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Abstract

A depth-image-based rendering (DIBR) method with spatial and temporal texture synthesis is presented in this article.
Theoretically, the DIBR algorithm can be used to generate arbitrary virtual views of the same scene in a
three-dimensional television system. But the disoccluded area, which is occluded in the original views and becomes
visible in the virtual views, makes it very difficult to obtain high image quality in the extrapolated views. The proposed
view synthesis method combines the temporally stationary scene information extracted from the input video and
spatial texture in the current frame to fill the disoccluded areas in the virtual views. Firstly, the current texture image
and a stationary scene image, which is extracted from the input video, are warped to the same virtual perspective
position by the DIBR method. Then, the two virtual images are merged together to reduce the hole regions and
maintain the temporal consistency of these areas. Finally, an oriented exemplar-based inpainting method is utilized to
eliminate the remaining holes. Experimental results are shown to demonstrate the performance and advantage of the
proposed method compared with other view synthesis methods.

Keywords: Virtual view synthesis, Three-dimensional television (3DTV), Depth-Image-Based Rendering (DIBR),
Stationary scene extraction, Inpainting

1 Introduction
Year 2010 is considered to be the year of breakthrough for
3D video and 3D industry [1]. Numerous 3D films are pro-
duced and released to the market. Stereo movies provide
people stereo perceptions by showing two slightly differ-
ent images of the same scene. Consumers can have immer-
sive feelings by watching them in theaters with stereo
eyeglasses. Disks and players of 3D Blu-ray standard
have entered the home entertainment. The prosperity of
3D industry gives an important opportunity for three-
dimensional television (3DTV) system, which is believed
to be the next generation of television broadcasting after
high-definition television. The concept of 3DTV system is
defined by European project ATTEST [2] and developed
by Morvan et al. [3] and Kubota et al. [4]. To improve the
depth perception of users, autostereoscopic display tech-
nology without any need of additional glasses is preferred
in the display part of 3DTV. Autostereoscopic displays can
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provide comfortable stereo parallax and smooth motion
disparity by displayingmultiview images of the same scene
simultaneously. A simple approach is to capture, com-
press, and transmit multiple views directly. The current
multiview video coding standard [5,6] with high compres-
sion efficiency, which exploits the spatial correlations of
the neighboring views, is used to encode and decode the
multiple video streams, generally more than eight views.
But the transmission bandwidth cost remains a challeng-
ing and unresolved problem. Meanwhile, it is commonly
suggested that the future 3DTV systems should have com-
pletely decoupled capture and display operations [7]. A
proper abstract intermediate representation of the cap-
tured data, video plus depth format, is proposed by Fehn
[8] to achieve such a decoupled operation with an accept-
able increment of bandwidth. The depth-image-based
rendering (DIBR) [2] algorithm will be used to render
multiple perspective views from the video plus depth data
according to the requirement of autostereoscopic displays.
Thus, the DIBRmethod has attracted much attention, and
become a key technology of the 3DTV system [1].
The video plus depth data format consists of one texture

color image and its corresponding perpixel dense depth
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map. Theoretically, being provided with the intrinsic and
extrinsic parameters of the virtual views, the DIBR algo-
rithm can be used to synthesize any virtual perspective
views from the video plus depth data. But there exists
three problems [2], which are visibility, resampling, and
disocclusion. Multiple pixels of the reference viewmay fall
into the same position in the virtual image plane, which
will cause the visibility problem. A Z-buffer algorithm [9]
can solve this problem by recording the Z values and
choosing the nearest pixel to the virtual camera plane. The
phenomenon of an integer pixel position in the reference
view image being projected to a subpixel position in the
virtual view is called resampling problem, which can be
coped with upsampling procedure or backwards warping
with interpolation. The remaining disocclusion problem
is the fact that some parts of the captured scene, which
are occluded in the original views, become visible in the
virtual views. It is caused by the lack of scene informa-
tion occluded by the foreground objects in the original
view position. As the distance from virtual view to refer-
ence view increases, the disoccluded area becomes larger,
as shown in Figure 1.
The disocclusion problem is considered to be the most

significant and difficult one of the DIBR algorithm. It is
well handled in the interpolation operation [10-13], but
will become severe in the extrapolation situation, where
the missing image information needs to be reconstructed
by appropriate algorithms. Lots of algorithms have been
developed to solve this problem, which can be divided into
three categories.
The first is layered-depth-image (LDI) [14,15], which

can achieve excellent rendering results by providing suf-
ficient information of the scene. LDI data are composed
of a number of color layers and their corresponding depth
layers, which contain not only the texture and depth infor-
mation of visible scene from the front view, but also that
of the occluded regions. It is very simple to obtain high-
quality multiview images from LDI data. However, the
procedure of creating LDI is computationally complex
and quite time-consuming. The transmission bandwidth
of LDI data also increases drastically with the num-
ber of layers. A simplified data format of LDI, which is
called the “Declipse” format [16], is proposed by Philips

Corporation. The “Declipse” format data consist of fore-
ground layer and background layer. It presents the advan-
tage to improve the rendering quality with a quite small
overhead in terms of complexity and bitrate.
The second approach is called depth image preprocess-

ing. To reduce the disoccluded areas in virtual views, low
pass filter is applied to smooth the depth image. Fehn
[2] uses a suitable Gaussian filter preprocessing the depth
image to eliminate the disocclusions with the cost of
slightly geometric distortions. An asymmetric smoothing
method is proposed by Zhang and Tam [17]. By enlarg-
ing the standard deviation and window size of Gaussian
filter in vertical direction, the vertical structure distortion
is reduced. The filtering effect is to smooth the sharp dis-
continuities in the depth image, thus reducing the hole
areas near object boundaries. A consequence of these
algorithms is that the whole depth map has been modi-
fied, which will severely blur the distance between scene
objects in different depth layers. To cope with depth loss,
different kinds of oriented filters [18-21] are designed with
the same principle, i.e., smoothing the sharp edge in the
depth image locally and keeping the depth of the other
regions unchanged. The oriented filters can improve the
image quality of the virtual views, but still induce geomet-
ric distortion. Although the depth image preprocessing
methods can be used to handle the disoccluded regions
in the virtual views of small baseline, obvious geometric
distortions will occur when the baseline is getting larger.
The third approach to filling the disoccluded areas is

image completing techniques. This approach can be fur-
ther classified into statistical-based methods, partial dif-
ferential equations (PDE)-based methods, and exemplar-
based methods. Statistical-based methods [22-25] have
good performance in pure texture synthesis applications,
but fail to complete natural images with complex struc-
ture. PDE-based methods [26-29], which are also called
image inpainting methods, propagate linear structures
into the disoccluded areas smoothly via diffusion. The dif-
fusion process is simulated by the PDE of physical heat
flow. Inpainting methods are suitable for removing small
image artifacts, such as speckles, scratches, and over-
laid texts. When the disocclusion is getting larger, the
diffusion process will over-smooth the image and cause

Figure 1 DIBR results for frame 0 of the “Breakdancers” sequence. (d) Reference view. (a, b, c) Virtual views on the left side. (e, f, g) Virtual
views on the right side. White color (R = 255, G = 255, B = 255) is used to represent the hole pixels. The larger the distance between the virtual view
and reference view is, the bigger the disoccluded area becomes.
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visible blurring artifacts. Exemplar-basedmethods [30,31]
fill the hole regions by copying patches with the simi-
lar texture from the known neighborhood of the image.
Criminisi et al. [30] use the exemplar-based method to
remove objects from images. Komodakis and Tziritas [31]
propose an efficient belief propagation method to obtain
global optimization. Exemplar-based methods have been
used for the case of video completion in [32,33]. Multi-
ple frames are provided as the searching source of best
match patch by Cheng et al. [34] to achieve temporal
continuity. Exemplar-based methods have been the most
powerful techniques for dealing with large disoccluded
regions. Schmeing and Jiang [35] first obtain the back-
ground information with a computed background model.
But their approach cannot handle the uncovered areas
caused by static foreground objects. For each virtual view,
Ndjiki-Nya et al. [36] use a background sprite to update
the texture and depth information of disoccluded areas.
There are two major drawbacks of this method. One is the
valuable background information of disocclusions, which
cannot be reused during the generation of other virtual
views. The other is the memory cost increases with the
number of virtual views.
In this article, a new virtual view generation method

with spatial and temporal texture synthesis is proposed.
The structure information of the captured scene in the
temporal domain is taken into account by maintaining
an accumulated sprite of stationary scene. An oriented
exemplar-based inpainting algorithm is applied to restore
the rest disoccluded areas with background texture.
The remainder of this article is organized as follows.

In Section 2, a brief description of the algorithm frame-
work is given. The details of each processing modules
are demonstrated in Sections 3, 4, 5, and 6. Experimen-
tal results are compared with state-of-the-art methods in
Section 7. The conclusions and future works can be found
in Section 8.

2 System overview
The framework of proposed DIBR method with spatial
and temporal texture synthesis is shown in Figure 2.
The proposed method is divided into four main stages,
i.e., stationary scene extraction, backward DIBR, merging
operation, and oriented exemplar-based inpainting.
In the first stage, a sprite of stationary scene is main-

tained throughout the view synthesis process, which
stores the temporally accumulated structure and depth
information of stationary image part. The Structural SIM-
ilarity index (SSIM) [37] is utilized to distinguish the
stationary scene from the moving foreground objects by
combining the input depth images. For stationary scene,
the SSIM index between adjacent frames is large, so the
image part, which is stationary in both adjacent frames,
can be extracted by using the SSIM index values. But
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Figure 2 Flow diagram of the proposed virtual view synthesis
method. First, the sprite of stationary scene is initialized with the first
image frame of the input data. Next, each frame is compared with the
sprite of stationary scene to extract more structure information. Then
both the current frame and sprite of stationary scene are rendered to
the same virtual view and merged together. Finally, the remaining
disoccluded areas are filled by proposed oriented exemplar-based
inpainting.

there still are some stationary scenes, which cannot be
distinguished due to the occlusions of moving foreground
objects. By considering the spatial relationship provided
by the input depth maps, the texture information of these
occluded stationary scenes can also be obtained. In the
demonstration of our algorithm, the camera of input
view is supposed to be still for simplicity. If the camera
is moving, an additional camera tracking module needs
to be inserted before stationary scene extraction stage
to compensate the global motions, which is beyond the
discussion in this article.
In the second stage, current frame and stationary scene

sprite are warped to the same virtual perspective view by
a backward DIBR method to tackle the visibility problem
and resampling problem.
The proposed algorithm merges these two virtual

images obtained from the second stage together with the
third stage. The merging operation needs to be done very
carefully, because the foreground objects in virtual views
may still exist inner hole pixels. The merging operation
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can take use of most of the scene information provided by
the sprite of stationary scene.
After the merging operation, there still exists a few

blank regions without pixel values. In the final stage, ori-
ented exemplar-based inpainting approach is applied to
fill the remaining holes by searching best matching exem-
plar with background texture. Current virtual image is
used as the searching source of best matching patch. The
filling order of the inpainting method is steered from
background structures to foreground objects.
Note that the proposed method only uses the sequence

of color images and depth images from one captured view
as the input data. If image data of another view are also
provided, the switch in the framework can directly be
shifted from the extrapolation mode to the interpolation
mode without any changes of the framework.

3 Stationary scene extraction
The DIBR algorithm warps the original view to the vir-
tual view position by projecting current pixels to points
in real 3D space and re-projecting the 3D points to vir-
tual image plane. Large disocclusions will appear in the
discontinuous edges of depth map, which is the transi-
tion place between foreground and background in texture
image. The background image part occluded by fore-
ground objects should be visible in the virtual views. But
the occluded background information is lost during the
procedure of recording a 3D scene by a 2D image. To
solve this problem, the proposed stationary scene extrac-
tion module tries to recover the lost background structure
from video sequences. For a video captured by a fixed
camera or a short cut of video, the image consists of mov-
ing foreground objects and stationary background. The
occluded background information in current image frame
may appear in frames at other moments. If the informa-
tion can effectively be used, the filling effect of disoccluded
areas will be more convincing.
Stationary scene extraction algorithm keeps a global

sprite throughout the view generation process to accumu-
late structure and depth information of stationary scene in
temporal direction. The global sprite of stationary scene
is composed of two components: one is the texture image
of stationary scene, denoted as CSS, the other is the depth
map of stationary scene, denoted asMSS. CSS andMSS are,
respectively, initialized with the first frame of the texture
sequence and depth sequence of the original view. The
initialization step is expressed as follows:{

CSS(p) = It(p)
MSS(p) = Dt(p)

, t = 0 (1)

where p : (i, j) corresponds to the pixel of column coordi-
nate i and row coordinate j. It and Dt represent the color
intensity frame and depth map frame of input original

view at time t, respectively. Dt is represented as an 8-bits
gray-scale image. The continuous depth range is quan-
tized to 255 discrete depth values. The nearest object to
the camera image sensor is assigned with 255 and the far-
thest object is assigned with 1. Pixels with depth value 0
are denoted as holes. The transform formula between dis-
crete depth level and actual distance in real scene can be
found in [12].
After the initialization, a temporary sprite of stationary

scene, denoted as TCSS and TMSS, is obtained between
each input image frame It and its previous frame It−1 to
extract the useful information of occluded background in
It . For stationary scene, the SSIM index [37] between adja-
cent frames is large, so the image part, which is stationary
in both adjacent frames, can be extracted by using the
SSIM index values. For each pixel p : (i, j), a structure sim-
ilarity index pSSIM defined in [37] is calculated between
the corresponding square areas�I

t and�I
t−1 of It and It−1,

which take p as the center pixel and L × L as the window
size. The SSIM pSSIM is calculated as follows

pSSIM = (2μ�tμ�t−1 + K1)(2σ�t(t−1) + K2)

(μ2
�t

+ μ2
�t−1

+ K1)(σ
2
�t

+ σ 2
�t−1

+ K2)
(2)

where μ�t , μ�t−1 represent the luminance mean value of
�I

t and �I
t−1, respectively. σ�t and σ�t−1 represent the

luminance standard deviation of �I
t and �I

t−1. σ�t(t−1)

denotes the luminance correlation coefficient between �I
t

and �I
t−1. K1 and K2 are constants. The value of K1 and

K2 can be determined according to the research work in
[37]. The expressions of mean, standard deviation, and
correlation coefficient can also be found in [37].
Then an arbiter with threshold A is used to divide the

pixels of input image frame It into stationary part Is and
rest part Ir . The classifier can be expressed as follows:{

p ∈ Is, pSSIM ≥ A
p ∈ Ir , pSSIM < A

, p : (i, j) ∈ It . (3)

Is contains the stationary pixels with high SSIM value,
which can directly be used to update the same pixel posi-
tions in TCSS. Ir are composed of three parts: the part
with changed luminance Plc, the relatively moving part
Prm, and the actually moving part Pam. Plc represents the
areas with similarly scene structure and different lumi-
nance which causes the decrease of SSIM value. Prm is the
region which is moving in It−1 and stationary in It . Pam
denotes the image part which is moving in It and station-
ary in It−1. As shown in Figure 3c, Is between Figure 3a,b
is marked as black, the actually moving part Pam is marked
as red, the region with changed luminance Plc is marked
as green, and the relatively moving area Prm is marked
as blue. The first two kinds Plc and Prm can be also
used to update TCSS directly, whereas the third kind Pam
needs to be excluded from It and the pixels in the same
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Figure 3 Stationary scene extraction result of the “Book arrival” sequence. (a) The 36th frame and (b) the 37th frame of “Book arrival”
sequence from the 8th camera position. (c) The segment map of (a). The stationary part Is between (a) and (b) is marked as black. The actually
moving part Pam is marked as red. The region with changed luminance Plc is marked as green. The relatively moving area Prm is marked as blue.
(d) The texture image of the temporary stationary scene sprite for the 37th frame. (e)Magnified subsection in (a). (f)Magnified subsection in (b).
(g)Magnified subsection in (d). (h) The texture image of global stationary scene sprite for (a). (i) The depth map of global stationary scene sprite
for (a).
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regions of It−1 will be used to update TCSS. As shown in
Figure 3e–g, the poster occluded by the men’s hands in
Figure 3e and the white board behind the man in Figure 3f
are all preserved in Figure 3g. Provided with the cor-
responding depth map Dt and Dt−1, the three different
image parts are defined as follows.

⎧⎪⎪⎨
⎪⎪⎩
p ∈ Plc,

∣∣∣μD
t − μD

t−1

∣∣∣ ≤ T

p ∈ Prm, μD
t − μD

t−1 < −T
p ∈ Pam, μD

t − μD
t−1 > T

, p : (i, j) ∈ Ir (4)

where μD
t and μD

t−1, respectively, represent the average
depth value of square areas in Dt and Dt−1. The square
neighborhoods have the same window size L × L with
SSIM computation in Equation (2) and take the coor-
dinates of pixel p as center position. T is a constant
threshold, which defines the acceptable range of depth
fluctuation. |·| is the absolute function.
Then the information of stationary scene between

two adjacent frames can be extracted by the following
equation:

TCSS(p) =
{
It(p), p : (i, j) ∈ Is ∪ Plc ∪ Prm
It−1(p), p : (i, j) ∈ Pam

TMSS(p) =
{
Dt(p), p : (i, j) ∈ Is ∪ Plc ∪ Prm
Dt−1(p), p : (i, j) ∈ Pam

(5)

Finally, the temporary sprite of stationary scene (TCSS
and TMSS) is used to update the global sprite (CSS and
MSS). The update operation is described as follows.

Css(p) =
{
TCSS(p),μ

p
TM − μ

p
M ≤ T

CSS(p), otherwise
p : (i, j) ∈ CSS

Mss(p) =
{
TMSS(p),μ

p
TM − μ

p
M ≤ T

MSS(p), otherwise
p : (i, j) ∈ MSS

(6)

where μ
p
TM and μ

p
M, respectively, represent the average

depth value of square areas in TMSS andMSS. The square
neighborhoods have the same window size L × L with
SSIM computation and take the coordinates of pixel p as
center position. T is the same constant threshold defined
in Equation (4). Figure 3d shows TCSS of Figure 3b.
Figure 3h,i are CSS and MSS of Figure 3b, respectively.
Almost all the texture and depth information of stationary
scene are restored in Figure 3h,i.
So far, the appeared background information in past

frames is stored in CSS and MSS, which can be used
to partly solve the disocclusion problem of virtual view
synthesis algorithm.

4 Backward DIBR
The backward DIBR method, which shares the same idea
with the inverse warping method in [13], can efficiently
eliminate the small cracks in virtual view caused by resam-
pling problem in traditional DIBR process [2]. In general,
the backward DIBRmethod can be divided into two steps:
warping the depth map of the reference view to the vir-
tual view position and generating the texture image of the
virtual view.
In the backward DIBR method, Dt , is warped to vir-

tual perspective position. A two-pixel-wide region around
background–foreground transitions is marked as unreli-
able pixels. During the rendering process of depth map,
the unreliable pixels will be skipped, because their depth
values are inaccurate. There are four registers in each pixel
q : (u, v) of virtual view, which are used to store the
depth and distance of four nearest pixels projected from
the reference image. The four registers of pixel q only store
rendered pixels from reference image whose distance to q
is less than one pixel either in horizontal or vertical direc-
tion. VDt , the depth map of virtual view, is calculated as
follows

VDt(q) =

⎧⎪⎪⎨
⎪⎪⎩

N(q)∑
k=1

λkDk ,N(q) > 0 and N(q) ≤ 4

0, N(q) = 0

(7)

where N(q) denotes the numbers of pixels warped to
q, which satisfy the condition mentioned above. If N(q)
is larger than 4, we sort the warped pixels by its depth
value in large to small order and store the first four pix-
els with larger depth. Dk is the depth value of stored pixel.
N(q) = 0 means there is no pixel that is projected to
pixel q. λk represents the normalized weight factor with
the combination of distance and depth, which is defined as

λk = ρkωk∑N(q)
m=1 ρmωm

,
N(q)∑
k=1

λk = 1 (8)

where the weight factor of distance ωk is expressed as
Equation (9). (Uk ,Vk) is the projected position of warped
pixel in virtual image plane.

ωk = 1√
(Uk − u)2 + (Vk − v)2

(9)

The weight factor of depth ρk is expressed as

ρk =
{
1, Dk ≥ μND

0, Dk < μND
(10)

where μND is the average depth value of all the stored
warped pixels in pixel q.
The non-hole pixel (u, v) in VDt is reprojected to posi-

tion (Xuv,Yuv) in image plane of original view to get the
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texture image of virtual view by interpolation operation.
The texture image of virtual view VIt is calculated by

VIt(q) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

4∑
n=1

θnIn

4∑
n=1

θn

, VDt(q) > 0

hole, VDt(q) = 0

(11)

where ‘hole’ flag means there is no warped pixel from the
reference image. We set the hole pixels with a white color
(R = 255, G = 255, B = 255). In represents the color value
of pixel (xn, yn) whose distance to (Xuv,Yuv) is less than
one pixel either in horizontal or vertical direction. θn is the
weight factor of distance, which is expressed as

θn = 1√
(Xuv − xn)2 + (Yuv − yn)2

. (12)

The virtual depth map VMt projected from MSS and
the virtual texture image VCt projected from CSS can
be obtained by the same backward DIBR method. Two
results of our backward DIBR algorithm are given in
Figure 4e,f.

5 Merging operation
To efficiently use the structure information in CSS, the two
virtual texture images (VIt and VCt) need to be merged
together. The merged virtual image and its depth map are
denoted as MIt and MDt , respectively. The virtual view
image VIt is dominated in the merging process. Avail-
able background information in VCt is used to fill the
blank areas in VIt . There may be holes in both foreground
and background due to the inaccuracy of depth map, as
shown in Figure 4e. We do the merging operation care-
fully to avoid filling holes in foreground with background
structures.
First, an estimated depth value Dq

E is obtained for each
hole pixel q : (u, v) in VIt . As mentioned in Section 3,
the hole regions of virtual view are lacking of background
information. When q locates between background and
foreground, we choose the small depth value of back-
ground scene as estimation and the average depth other-
wise. The estimation is defined as

Dq
E =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ
qL
D + μ

qR
D

2
,
∣∣μqL

D − μ
qR
D

∣∣ ≤ T

μ
qR
D , μ

qL
D − μ

qR
D > T

μ
qL
D , μ

qL
D − μ

qR
D < −T

; q is hole

(13)

where qL and qR represent the first left and first right non-
hole pixel in horizontal column, respectively. μqL

D and μ
qR
D

represent the average depth of the K × K windows which

take qL and qR as the center pixels in VDt . T is the same
constant defined in Equation (4).
Then the merging operation is executed as follows.

MIt(q) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

VIt(q), VIt(q)is non-hole
VCt(q), VIt(q) is hole and VCt(q) is non-

hole and
∣∣VMt(q) − Dq

E
∣∣ ≤ F

hole, otherwise
(14)

where non-hole flagmeans there exists a meaningful value
in this pixel position. The second condition in Equation
(14) defines the situation, i.e., the pixel q is hole in VIt ,
but meaningful pixel with available background texture in
VCt . This condition ensures that the holes in foreground
objects will not be filled with the accumulated background
information in VCt . F represents the acceptable range
of depth fluctuation in merging operation. In Figure 4g,
the available texture of stationary background scene in
Figure 4f is merged with the virtual image (Figure 4e) ren-
dered from original view and the hole areas in foreground
objects are reserved. The corresponding depth value of
each non-hole pixel inmerged virtual viewMIt is stored in
MDt , and the depth value of each hole pixel is set to zero.

6 Oriented exemplar-based inpainting
The merging operation can solve the disocclusion prob-
lem partly, because the useful background information in
CSS and MSS is limited. There still exist hole areas in the
merged virtual viewMIt , which are divided into two kinds:
the foreground holes caused by inaccurate depth map and
the blank areas caused by occlusion in original view. The
image part with known pixels is defined by �, and the
remaining hole area is denoted as 	. The border of hole
area 	 is defined as ∂	, as shown in Figure 5a.
To restore the missing information of the remain-

ing hole areas, we propose an oriented exemplar-based
inpainting algorithm based on the previous work of Cri-
minisi et al. [30]. They determine the filling order of hole
pixel h ∈ ∂	 by assigning each hole pixel a priority P(h).
The hole pixel with the highest priority is first filled with
the best match patch in �. The priority is the product of
the confidence term C(h) and the data term D(h). The
confidence term enforces to fill hole with large support set
of known pixels first, while the data term ensures the con-
tinuous propagation of linear structure into hole regions.
Noticing the fact that most remaining holes are due to a
lack of scene information of the stationary background, we
improve their algorithm in twoways. One is filling the bor-
der pixel in ∂	 which is adjacent to background area, first.
The other is choosing the texture of known background
area to restore the disoccluded regions. The improve-
ments are implemented by considering depth cue in the
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(a)                (b)

(c)             (d)

(e)               (f)

(g)
Figure 4 Backward DIBR results andmerged virtual image of “Book arrival” sequence. (a) The 50th frame of “Book arrival” sequence from the
8th camera position. (b) The corresponding depth map of (a). (c) The texture image of the global stationary scene sprite for (a). (d) The depth map
of the global stationary scene sprite for (a). Our backward DIBR method results from the 8th camera position to the 10th camera position with
disoccluded areas marked as white color: (e) generated from (a, b, f) generated from (c, d). (g) Proposed merging approach result of (e, f). The
blank areas in red color circles are inner holes in foreground objects. The hole regions in green circles are disocclusion caused by stationary
foreground objects. The hole regions in blue color circles are caused by the inaccuracy of depth map.
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(a)  (b)

(c)  (d)   (e)   (f)  (g)
Figure 5 Effect of proposed oriented exemplar-based inpainting algorithm on a synthetic image. (a) A synthetic image of virtual view with
disoccluded areas, which are represented by white color. (b) The corresponding depth map of (a). The black color indicates the hole areas in depth
map. (c–g) The magnified result of proposed oriented exemplar-based inpainting algorithm after N iterations: (c) N = 2, (d) N = 70, (e) N = 77, (f)
N = 145, and (g)N = 196. The patch size of the oriented exemplar-based inpainting algorithm is set to 15×15, and the search window size is 15×15.

calculation of the priority term and the energy function,
both of which are used for the best exemplar searching
procedure.
The modified priority term is defined as

P(h) = C(h)D(h) + de(h), h ∈ δ	 (15)

where de(h) represents the depth term. The definition of
C(h) and D(h) is the same as Criminisi’s approach, and
their expressions can be found in [30]. The depth term is
expressed as follows.

de(h) =
{
Q, h near to BG
0, h near to FG

, h ∈ δ	 (16)

where BG and FG represent the background areas and
foreground objects, respectively. Q is a constant, which
should be no less than the maximum of the product of
C(h) and D(h). We set Q = 256 in our framework. The
new priority term will steer the filling order from back-
ground to foreground and keep the advantage of linear
structure propagation.
Let r denote the pixel withmaximum priority in ∂	. The

J × J samples patch, which takes r as center, is defined as
� . A square area around r withW ×W samples is defined
to be the searching area 
. Then the oriented exemplar-
based inpainting algorithm needs to search for the best
match patch S in 
, which has the most similar texture

with � . The center of S is denoted as s. The correspond-
ing depth areas of � and S are represented by � and O,
respectively.
The energy function combining the depth cue is

expressed as follows.

E =
∑
m∈�k

‖�(m) − S(m)‖2

+ β
∑
m∈�k

‖�(m) − O(m)‖2 + γ

∣∣∣μk
� − μu

O

∣∣∣2
(17)

where �k denotes the position set of known pixels in the
filling target patch� . The position set of hole pixels in� is
represented by�u : �u = � −�k .�(m) and S(m) denote
the pixel value of pixel positionm in � and S, respectively.
�(m) and O(m) represent the depth value of pixel posi-
tion m in � and O, respectively. β is a constant, which is
the weighting factor for the depth values of correspond-
ing pixels with �k in �. μk

� represents the average depth
value of the corresponding pixels with �k in �. μu

O repre-
sents the average depth value of the corresponding pixels
with �u in O. μk

� and μu
O are defined as

μk
� =

∑
m∈�k

�(m)/ |�k| , μu
O =

∑
m∈�u

O(m)/ |�u|

(18)
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where |�u| denotes the area of �u. γ is the penalizing fac-
tor for the candidate patches with foreground texture. γ is
an adaptive parameter related to the area of �k , denoted
as |�k|. Then γ is calculated as

γ =
{
0, μu

O − μk
� ≤ T

10 |�k| , otherwise
(19)

where T is a constant as defined in Equation (4).
The best match block in the searching area
 is obtained

by minimizing the energy cost function (17). The first
term in energy function (17) represents the texture differ-
ence between the known pixels in target patch � and the
corresponding pixels in match patch S. In our approach,
only the luminance component is considered. The sec-
ond term in (17) indicates the depth similarity, which has
lower importance than the first texture term. The third
term is a penalization term. If there exist pixels of fore-
ground objects in the corresponding area of �u in S, the
penalization term will become larger. The likelihood of
selecting patches with foreground pixels is greatly reduced
by adding the penalization term. According to the defini-
tion of the energy function, the patches of the background
scene, which contain similar texture and depth struc-
ture with the target block, will be selected to restore the
missing information of the disoccluded image areas. We
applied our oriented exemplar-based inpainting method
to synthesize the missing texture information of disoc-
cluded area in Figure 5a. The blank region is filled from
background scene to foreground objects, and the linear
structure is propagated into the hole in an appropriate way
(see Figure 5c–g).

7 Methods
To evaluate the performance of the proposed method, we
compare our approach with other methods, including the
MPEG view synthesis reference software (VSRS, version
3.5) [38], the depth-based inpainting method in [29], and
the Asymmetric Gaussian filtering method of Zhang and
Tam [17].
Our experiments are carried out on three test

sequences: “Book arrival”, “Breakdancers”, and “Ballet”.
These sequences have 100 frames and a resolution of
1024 × 768 samples. Multiple video plus depth data
from different camera views are available. “Book arrival”
sequence is captured by a parallel camera array and
the others are obtained by a toed-in camera array. The
baseline between two adjacent cameras is approximately
6.5 cm for “Book arrival” sequence and 20 cm for the other
two sequences.
The parameter values used in our proposed algorithm

is summarized in Table 1. The optimized parameters are
used for MEPG method (VSRS 3.5). For Asymmetric
Gaussian filtering method, we utilize strong smoothing

Table 1 Parameter values used in proposedmethod

Parameter L A T K F J W β

Value 19 0.7 3 5 8 9 15 0.5

parameters to eliminate the disoccluded areas caused by
large camera baseline. We set the horizontal and verti-
cal standard deviations of the Gaussian kernel to 20 and
60, respectively. The filter window sizes are set to 61
samples horizontally and 193 samples vertically. In the
experiments, the Asymmetric Gaussian filtering method
and the depth-based inpainting method employ the back-
ward DIBR approach proposed in Section 4 to handle the
visibility and resampling problems, just the same as our
proposed method.

7.1 Subjective evaluation
The view synthesis results of these three test video
sequences are shown in Figures 6, 7, and 8. All of the
four presented approaches can handle the visibility and
resampling problems and fill the disoccluded areas in vir-
tual view. Our proposed algorithm has the best subjective
effects compared to the others three methods.
The Asymmetric Gaussian filtering method causes

noticeable geometric distortions. The vertical structure
is curved in Figures 6c and 7c. The foreground objects
become fat, as shown in Figures 6k and 7g,k. This method
will slightly shift the object away from its correct position
(see Figure 6g), which will reduce the disparity between
reference image and virtual image and decrease the 3D
feelings. For the purpose of autostereoscopic display,
although the visual quality of Figure 6g is still pleasant,
the depth perception of the scene is distorted due to
these shifts. The distorted stereo display will make people
fill uncomfortable and arouse visual fatigues. The depth-
based inpainting method can restore the blank areas with
color of background pixels, but induce severe blurring
artifacts (see Figures 6l, 7h,l, and 8h) and some color
bleeding defects (see Figures 7h,l and 8h). The filling
results are very uncomfortable for visual experience. The
VSRS method will lead to significant horizontal structure
artifacts (as shown in Figures 6i,m, 7i,m, and 8i,m) and
decrease the visual quality greatly.
The proposed approach utilizes the accumulated infor-

mation of stationary scene to fill the disoccluded areas
and achieves convincing effect, as shown in Figures 6n, 7j,
and 8j. The missing structure of blank regions is restored
with the true background structure. Even for the disoc-
cluded areas caused by stationary foreground objects, our
proposed method can obtain plausible filling results. As
shown in Figures 6j and 7n, the hole areas are filled with
the texture of background scene without losing the sharp-
ness compared to Figure 6h,l. Figure 8l gives better visual
effect than Figure 8n. Because the man’s leg is very close
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Figure 6 DIBR results for the “Book arrival” sequence from the 8th camera to the 10th camera. (a) Reference image, which is the 50th frame
of the 10th camera position. (b) Rendered image of backward DIBR approach with hole areas, which are marked as white color. (c) Result of
Asymmetric Gaussian filtering method. (d) Result of depth-based inpainting algorithm. (e) Result of VSRS. (f) Result of proposed approach.
(g, k)Magnified subsection in (c). (h, l)Magnified subsection in (d). (i, m)Magnified subsection in (e). (j, n)Magnified subsection in (f).
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Figure 7 DIBR results for the “Ballet” sequence from the 3rd camera to the 4th camera. (a) Reference image, which is the 4th frame of the 4th
camera position. (b) Rendered image of backward DIBR approach with hole areas, which are marked as white color. (c) Result of Asymmetric
Gaussian filtering method. (d) Result of depth-based inpainting algorithm. (e) Result of VSRS. (f) Result of proposed approach. (g, k)Magnified
subsection in (c). (h, l)Magnified subsection in (d). (i, m)Magnified subsection in (e). (j, n)Magnified subsection in (f).
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Figure 8 DIBR results for the “Breakdancers” sequence from the 5th camera to the 4th camera. (a) Reference image, which is the 69th frame
of the 4th camera position. (b) Rendered image of backward DIBR approach with hole areas, which are marked as white color. (c) Result of
Asymmetric Gaussian filtering method. (d) Result of depth-based inpainting algorithm. (e) Result of VSRS. (f) Result of proposed approach.
(g, k)Magnified subsection in (c). (h, l)Magnified subsection in (d). (i, m)Magnified subsection in (e). (j, n)Magnified subsection in (f).
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to the wall in Figure 8b, it is difficult to distinct the leg
from the wall. In Figure 8n, our approach wrongly fill the
hole with texture of the wall. Another important advan-
tage of our approach is the temporary texture consistency
of the filled disoccluded regions. For disoccluded areas
caused by moving foreground objects, the missing texture
is recovered from other frames. The true texture informa-
tion in other frames is extracted and used to restore the
hole areas. To demonstrate the consistency in temporal
direction, a series of magnified virtual image subsection
for “Ballet” sequence is shown in Figure 9. The disoc-
cluded regions around the woman of adjacent frames are

restored by the same true background structure, then the
texture of filled image areas maintains consistent in time
direction.

7.2 Objective comparison
We adopt peak-signal-to-noise ratio (PSNR) and SSIM
[37] to compare the performance of proposed approach
with the other three methods.
For every test case of each sequence, the PSNR and

SSIM values are calculated for the whole image region
of every virtual image frame. The mean values of PSNR

Figure 9 Temporal texture consistency in the disoccluded regions of the proposed algorithm. The DIBR results of our proposed approach for
“Ballet” sequence from the 5th camera to the 4th camera. The enlarged same image regions from (a) the 56th frame, (b) the 57th frame, (c) the 58th
frame, (d) the 59th frame, (e) the 60th frame, and (f) the 61st frame.



Xi et al. EURASIP Journal on Image and Video Processing 2013, 2013:9 Page 15 of 18
http://jivp.eurasipjournals.com/content/2013/1/9

Table 2 PSNR and SSIM results

Seq. Camera
PSNR (dB) SSIM

VSRS Depth-based Asym. VSRS Depth-based Asym.
Prop. 3.5 inpainting filter Prop. 3.5 inpainting filter

[38] [29] [17] [38] [29] [17]

Book arrival 8 → 9 32.91 32.85 32.69 28.85 0.9814 0.9803 0.9798 0.9500

10 → 9 32.12 31.55 32.03 28.24 0.9817 0.9766 0.9811 0.9465

8 → 10 29.74 29.50 29.53 28.85 0.9672 0.9647 0.9645 0.8876

10 → 8 28.92 28.57 28.79 25.00 0.9684 0.9628 0.9660 0.8909

Break dancers 4→3 31.91 30.13 31.45 26.56 0.9470 0.9323 0.9440 0.8832

3→4 31.94 29.67 31.78 26.70 0.9518 0.9357 0.9500 0.8848

5→4 32.58 28.74 32.06 27.16 0.9532 0.9340 0.9503 0.8867

5→6 32.47 31.51 32.12 26.59 0.9503 0.9441 0.9482 0.8876

Ballet 3→4 30.10 28.20 29.63 22.58 0.9388 0.9111 0.9288 0.8280

5→4 31.91 26.87 31.85 23.28 0.9436 0.9151 0.9403 0.8304

5→3 27.74 24.41 25.92 20.17 0.8884 0.8575 0.8820 0.7517

3→5 27.38 25.98 27.10 20.82 0.8799 0.8447 0.8683 0.7489

This table shows the PSNR and SSIM values of four view synthesis methods. The best results are highlighted with boldface type.

and SSIM for each test case are stored in Table 2 and the
best results are highlighted with boldface type. The “Cam-
era” column indicates camera configuration of virtual view
generation, i.e., “8→9” means synthesizing virtual view of
the 9th camera’s perspective position from the 8th camera.
From Table 2, we can observe that among these four

methods the proposed framework has the best PSNR
and SSIM performance for both the parallel and toed-in
camera configuration. The Asymmetric Gaussian filter-
ing method gets the lowest PSNR and SSIM values due
to the geometric distortion. For the four test cases of
“Book arrival” sequence, the baselines between the virtual
view and reference view are small (6.5–13 cm). Because
the holes around image boundary occupy great percent-
age of the whole disocclusions (see Figure 6b), the PSNR
and SSIM gains of our proposed framework are small,
i.e., 0.09–0.22 dB for PSNR and 0.0006–0.0027 for SSIM
compared to depth-based inpainting method. For the
test cases of “Breakdancers” and “Ballet” with large base-
line (20–40 cm), our proposed approach obtains larger
PSNR and SSIM gains compared to depth-based inpaint-
ing method, i.e., 0.16–1.82 dB for PSNR and 0.0018–
0.0116 for SSIM. There are two important reasons for
the improvements of PSNR and SSIM in our proposed
framework. One is the available structure information
from the stationary scene sprite; the other is the oriented
exemplar-based inpainting process with reasonable filling
orders. Figure 10 shows the PSNR and SSIM curves for

two test cases. One is the virtual view of “Ballet” sequence,
which is generated from the 3nd camera to the 4th
camera. The other is the virtual view of “Breakdancers”
sequence, which is generated from the 5th camera to the
4th camera.
Figure 11 gives the PSNR curves for a local area of

“Book arrival” sequence. The concerned local area is the
same subsection shown in Figure 6n. From the 1st frame
to the 31st frame, the local area only covers background
objects, so the performance is very close for these three
algorithms. From the 32nd frame to the 99th frame, the
local area contains not only background objects but also
foreground objects. Then the disoccluded regions appear
in the concerned local area due to the discontinuity of
the depth. With the proposed stationary scene extraction
algorithm, the true texture information of the background
objects is utilized to recover the disoccluded regions. The
temporal consistency of texture and structure is main-
tained for these frames using our algorithm. Compared to
the VSRS and the depth-based inpainting algorithm, the
fluctuation of the PSNR values is much smaller for the
proposed method (as shown in Figure 11), which means
that the temporal consistency of the rendered sequence is
improved. It is obvious that the PSNR value drops at the
32nd frame and the 51st frame due to the sudden depth
change in the input sequence. To obtain a more consistent
rendered sequence, a temporal filtering procedure for the
input depth sequence is beneficial.



Xi et al. EURASIP Journal on Image and Video Processing 2013, 2013:9 Page 16 of 18
http://jivp.eurasipjournals.com/content/2013/1/9

27.50

28.00

28.50

29.00

29.50

30.00

30.50

31.00

0 10 20 30 40 50 60 70 80 90

PS
N

R
(d

B
)

Frame number

Ballet from camera 3 to camera 4

Proposed method VSRS
Depth-based inpainting

26.00

27.00

28.00

29.00

30.00

31.00

32.00

33.00

34.00

0 10 20 30 40 50 60 70 80 90

PS
N

R
(d

B
)

Frame number

Breakdancers from camera 5 to camera 4

Proposed method VSRS
Depth-based inpainting

(a)                 

0.90

0.91

0.92

0.93

0.94

0.95

0 10 20 30 40 50 60 70 80 90

SS
IM

Frame number

Ballet from camera 3 to camera 4

Proposed method VSRS
Depth-based inpainting

0.92

0.93

0.94

0.95

0.96

0.97

0 10 20 30 40 50 60 70 80 90

SS
IM

Frame number

Breakdancers from camera 5 to camera 4

Proposed method VSRS
Depth-based inpainting

(c)               

          (b)

          (d)

Figure 10 PSNR and SSIM curves for “Ballet” and “Breakdancers” sequences. (a) PSNR curve of “Ballet” from the 3rd camera to the 4th camera.
(b) PSNR curve of “Breakdancers” from the 5th camera to the 4th camera. (c) SSIM curve of “Ballet” from the 3rd camera to the 4th camera. (d) SSIM
curve of “Breakdancers” from the 5th camera to the 4th camera.

Figure 11 The PSNR curves for a local area of “Book arrival”
sequence. The concerned local area is the same subsection shown in
Figure 6n. The virtual view is the 10th camera position generated
from the 8th camera position.

7.3 Execution time
We implement these four algorithms in C language on a
workstation of DELL Corporation and evaluate the run-
time costs, as summarized in Table 3. The execution time
of each step in proposed framework is given in Table 4.

Table 3 Execution time comparison

Seq.
Runtime (s/frame)

Prop. VSRS 3.5 Depth-based Asym. filter
[38] inpainting [29] [17]

Book arrival 12.53 1.50 136.93 2.11

Break dancers 11.89 3.92 138.74 1.65

Ballet 31.02 5.32 190.78 3.00

Table 4 Execution time of proposed framework

Seq.
Runtime (s/frame)

BG extraction Backward
DIBR +
Merge

Oriented
inpainting

Total

Book arrival 3.01 3.50 5.85 12.53

Break dancers 3.01 2.89 5.99 11.89

Ballet 2.84 3.99 24.19 31.02
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The workstation is equipped with an Intel 2.93-GHz Xeon
quad-core CPU and 4-GB DDR2 RAM.
The runtime costs of Asymmetric Gaussian filtering

and MPEG method are within 10 seconds per frame. The
depth-based inpainting algorithm spendsmore than 2min
due to the time-consuming iteration operation. The pro-
posed approach takes about 20 s to generate virtual view
for each frame. The oriented exemplar-based inpainting
process takes most of the time cost for our approach,
about 50–80%, as shown in Table 4. The execution time
of the oriented exemplar-based inpainting algorithm is
depended on the size of disoccluded areas, the image
patch size, and the size of searching window. For “Bal-
let” sequence, because the area of hole regions is larger
than the other two test sequences (cf. Figures 7b, 6b, and
8b), the runtime cost increases about 2 times. The addi-
tional time cost is acceptable for the improvement in the
objective and subjective qualities of virtual view image.

8 Conclusion and future work
This article presents a novel DIBRmethod combined with
spatial and temporal texture synthesis. By maintaining a
sprite of stationary scene of the original sequence, the use-
ful structure information can be adopted to restore the
missing texture of disocclusions in virtual view images.
The remaining disoccluded areas are restored by pro-
posed oriented exemplar-based inpainting approach. The
oriented exemplar-based inpainting method fills the rest
hole areas from background to foreground and propa-
gates the structure and texture into the blank regions in
an appropriate way. Combining these two algorithms, the
proposed DIBR method solved the disocclusion problem
well and achieved the spatial and temporal consistency.
These features make the proposed approach very suitable
for extrapolation of virtual view synthesis. Meanwhile,
the proposed framework has the flexibility of shifting
to the interpolation operation. Theoretical analysis and
experimental results show that the proposed method out-
performs state-of-the-art view synthesis methods. The
increase of runtime cost is moderate and acceptable. Our
future work will focus on the research of camera track-
ing and motion compensation to extend our proposed
method to the situation with moving cameras.

Abbreviations
3DTV: three-dimensional television; DIBR: depth-image-based rendering; LDI:
layered-depth-image; PDE: partial differential equations; PSNR:
peak-signal-to-noise ratio; SSIM: structural similarity index; VSRS: view synthesis
reference software.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
Ming Xi would like to thank Yin Zhao for his discussion and suggestion about
the backward DIBR algorithm. Ming Xi also would like to thank Menno
Wildeboer and Masayuki Tanimoto for their kindly help with the

implementations. The authors would like to thank the Interactive Visual Media
Group at Microsoft Research and the Fraunhofer Institute for
Telecommunications-Heinrich Hertz Institute for providing the “Breakdancers”,
“Ballet”, and “Book arrival” sequences, respectively. This study was supported in
part by the National Natural Science Foundation of China (Grant nos.
60802013, 61072081, 61271338), the National High Technology Research and
Development Program (863) of China (Grant no. 2012AA011505), the National
Science and Technology Major Project of the Ministry of Science and
Technology of China (Grant no. 2009ZX01033-001-007), Key Science and
Technology Innovation Team of Zhejiang Province, China (Grant no.
2009R50003) and China Postdoctoral Science Foundation (Grant no.
20110491804, 2012T50545).

Received: 27 July 2012 Accepted: 23 November 2012
Published: 11 February 2013

References
1. A Smolic, P Kauff, S Knorr, A Hornung, M Kunter, M Muller, M Lang,

Three-dimensional video postproduction and processing. Proc. IEEE.
99(4), 607–625 (2011)

2. C Fehn, in Proceedings of SPIE Stereoscopic Displays and Virtual Reality
Systems XI, vol. 5291. Depth-image-based rendering (DIBR), compression,
and transmission for a new approach on 3D-TV (San Jose, CA, USA, 2004),
pp. 93–104

3. Y Morvan, D Farin, PH de With, System architecture for free-viewpoint
video and 3D-TV. IEEE Trans. Consum. Electron. 54(2), 925–932 (2008)

4. A Kubota, A Smolic, M Magnor, M Tanimoto, T Chen, C Zhang, Multiview
imaging and 3DTV. IEEE Signal Process. Mag. 24(6), 10–21 (2007)

5. A Smolic, K Mueller, N Stefanoski, J Ostermann, A Gotchev, G Akar, G
Triantafyllidis, A Koz, Coding algorithms for 3DTV—a survey. IEEE Trans.
Circuits Syst. Video Technol. 17(11), 1606–1621 (2007)

6. P Merkle, A Smolic, K Muller, T Wiegand, Efficient prediction structures for
multiview video coding. IEEE Trans. Circuits Syst. Video Technol.
17(11), 1461–1473 (2007)

7. L Onural, T Sikora, Introduction to the special section on 3DTV. IEEE Trans.
Circuits Syst. Video Technol. 17(11), 1566–1567 (2007)

8. C Fehn, in Proceedings of the Visualization, Imaging, and Image Processing,
vol. 3. A 3D-TV approach using depth-image-based rendering (DIBR)
(ACTA Press, Benalmadena, Spain, 2003), pp. 482–487

9. N Greene, M Kass, G Miller, in Proceedings of the 20th annual conference on
Computer graphics and interactive techniques. Hierarchical Z-buffer
visibility (ACM Press, CA, USA, 1993), pp. 231–238

10. C Zitnick, S Kang, M Uyttendaele, S Winder, R Szeliski, High-quality video
view interpolation using a layered representation. ACM Trans. Graph.
(TOG). 23(3), 600–608 (2004)

11. A Smolic, K Muller, K Dix, P Merkle, P Kauff, T Wiegand, in 15th IEEE
International Conference on Image Processing. Intermediate view
interpolation based on multiview video plus depth for advanced 3D
video systems. (San Diego, CA, USA, 12–15 October 2008) pp. 2448–2451

12. Y Mori, N Fukushima, T Yendo, T Fujii, M Tanimoto, View generation with
3D warping using depth information for FTV. Signal Process.: Image
Commun. 24(1–2), 65–72 (2009)

13. S Zinger, L Do, et al., Free-viewpoint depth image based rendering. J. Visu.
Commun. Image Represent. 21(5–6), 533–541 (2010)

14. J Shade, S Gortler, L He, R Szeliski, in in Proceedings of the 25th Annual
Conference on Computer Graphics and Interactive Techniques. Layered
depth images (ACM, Orlando, FL, USA, 1998), pp. 231–242

15. S Yoon, Y Ho, Multiple color and depth video coding using a hierarchical
representation. IEEE Trans. Circuits Syst. Video Technol.
17(11), 1450–1460 (2007)

16. Comparative study and recommendations. http://www.3d4you.eu/
17. L Zhang, W Tam, Stereoscopic image generation based on depth images

for 3D TV. IEEE Trans. Broadcast. 51(2), 191–199 (2005)
18. W Chen, Y Chang, S Lin, L Ding, L Chen, in IEEE International Conference on

Multimedia and Expo. Efficient depth image based rendering with edge
dependent depth filter and interpolation. (Amsterdam, Netherlands, 6
July 2005) pp. 1314–1317

19. I Daribo, C Tillier, B Pesquet-Popescu, in IEEE 9thWorkshop onMultimedia
Signal Processing. Distance dependent depth filtering in 3D warping for
3DTV. (Chania, Crete, Greece, 1–3 October 2007) pp. 312–315



Xi et al. EURASIP Journal on Image and Video Processing 2013, 2013:9 Page 18 of 18
http://jivp.eurasipjournals.com/content/2013/1/9

20. W Wang, L Huo, W Zeng, Q Huang, W Gao, in IEEE International
Symposium on Intelligent Signal Processing and Communication Systems.
Depth image segmentation for improved virtual view image quality in
3-DTV. (Xiamen, China, 28 November–1 December 2007) pp. 300–303

21. L Wang, X Huang, M Xi, D Li, M Zhang, An asymmetric edge adaptive filter
for depth generation and hole filling in 3DTV. IEEE Trans. Broadcast. 56(3),
425–431 (2010)

22. D Heeger, J Bergen, in Proceedings of the 22nd Annual Conference on
Computer Graphics and Interactive Techniques. Pyramid-based texture
analysis/synthesis (ACM, Los Angeles, CA, USA, 1995), pp. 229–238

23. Bonet De J, in Proceedings of the 24th Annual Conference on Computer
Graphics and Interactive Techniques. Multiresolution sampling procedure
for analysis and synthesis of texture images (ACM Press/Addison-Wesley
Publishing Co., Los Angeles, CA, USA, 1997), pp. 361–368

24. J Portilla, E Simoncelli, A parametric texture model based on joint statistics
of complex wavelet coefficients. Int. J. Comput. Vis. 40, 49–70 (2000)

25. G Doretto, A Chiuso, Y Wu, S Soatto, Dynamic textures. Int. J. Comput. Vis.
51(2), 91–109 (2003)

26. M Bertalmio, G Sapiro, V Caselles, C Ballester, in Proceedings of the 27th
annual conference on Computer graphics and interactive techniques. Image
inpainting (ACM Press/Addison-Wesley Publishing Co., New Orleans, LA,
USA, 2000), pp. 417–424

27. M Bertalmio, L Vese, G Sapiro, S Osher, Simultaneous structure and texture
image inpainting. IEEE Trans. Image Process. 12(8), 882–889 (2003)

28. T Chan, J Shen, Nontexture inpainting by curvature-driven diffusions. J.
Vis. Commun. Image Represent. 12(4), 436–449 (2001)

29. K Oh, S Yea, Y Ho, in IEEE Proceedings of Picture Coding Symposium. Hole
filling method using depth based in-painting for view synthesis in free
viewpoint television and 3-d video. (Chicago, IL, USA, 6–8 May 2009)
pp. 1–4
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