare, F Henry, S Pateux, Wavefront parallel processing for HEVC encoding
and decoding, ITU-T/ISO/IEC Joint Collaborative Team on Video Coding
(JCT-VC) document JCTVC-F274, 2011

8. I-K Kim, K McCann, K Sugimoto, B Bross, W-J Han, HM9: High Efficiency Video
Coding (HEVC) test model 9 encoder Description, ITU-T/ISO/IEC Joint Collabora-
tive Team on Video Coding (JCT-VC) document JCTVC-K1002, 2012

9. K McCann, WJ Han, IK Kim, JH Min, E Alshina, A Alshin, T Lee, J Chen, V
Seregin, S Lee, YM Hong, MS Cheon, N Shlyakhov, Samsung's response to
the call for proposals on video compression technology, ITU-T/ISO/IEC
Joint Collaborative Team on Video Coding (JCT-VC) document JCTVC-A124.
(2010)

10. R De Forni, D Taubman, On the benefits of leaf merging in quad-tree
motion models. IEEE Int Conf Image Process 2005, 858–861 (2005)

11. J Jung, B Bross, P Chen, W-J Han, Description of core experiment 9: MV coding
and skip/merge operations, ITU-T/ISO/IEC Joint Collaborative Team on Video
Coding (JCT-VC) document JCTVC-D609, 2011

12. Y Yuan, X Zheng, X Peng, J Xu, IK Kim, L Liu, Y Wang, X Cao, C Lai, J Zheng,
Y He, H Yu, CE2: non-square quadtree transform for symmetric and
asymmetric motion partition, ITU-T/ISO/IEC Joint Collaborative Team on
Video Coding (JCT-VC) document JCTVC-F412. (2011)

13. Joint Collaborative Team on Video Coding, (JCT-VC) of ITU-T SG 16 WP 3
and ISO/IEC JTC 1/SC 29/WG 11, HM-9.0 reference software. (2014)

14. VTune™Amplifier XE 2013 from Intel. (2014). http://software.intel.com/en-us/
articles/intel-vtune-amplifier-xe/

15. F Bossen, Common HM test conditions and software reference configuration,
ITU-T/ISO/IEC Joint Collaborative Team on Video Coding (JCT-VC) document
JCTVC-K1100, 2012

16. GJ Sullivan, JR Ohm, WJ Han, T Wiegand, Overview of the High Efficiency
Video Coding (HEVC) standard. IEEE Transactions on Circuits and Systems
for Video Technology 22(12), 1649–1668 (2012)

17. A Fuldseth, M Horowitz, S Xu, A Segall, M Zhou, Tiles, ITU-T/ISO/IEC Joint
Collaborative Team on Video Coding (JCT-VC) document JCTVC-F335, 2011

18. F Henry, S Pateux, Wavefront parallel processing, ITU-T/ISO/IEC Joint
Collaborative Team on Video Coding (JCT-VC) document JCTVC-E196, 2011

19. CC Chi, M Alvarez-Mesa, B Juurlink, G Clare, F Henry, S Pateux, T Schierl,
Parallel scalability and efficiency of HEVC parallelization approaches. IEEE
Transactions on Circuits and Systems for Video Technology
22(12), 1827–1838 (2012)

20. A Alshin, E Alshina, JH Park, WJ Han, DCT based interpolation filter for motion
compensation in HEVC, in Proceedings of the SPIE 8499 Applications of Digital
Image Processing XXXV (San Diego, CA, 2012)

21. Intel, Intel 64 and IA-32 architectures software developer manuals. (2014).
http://www.intel.com/content/www/us/en/processors/architectures-soft-
ware-developer-manuals.html

22. M Budagavi, V Sze, Unified forward + inverse transform architecture for HEVC,
in 19th IEEE International Conference on Image Processing (ICIP), 30 September
30 2012 to 3 October (Orlando, Florida, USA, 2012), pp. 209–212

23. RH Gweon, Y-L Lee, J Lim, Early termination of CU encoding to reduce HEVC
complexity, ITU-T/ISO/IEC Joint Collaborative Team on Video Coding (JCT-VC)
document JCTVC-F045, 2011

24. K Choi, ES Jang, Coding tree pruning based CU early termination, ITU-T/ISO/IEC
Joint Collaborative Team on Video Coding (JCT-VC) document JCTVC-F092, 2011

25. J Yang, J Kim, K Won, H Lee, B Jeon, Early skip detection for HEVC, ITU-T/ISO/
IEC Joint Collaborative Team on Video Coding (JCT-VC) document JCTVC-G543,
2011

26. N Zhang, C-H Wu, Study on adaptive job assignment for multiprocessor
implementation of MPEG2 video encoding. IEEE Trans. Ind. Electron
44(5), 726–734 (1997)

27. B Jung, B Jeon, Adaptive slice-level parallelism for H.264/AVC encoding
using pre macroblock mode selection. J Vis Commun Image. Representation
19(8), 558–572 (2008)

28. G Bjontegaard, Document VCEG-M33: calculation of average PSNR differences
between RD-curves, ITU-T VCEG Meeting (Austin, Texas, USA, 2001)

http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe/
http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe/
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

Ahn et al. EURASIP Journal on Image and Video Processing 2014, 2014:16 Page 19 of 19
http://jivp.eurasipjournals.com/content/2014/1/16
29. X Tian, Y-K Chen, M Girkar, S Ge, R Lienhart, S Shah, Exploring the use of
hyper-threading technology for multimedia applications with Intel® OpenMP
compiler, in Proceedings of International Symposium on Parallel and
Distributed Processing 2003 (Nice, France, 2003)

30. S Sankaraiah, LH Shuan, C Eswaran, J Abdullah, Performance optimization of
video coding process on multi-core platform using GOP level parallelism.
Int J Parallel Program Springer , 1–17 (2013)

doi:10.1186/1687-5281-2014-16
Cite this article as: Ahn et al.: Implementation of fast HEVC encoder
based on SIMD and data-level parallelism. EURASIP Journal on Image and
Video Processing 2014 2014:16.
Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

	Abstract
	1 Introduction
	2 HEVC and its complexity analysis
	3 Data-level parallelization of video encoders
	4 Optimization for fast HEVC encoder
	4.1 Frame-level interpolation filter in HEVC encoder
	4.2 SIMD implementation of cost function and transformation

	5 Proposed slice-level parallelism with load balance
	5.1 Complexity estimation model
	5.2 Adaptive slice partitioning using characteristics of temporal layers

	6 Experimental results
	7 Conclusions
	Competing interests
	Acknowledgements
	Author details
	References

