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Abstract

Facial landmarks are a set of salient points, usually located on the corners, tips or mid points of the facial
components. Reliable facial landmarks and their associated detection and tracking algorithms can be widely used
for representing the important visual features for face registration and expression recognition. In this paper we
propose an efficient and robust method for facial landmark detection and tracking from video sequences. We select
26 landmark points on the facial region to facilitate the analysis of human facial expressions. They are detected in
the first input frame by the scale invariant feature based detectors. Multiple Differential Evolution-Markov Chain
(DE-MC) particle filters are applied for tracking these points through the video sequences. A kernel correlation
analysis approach is proposed to find the detection likelihood by maximizing a similarity criterion between the
target points and the candidate points. The detection likelihood is then integrated into the tracker’s observation
likelihood. Sampling efficiency is improved and minimal amount of computation is achieved by using the
intermediate results obtained in particle allocations. Three public databases are used for experiments and the
results demonstrate the effectiveness of our method.
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1. Introduction
As computers have become an integral part of our life,
the need has arisen for a more natural communication
interface between humans and machines. To make
human-computer interaction (HCI) more natural and
friendly, it would be beneficial to give computers the
ability to recognize states of mind of humans the same
way a human does. Analyzing facial expression in real
time without human intervention will help to understand
people’s behavior, and thus plays an important role in
efficient HCI systems. Automatic facial component
localization, such as the eyes, a mouth or nose, is a critical
step for expression understanding and emotion recognition
[1]. To capture the full range of emotional facial expres-
sions from video sequences, accurate and reliable feature
detection and tracking methods are required.
Many researchers have tried to analyze facial expressions

by using the distribution of facial features as input of a
classification system in order to recognize expressions.
However, automatically analyzing facial expressions in
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video sequences is a challenging task due to the fact that
current techniques for the detection and tracking of facial
expressions are sensitive to head pose, occlusion, pose, and
variations in lighting conditions [2]. In this work, a method
based on automatic facial landmark detection and tracking
for human expression analysis is proposed. The 26
landmark points shown in Figure 1 display the largest
displacements and deformations of the facial components
during dynamic changes of the expressions. These points
are detected in the facial region by scale invariant feature
based detectors, and then tracked through the video
sequences using multiple Differential Evolution-Markov
Chain (DE-MC) particle filters with kernel correlation
techniques. The processing diagram of the proposed
method is illustrated in Figure 2.
The rest of this paper is organized as follows. Section

2 presents automatic facial landmark detection. In
Section 3, we describe multiple points tracking method
with DE-MC particle filters and the kernel correlation
technique. The experimental setup and results are
presented in Section 4. Finally, Section 5 discuss the
results and draw conclusions.
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Figure 1 Illustration of the 26 landmark points selected on
facial region.
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2. Facial landmark detection
Automatic landmark detection in still image is useful in
many computer vision tasks where object recognition or
pose determination is needed with high reliability. It aims
to facilitate locating point correspondence between images
or between images and a known model where natural
features, such as the texture shape or location information,
are not present in sufficient quantity and uniqueness. Some
previous works used shape information for facial feature
localization such as template matching [3], graph matching
[4], and snakes [5]. These works can detect facial feature
well in neutral faces but fail to show good performance
in handling large variations such as non-uniform illu-
minations, change of pose, facial expressions, etc.
Due to the inherent difficulty of detecting the landmark

points using a single image, temporal information cap-
tured from subsequent frames of a video sequence has
been utilized. Detecting and tracking landmark points in
video sequences enables computers to recognize affective
states of humans, as well as the abilities to interpret and
respond appropriately to users’ affective feedback [6,7].
We can categorize the landmark detection algorithms in
the literature into two groups based on the type of features
and anthropometrical information they used, the geomet-
ric feature-based methods [8-10] and appearance-based
methods [11-13]. The geometric feature-based methods
utilize prior knowledge about the face position, and
constrain the landmark search by heuristic rules that
involve angles, distances, and areas. A number of the
existing methods did have success in detecting facial fea-
tures. For example, [6] used a multi-feature based fusion
scheme for facial fiducial point detection and an average
Figure 2 The processing diagram of proposed method.
of 75% detection rate was achieved, and [8] used Gabor
feature based boosted classifier for 20 facial feature point
detection, which achieved average recognition rate of 86%.
In general, they perform quite well when localizing a small
number of facial feature points such as the corners of the
eyes and the mouth, however, none of them detects and
tracks all the 26 facial landmarks.
The appearance-based methods, on the other hand,

using image filters such as Gabor wavelets, generate the
facial features for either the whole face or specific regions
in a face image. The Active Shape Models (ASM) [14] and
Active Appearance Models (AAM) [15] are two popular
appearance-based methods with statistical face models to
prevent locating inappropriate feature points. Cristinacce
and Cootes [16] expanded AAM with constrained local
models with a set of local feature templates. Milborrow
and Nicolls [17] introduced modifications to the ASM
with more sophisticated methods. However, these meth-
ods were mainly applied to a full face shape model.
When the object is small in appearance, cluttered back-
ground and occlusion lead to severe ambiguity.
In this section we introduce the scale invariant feature

based method for the landmark detection, which includes
three steps: preprocessing, candidate selection and feature
vectors extraction.

2.1 Preprocessing
Since the faces are non-rigid and have a high degree of vari-
ability in location, color and pose, it is difficult to detect face
automatically in a complex environment. Occlusion and il-
lumination artifacts can also change the overall appearance
of a face. We, therefore, propose detecting facial regions in
the input video sequence using a face detector with local il-
lumination compensation for normalization and optimal
adaptive correlation [18]. Specifically, each frame of the
input video sequence is extracted and regularized using an
illumination compensation process, including gamma inten-
sity correction (GIC), difference of Gaussian (DoG), local
histogram matching (LHM) and local normal distribution
(LND). Face candidate regions are then located by the OAC
technique with kernel canonical correlation analysis
(KCCA). Compare to Viola and Johns’ algorithm [19], the
local normalization based method is adaptive to the normal-
ized input image and designed to complete the segmen-
tation in a single iteration. With the local normalization
based method, the proposed method tends be more
robust under different illumination conditions.
Before the raw data sequences can be used for automatic

landmark point detection and tracking, it is necessary to
normalize the size of the sequence such that they were in
the format required by the system. Since the displacement
of landmark point in each frame depends on each indi-
vidual, we use the Inter-ocular Distance (IOD) for size
normalization. The distance between left and right eye
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pupils is determined in the first input frame. We also
manually marked the landmarks for the selected
sequences to create the ground truth data.
After the facial region being detected, we propose to use

the scale space extrema method to find the locations of
candidate points in Section 2.2. The scale invariant feature
for each candidate point is extracted and the 26 landmark
detectors are constructed as described in Section 2.3.

2.2 Candidates selection
We propose using a scale space extrema method intro-
duced in [20] to detect the locations of interest candidate
points in the facial region. The scale space extrema can be
detected using the Gaussian kernel function convolved with
the input image. The description function L (x, y) of input
image in different scale space is expressed as:

L x; y; σð Þ ¼ G x; y; σð Þ � s x; yð Þ ð1Þ
Where L(x,y,σ) is the spatial scale image, s(x, y) indicates

input image of facial region, and G(x,y,σ) is the Gaussian
convolution kernel function defined as:

G x; y; σð Þ ¼ 1
2πσ2

exp � x2 þ y2
� �

=2σ2
� � ð2Þ

with σ being the scale factor. The image smoothness varies
with σ, and a series of scale images is obtained with differ-
ent σ values. The scale space extrema are computed using
the difference of Gaussian (DoG) function of the input
image, which calculates the difference of two nearby scales
separated by a constant multiplicative factor k, that:

D x; y; σð Þ ¼ G x; y; kσð Þ � G x; y; σð Þ½ � � s x; yð Þ
¼ L x; y; kσð Þ � L x; y; σð Þ ð3Þ

where D(x,y,σ) is the DoG function of the input image. In
this work, we set the interval number n to 3 to form n+ 2
DoG images, and k to 21/3. Each pixel in a DoG image is
compared to its eight neighbors on the same scale and each
of its nine neighbors one scale up and down. If this value is
the minimum or maximum among the pixels compared, it is
an extremum. These pixels are chosen as interest candidate
points, including the adjacent scale, the position and scale of
the local extreme point. Since the success of landmark detec-
tion depends on the quantity of the selected candidates, we
used a larger number of scale samples. (Those points are
generally the feature points of the image, located on con-
tours, corners and edges.) DoG extrema are repeatedly
assigned in the scale space. They are stable features across all
possible scales and are invariant to scale and rotation. These
points are highly distinctive and are located on contours,
corners and edges in a facial region. Since there are 5 DoG
images in our work, all the interest candidates are examined
to determine location and scale. The landmarks are detected
based on the measurements from these local decisions.

2.3 Feature vectors extraction
After the positions of the interest candidate points are
determined from the input image, we choose σ = 1.6 for
the scale, a reasonable compromise between stable extrema
detection and computational cost. This value is used
throughout this work. A gradient orientation histogram is
calculated for the direction of each interest point in its
neighborhood. The gradient magnitude m (x, y) and orien-
tation θ(x, y) are computed using pixel differences, that:

m x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L xþ 1; yð Þ � L x� 1; yð Þ½ �2
þ L x; yþ 1ð Þ � L x; y� 1ð Þ½ �2

s
ð4Þ

θ x; yð Þ ¼ arctan
L xþ 1; yð Þ � L x� 1; yð Þ
L x; yþ 1ð Þ � L x; y� 1ð Þ

� �
ð5Þ

where L is the image at scale σ. We choose a neighborhood
F centered at the interest point. By calculating the direc-
tions of points in F, we obtain the histogram of gradient
directions. The orientation has a range of 360 degrees
calculated by Eqs. (4) and (5). However, it is complex and
computationally expensive to use the original orientation
histogram with 360 bins. To reduce the computing cost,
we equally divide the histogram into 36 phases each
covering a range of 10 degrees of the orientations. As a
result, the orientation histogram has 36 bins. The direction
of the interest candidate point is the maximal component
of the 36 phases in the histogram.
To detect the landmarks from the interest candidate

points, a set of landmark detectors with the feature
description from the gradient orientation histogram of the
input images are constructed. The descriptor is cons-
tructed from a vector containing the values of all the orien-
tation histogram entries. At the center of each landmark, a
neighborhood window is selected and divided into 16 sub-
regions of 4 × 4. Using (4) and (5), the directions and
amplitudes of all pixels in the subregions are obtained, and
then accumulated into orientation histograms sum-
marizing the contents over the 4 × 4 subregions. Using
the orientation histogram, we can calculate the eight
direction distributions in the ranges of (0,π/4,π/2,3π/
4,π,5π/4,3π/2,7π/4) with the length corresponding to the
sum of the gradient magnitudes near that direction within
the region. The amplitude and Gaussian function are also
applied on the eight direction distributions to create the
direction histogram of subregions. The feature descrip-
tion of each landmark point is obtained by connecting
the direction descriptions of all subregions. The total
number of the direction descriptions is 16 since we have
4 × 4 subregions of the landmark descriptor. So the length
of a landmark point detector is 128 = 16 × 8, and should
be normalized in order to ensure illumination invariance.

3. Multiple points tracker
Most tracking algorithms impose constraints on the
motion and appearance of objects such as the prior know-
ledge of motion model, the number and size or the shape
of objects. Various approaches have been proposed so far
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including the mean-shift, the Kalman filtering and particle
filter. The mean-shift based tracker iteratively shifts a data
point to the average of data points in its neighborhood,
which minimizes the distance between a model histogram
representing the target and candidate histograms com-
puted on the current frame. However, it ignores the motion
information and is difficult to recover from temporary
tracking failures. The Kalman filter is the minimum-
variance state estimator for linear dynamic systems with
Gaussian noise [21]. For the visual object which moves rap-
idly, it is hard, in general, to implement the optimal state
estimator in closed form [22]. Various modifications of the
Kalman filter can be used to estimate the state. These mod-
ifications include the extended Kalman filter [23], and the
unscented Kalman filter [24]. A multi-step tracking frame-
work was also introduced in [25] to track facial landmarks
points under head rotations and facial expressions. The
Kalman filter was used to predict the locations of land-
marks and a better performance was achieved. However,
there are some shortcomings for Kalman filter to track the
landmarks of facial expressions, such as the nonlinearity
of the head motions, the unimodality of the Kalman, the
inherent tracking delay, etc.
Over the last few years, there has been immense

attention on particle filters for image tracking because of
their simplicity, flexibility, and systematic treatment of
nonlinearity and non-Gaussianity. Particle filters provide
a convenient Bayesian filtering framework of integrating
the detector into the tracker. Based on point mass
representations of probability densities, particle filters
operate by propagating the particle estimation and can
be applied to any state-space model [26-29]. However the
sampling results from the proposal density are assigned
with low weights and a large number of the particles are
wasted in areas with small likelihood. To track the state of
a temporal event with a set of noisy observations, the main
idea is to maintain a set of solutions that are an efficient
representation of the conditional probability. However a
large amount of particles that result from sampling from
the proposal density might be wasted because they are
propagated into areas with small likelihood. Some of the
existing works ignore the fact that, while a particle might
have low likelihood, parts of it might be close to the correct
solution. The estimation of the particle weights does not
take into account the interdependences between the
different parts of the state of a temporal event.
Particle filter can use multi-modal likelihood functions

and propagate multi-modal posterior distributions [30,31].
There are two basic schemes: sending the output of the
detector into the measurement likelihood [32,33], or
applying a mixture proposal distribution by combining the
dynamic model with the output of the detector [34].
However, directly applying particle filter on multiple
objects tracking is not feasible because the standard
particle filter does not define a way to identify individual
modes or hypotheses. Some researchers used sequential
state estimation techniques to track multiple objects [35].
Patras and Pantic applied auxiliary particle filtering with
factorized likelihoods for tracking of facial points [27].
Zhao et al. [36] introduced a method for tracking of facial
points with multi cue particle filter. They have incorporated
information from both color and edge of facial features and
proposed the point distribution model for constraint track-
ing results and avoid tracking fails during occlusion. The
standard particle filter has a common problem that it turns
out to be inadequate when the dynamic system has a very
low process noise, or if the observation noise has very small
variance [34]. The reason is due to its defective sampling
strategy with large dimensionality of the state space. After a
few iterations, the particle set will collapse to one single
point [31]. Therefore, the resampling method is applied to
eliminate particles that have small weights and to concen-
trate on particles with large weights. It has been realized
that improving the resampling or global optimization
strategy is more decisive to the success of the tracking [30].
In this paper, we use multiple DE-MC particle filters

to track the facial landmarks through the video sequence
depending on the locations of the current appearance of
the spatially sampled features.

3.1 DE-MC particle filter
The particle filter provides a robust Bayesian framework
for the visual tracking problem. It maintains a particle
based representation of the a posteriori probability
p(Xk|Y1 : k) of the state Xk given all the observations
Y1 : k = {Y1,Y2, . . .,Yk} up to and including the current
time, k, instance, according to:

pðXk Y1:kj Þ ¼ λkpðYk Xkj Þ
Z

p Xk Xk�1j Þp Xk�1 Y1:k�1j ÞdXk�1ðð

ð6Þ
In (6), the state Xk is a 2 M-component vector that

represents the location of landmarks, the observation Y1:k is
the set of image frames up to the current time instant. The
normalization constant λk is independent of Xk. The motion
model p(Xk|Xk− 1) is conditioned directly on the immediate
preceding state and independent of the earlier history if the
motion dynamics are assumed to form a temporal Markov
chain. The distribution is represented by discrete samples
N through particle filtering. The N samples (particles) are

drawn from a proposed distribution p X ið Þ
k

	 


X i−1ð Þ
k ;Yk

�
,

i = 1,2,. . .,N and assigned with weights w X ið Þ
k

	 �
.

Suppose that at a previous time instance k – 1, we have a
particle based representation of the density, that is, we have
a collection of N particles and their corresponding weights

X ið Þ
k−1;w X ið Þ

k−1

	 �n oN

i¼1
. At time step k, select a new set of
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samples
⌢

X
ið Þ
k

n oN

i¼1
from X ið Þ

k−1

n oN

i¼1
with the probability

proportional to w X ið Þ
k−1

	 �
. The samples with a larger weight

should be selected with a higher probability. Then, applying
a constant velocity dynamical model to the samples yields:

X ið Þ�
k ¼ X̂k

ðiÞ þ Vk�1 ð7Þ

where X̂k
(i) is a new set of samples selected at time k, and

Vk-1 is the velocity vector computed in time step k-1.

The particle set X ið Þ−
k

n oN

i¼1
acts as the initial N popula-

tion for a T-iteration DE-MC processing. For any one land-
mark in the T-iteration processing, two different inte
gers, r1r2 that r1 ≠ r2 ≠ k, are randomly chosen from the

population of previous iteration. A new member X� ið Þ
k

n o
that X� ið Þ

k

n o
¼ X ið Þ

k�1

n o
þ λ X r1ð Þ

k�1

n o
� X r2ð Þ

k�1

n o	 �
þ g is

created, where λ is a scalar whose value is found to be
optimal when λ ¼ 2:38=

ffiffiffiffiffiffiffi
2N

p
, g is drawn from a symmet-

ric distribution with small variance compared to that of

X ið Þ
k

n oN

i¼1
. A target function is given based on the ratio

between the populations of current and previous step until
a convergence or a preset end point is reached. Then the
weights of particles are subject to update by the DE-
MC. At the end of this step, we take the output
population as the particle set of current time step

X ið Þ
k ;w X ið Þ

k

	 �n oN

i¼1
.

We estimate the state at time step k as:

Xk ¼ argmax
X ið Þ
k ;i¼1;...;N

w X ið Þ
k

	 �
ð8Þ

and update the velocity vector of current time step
Vk = Xk − Xk − 1. The step size of random jumping for
current DE-MC iteration is reduced if the survival rate of
the last DE-MC iteration is high or inflated otherwise [37].
The update scheme for the maximum likelihood decision
on the weights w can be summarized as follows:
Starting from the set of particles which are the filtering

result of time step k – 1: X ið Þ
k−1;w X ið Þ

k−1

	 �n oN

i¼1
.

1. Selection: select a set of samples
⌢

X
ið Þ
k

n oN

i¼1 from

X ið Þ
k−1

n oN

i¼1
with the probability proportional to

w X ið Þ
k−1

	 �
.

2. Prediction and Measurement: Apply a constant
velocity dynamical model to the samples using Eq. (7).
At the end of this step, we take the output population
as the particle set of current .time step that

X ið Þ
k ;w X ið Þ

k

	 �n oN

i¼1
.

3. Representation and Velocity Updating: Estimate the
state at time step k by Eq. (8) and update the velocity
vector of current time step.

While the tracker updates and tracks the Xk vector that
represents the coordinates of the 26 landmark points, the
samples are already drawn. The DE-MC particle filter is
able to make a more reasonable sampling and keeps them
from running off into implausible shapes even if they are
placed in the positions far away from the solution point or
are trapped in the local cost basin of the state space. The
observation model can help the sample points for positions
close to the solution in regard to their starting points. The
measurement module provides necessary feedback to the
sampling module, according to which, the hypothesis
moves to the regions where it is more likely for the global
maximum of the measurement function to be found.

3.2 Kernel correlation-based observation likelihood
The kernel correlation based on Hue Saturation Value
(HSV) color histograms is used to estimate the observa-
tion likelihood and measure the correctness of particles,
since HSV decouples the intensity (value) from color
(hue and saturation) and corresponds more naturally to
human perception [38]. We set each feature point at the
centre of a window as the observation model. The kernel
density estimate (KDE) K(Xk) for the color distribution
of the object Xk at time step k is given as:

K Xk ; rð Þ ¼ 1
ζ

XN
i¼1

c X ið Þ
k

	 �
� c rð Þ

	 �
dix

ð9Þ
where the c(.) function is a three dimensional vector of

HSV and c X ið Þ
k

	 �
can be generated from the candidate

region within a search region R centered at Xk at time
step k. It should be sufficiently large to reach the
maximum facial point movement without overlapping
with any neighboring windows. c(r) can be generated
from the target region, which is r position translation in
the search region R. The normalizing constant ζ ensures K

(Xk;r) to be a probability distribution,
XN

k¼1
K Xk ; rð Þ ¼ 1.

The kernel width dix is used to scale the KDE K(Xk;r), and
the optimal solution for kernel width dix that minimizes
the Mean Integrated Square Error (MISE) [39] is given by:

dopt ¼ 4
ix þ 2ð ÞN

� 
1
ixþ4ð Þ=

ð10Þ
where ix is the number of particles in the set at time k and
dopt denotes the optimal solution for dix . If we denote K*

(Xk;r) as the reference region model and K(Xk;r) as a candi-
date region model, we can measure the data likelihood to
track the facial point movements by considering the
maximum value of the correlation coefficient between
the color histograms in this region and in a target region.
The correlation coefficient ρ(Xk) is calculated as:



ρ Xkð Þ ¼
XN

i¼1

X
r∈R

K� Xk ; rð Þ � E K� Xk ; rð Þð Þj j K Xk ; rð Þ � E K Xk ; rð Þð Þj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

X
r∈R

K � Xk ; rð Þ � E K � Xk ; rð Þð Þj j2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

X
r∈R

K Xk ; rð Þ � E K Xk ; rð Þð Þj j2
q
















 ð11Þ
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where E(K(Xk;r)) is the means of the vectors K(Xk;r) and
K*(Xk;r), and E(K*(Xk;r)) is the average intensities of the
color model. Finally, we define the observation likelihood
of the color measurement distribution using the
correlation coefficient ρ(Xk) that:

p

�
Yk jX ið Þ

k



¼ e

ρ2 X
ið Þ
kð Þ

τi ð12Þ

where τi is a scaling parameter, which helps the result
evaluated by (12) be more reasonably distributed in the
range of (0,1).

3.3 Landmark point tracking
In this section, we present using multiple DE-MC filters
for facial landmarks tracking over time. Once the obser-
vation model is defined we need to model the transition
density and to specify the scheme for reweighting the
particles. The single particle filters weight particles based
on a likelihood score and then propagate these weighted
particles according to a motion model. Simply running
particle filters for multiple landmarks tracking needs a
complex motion model for the identity between targets.
Such an approach suffers from exponential complexity
in the number of tracked targets [40]. In contrast to
traditional methods, our approach addresses the multi-
target tracking problem using the M-component non-
parametric mixture model, where each component
(every landmark point) is modeled with an individual
particle filter that forms part of the mixture. The land-
mark states have multi-modal distribution functions
and the filters in the mixture interact only through the
computation of the importance weights. In particular,
we combined color based kernel correlation technique
for the observation likelihood with DE-MC particle
filtering distribution. A set of weighted particles are
used to approximate a density function corresponding
to the probability of the location of the target given
observations.
To avoid sampling from a complicated distribution,

the M-component model is adopted for the posterior
distribution over the state Xk of all targets M according to:

pðXk Y1:kj Þ ¼
XM
j¼1

Pij;kpj Xk Y1:kj Þð ð13Þ

where M = 26, pj(Xk|Y1 : k) is the posteriori probability of the
facial landmarks with the M-component non-parametric
mixture model, and Pi is the mixture weights satisfyXM

m¼1
Pim;k ¼ 1 . We utilize training data to learn the

interdependencies between the positions of the facial
landmarks for the reweighting scheme. It is clear that
the performance can be improved if we consider the
motion models of the landmark points. The motion
model p(Xk|Xk − 1) predicts the state Xk given the previous
state Xk-1. Using the filtering distribution computed from
(13), the predictive distribution becomes:

pðXk Y1:k�1j Þ ¼
XM
j¼1

Pij;k�1pj Xk Y1:k�1j Þð ð14Þ

where pm(Xk|Y1 : k − 1) =
R
p(Xk|Xk − 1)pm(Xk − 1|Y1 : k − 1)

dXk − 1. The likelihood p(Yk|Xk) is the measurement
model and expresses the probability of observation Yk . We
approximate the posterior from an appropriate proposal
distribution to maintain a particle based representation for
the a posteriori probability of the state. It provides a
consistent way to resolve the ambiguities that arise in
associating multiple objects with measurements of the
similarity criterion between the target points and the
candidate points. The updated posterior mixture takes
the form that:

pðXk Y1:kj Þ ¼
XM
j¼1

Pij;kpjðXk Y1:kj Þ ¼ λk
XM
j¼1

Pij;kpjðYk Xkj Þ
Z

pj Xk Xk�1j Þpj Xk�1 Y1:k�1j ÞdXk�1ð�
ð15Þ

The new weights can be approximated with a prior on
the relative positions of the facial features as:

Pij;k ¼
Pij;k�1

Z
pjðYk Xkj ÞpjðXk Y0:k�1j ÞdXkXM

l¼1
Pil;k�1

Z
pl Yk Xkj Þpl Xk Y0:k�1j ÞdXkðð

ð16Þ
The particles are sampled from the training data to

obtain the appropriate distribution in the M-mixture
model. The prediction step and the measurement step
are integrated together instead of functioning separately.
The use of the priors provides sufficient constrains for
reliable tracking at the presence of appearance changes due
to facial expressions. The measurement function evaluates
the resemblance between image features generated by
hypothesis and those generated by ground truth positions,
as the criterion for judging the correctness of hypothesis.
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When tracking the multiple modalities, multiple track-
ers start with mode-seeking procedure, the posterior
modes are subsequently detected through the HSV color
histograms based kernel correlation analysis. Using a
trained color-based observation model allows us to track
different landmark points. Here, we have M different
likelihood distributions. At time k we sample candidate
particles from an appropriate proposal distribution

⌢

X
ið Þ
k�1

n oN

i¼1
from X ið Þ

k−1

n oN

i¼1
and weight these particles

according to the probability proportional:

w ið Þ
k ¼ w ið Þ

k�1

p

�
Yk j

⌢

X
ið Þ
k



p

�
⌢

X
ið Þ
k jX ið Þ

k�1




p
⌢

X
ið Þ
k X ið Þ

0:k�1;Y1:k




 �	 ð17Þ

In our work, scaling is normalized by person-related
scaling factors that are estimated from the positions of the
facial features at the first frame, such as the dimensions of
the mouth. This scheme simply processes with the prior
knowledge by sampling from the transition priors and
updating the particles using importance weights derived
from (17).

4. Experiments and results
To evaluate the system performance of the proposed
detection and tracking method for facial expression,
we construct an experimental dataset from three
publicly available databases: RML Emotion database [9],
Cohn-Kanade (CK) database [41] and Mind Reading (MR)
database [42]. The RML Emotion database was originally
recorded for language and context independent emotional
recognition with the six fundamental emotional states:
happiness, sadness, anger, disgust, fear and surprise. It
includes eight subjects in nearly frontal view (2 Italian, 2
Chinese, 2 Pakistani, 1 Persian, and 1 Canadian) and 520
video sequences in total. Each video pictures a single emo-
tional expression and ends at the apex of that expression
while the first frame of every video sequence shows a
neutral face. Video sequences from neutral to target
display are digitized into 320 × 340 pixel arrays with 24-bit
color values. The CK database consists of approximately
2000 image sequences in nearly frontal view from over
200 subjects. Each video pictures a single facial expression
and ends at the apex of that expression while the first
frame of every video sequence shows a neutral face. The
MR database is an interactive computer-based resource
for face emotional expressions, developed by Cohen and
his psychologist team. It consists of 2472 faces, 2472 voices
and 2472 stories. Each video pictures the frontal face with a
single facial expression of one actor (30 actors in total) of
varying age ranges and ethnic origins.
We select 320 videos of eight subjects from the RML

Emotion database, 360 image sequences of 90 subjects
from CK database and 360 videos of 30 subjects from
MR database for the experiments. As a result, the
experimental dataset includes 1040 image sequences of
128 subjects in total. The experiments are implemented
on a Quad CPU 2.4 GHz PC with 3.25 GB memory,
under the Windows XP operating system.
We compare the automatically located facial landmarks

with the ground truth points to evaluate the performance
of the detection and tracking method. In general, the
detecting and tracking methods are usually regarded as a
SUCCESS if the bias of the automatic labeling result to
the manual labeling result is less than 30% of the true
inter-ocular distance [43]. However, this is unacceptable
in the case of facial expression analysis. To follow the
subtle changes in the facial feature appearance, we define
a SUCCESS case if the bias of a detected point to the true
facial point is less than 10% of inter-ocular distance in the
test image. The one-against-all (OAA) and leave-one-sub-
ject-out (LOSO) cross validation strategies are utilized to
perform the experiments. The OAA strategy works as
follows: for each time, one sample is held out as the
testing data, while the rest of the data in the entire dataset
is used as the training data. This procedure continues
until all the individual samples in the entire dataset have
been held out once. In the LOSO strategy, the samples
belonging to one subject are used as the testing data and
the remainders as the training data. This is also repeated
for all of the possible trials until all the subjects are used
as the testing data. There is no overlap between the training
and testing subjects. The experimental results are averaged
as the final accuracy.

4.1 Facial landmark detection
In this section, we present the experimental results using
the proposed facial landmarks detection method. Adaboost
algorithm is applied for training the 26 facial landmark
detectors. We use ten frames from each training sequence
with the manually labeled ground truth points. The
surrounding eight positions of the true point are also
selected as the positive examples in a training image.
Another five arbitrary points in the same frame are chosen
as the set of negative examples. The prototypical 128-
dimensional feature vector is used for each sample point.
In the testing images, candidate points are first extracted
from facial region using scale invariant feature. For a cer-
tain facial landmark, Adaboost classifier outputs a response
depicting the similarity between the representations of the
candidate points compared to the learned training model.
After checking the entire facial region, the position with
the highest response reveals the landmark point.
Boost algorithm has been proposed to reduce the

redundancies of the high dimensional feature space and
computational cost. The Adaboost algorithm by Viola
and Jones [19] for face detection is a typically successful
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example as it has a very low false positive rate and can
detect faces in real time. It can be trained for different
levels of computational complexity, speed and detection
rate which are suitable for specific applications. The
performances of RealAdaboost [44], GentleAdaboost
[45] and ModestAdaboost [46] for fiducail point detectors
are compared in our work using GML AdaBoost Matlab
Toolbox [47] and shown in Figure 3. GentleAdaboost
returns the best detection rates from the results. In
contrast to other Adaboost algorithms, GentleAdaboost
uses real valued features and converges faster. It gives less
emphasis to misclassified examples since the increase in
the weight of the example is quadratic in the negative
margin, rather than exponential. Thus, GentleAdaboost is
selected as the classification algorithm in our system.
The overall detection rates for each point are shown in

Figure 4, and the proposed method achieves 91% average
detection rate of the facial landmarks. We illustrate some
representative cases in Figure 5. The proposed method is
applied on each frame of the input video sequences, and
the 26 facial landmarks are automatically detected.

4.2 Tracking results
In this section, we present the experimental results using
the proposed multiple DE-MC filters. The positions of the
facial landmarks in the first frame of an input sequence
are automatically found using the detection method. The
positions in all subsequent frames are then determined by
the multiple particle filters with the color based observa-
tion likelihood. The observation model is built from the
training data of manually labeled sequences using a finite
set of particles within the feature point centered window.
We approximate the posterior p(Xk|Y1 : k) from an appro-
priate proposal distribution to maintain a particle based
representation for the a posteriori probability of the state.
Figure 3 Test rates from Adaboost algorithms with 200
boosting iterations.
Since the calculation of the weights of the particles is a
critical step of multiple points tracking, in the proposed
M-mixture model, we sample the particles from the
training data to obtain the appropriate proposal distri-
bution. The proposed method simply proceeds by sam-
pling from the transition priors and updating the
particles using importance weights derived from Eq. (17).
In the DE-MC iterations, the measurement module pro-
vides necessary feedbacks to the sampling module.
According to them the sampling moves to regions in the
state space where it is more possible to find the global
maximum of the measurement function. Since we are
interested in the global optimal state, we place denser
sampling grids in the region of interest. This approach
yields a result reasonably close to that obtained by sam-
pling strictly according to the ground truth posterior
distribution.
We present some representative cases using the

proposed method, exploring various practical aspects for
the facial landmark detection and tracking. Figures 6
and 7 summarize the experimental results for two different
emotional expressions. The facial landmarks are first
detected by the point detectors in the first frame and then
tracked by the kernel correlation based multiple DE-MC
filters. For all figures, the white dots represent the positions
of facial landmarks to be detected and tracked, which are
all labeled with the associate numbers. In Figure 6, the
subject exhibits a set of sadness expressions from a
neutral face at the beginning and ends at the apex of that
expression. Figure 7 shows the anger expression with
talking at the same time. As expected, all the points are
tracked reliably for the whole sequence. Since the motions
of the faces are not intensive and the facial appearances
are not heavily changed, the features extracted from
consecutive frames are highly correlated and the results
achieve a very impressive tracking rate.
We apply the proposed method to the zoomed case, as

shown in Figure 8. When the camera zooms, the factors
assigned with the color based kernel correlation keep
changing and are going to descend, as a result of (9) and
(10) which can be seen from frame 320. However, the
facial landmark can still be tracked with the updating
weights using (16), as we keep track of the points from
the previous frame. It shows that the use of the priors
for the multiple filters provides constraints that are suffi-
cient for the reliable tracking of the points at the pres-
ence of the facial appearances.
While performing the experiments, we also consider the

cases with head in rotation or point occlusion, as shown
in Figure 9. In this case we can see the points 3, 7, 15, 20
and 23 are lost after frame 78 when a frontal face is rotat-
ing to a profile view. So far, the multiple detectors and
trackers are based on different configurations of color in-
tensity regions. If both detectors and particle trackers fail



Figure 4 The final facial landmark detection rate.
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for several consecutive frames, the proposed approach will
eventually lose the landmark points.
To solve this problem, we execute a conservative way to

update the trackers temporally with the response distribu-
tion [48] for the next n frames when the missing points
first occurred. This step length n can be changed by the
user and should not be crucial to the system. If the track-
ers respond correctly after a few frames, the trackers are
able to recover due to the accumulation of probabilities.
Figure 5 Sample sequences from the test videos for facial point dete
However, when the step length n continues to grow, due
to incorrect responses of the detector, the color correl-
ation of the observation likelihood drops and the trackers
will begin to lose points. After that, “point lost” will be
declared. We then stop estimating its motion Vk and dis-
card the motion likelihood term. The trackers will be reini-
tialized by the point detectors in the following frames. All
the 26 points can be detected with a new set of parameters
if the facial region appears again in the scene. The improved
ction.



Figure 6 Sample sequences for sadness facial expression. The frame numbers are marked below.
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result is shown in Figure 10 that reinitialization executes
and all facial landmarks are found again after frame 183.

4.3 Performance evaluate
To evaluate the performance of the detection and tracking
method for emotional expressions, we use recall and preci-
sion as the performance measures. The missing rates and
false alarms are conducted by comparison between the
output and the SUCCESS point, which is defined as:
Figure 7 Sample sequences for anger facial expression with talking s
facial expression. The frame numbers are marked below.
recall ¼ NSUCCESS

NSUCCESS þ Nmiss
� 100%

precision ¼ NSUCCESS

NSUCCESS þ Nfalse
� 100%

ð18Þ

where NSUCCESS stands for the number of SUCCESS point
from the detection and tracking, Nmiss stands for the num-
ber of missed points, and Nfalse stands for the number of
imultaneously. The frame numbers are marked below or sadness



Figure 8 Sample sequences for the zoomed case. The frame numbers are marked below.

Tie and Guan EURASIP Journal on Image and Video Processing 2013, 2013:8 Page 11 of 15
http://jivp.eurasipjournals.com/content/2013/1/8
false alarms. The sum NSUCCESS + Nmiss is the total num-
ber of manually labeled facial landmarks in the entire
video sequence.
The overall performance of the system in term of false

alarm rate using the aforementioned datasets is illustrated
in Figure 11. From this figure, we can see that the precision
is decreasing and recall is increasing with the increment
of false alarms. Note, in the graph, a system performance
of recall 94.15% and precision 92.86% is achieved
simultaneously.
We also checked the displacement accuracy for the

proposed methods. The Euclidean distances between each
individual landmark point are used for the measurement.
Since we use the scale normalization for the variation
Figure 9 Sample sequences for the head’s rotation case. The frame nu
in size of each individual face, therefore the distance
measurement is invariant for the experimental datasets.
We calculate the average accuracy for the displacement of
the proposed automatic method compared to the
manually labeled ground truth. The distributions of the
displacement accuracy are shown in Figure 12. From the
figure we can see that given a 10% normalized distance,
the proposed method achieves a 93% average accuracy
from the ground truth.

4.4 Comparison with state-of-the-art
To distinguish person-independent affective states,
subtle changes of facial expressions should be extracted
for feature construction. Automatic facial landmark
mbers are marked below.



Figure 10 The improved sample sequence for the head’s rotation case. The frame numbers are marked below.
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detection and tracking are crucial for analyzing the current
facial appearance since it will facilitate the examination of
the fine structural changes inherent in the spontaneous
expressions. A key motivation for developing landmark
point techniques is that they lay the foundation for develop-
ing 3D models and associated dynamic feature extraction
and recognition techniques which are highly likely superior
to 2D-based and static 3D-based techniques. We therefore
first compare with the result reported in [9] which also
used the RML Emotion database, but with static visual
features extracted by 2D Gobar filters. The comparison
shows that working on the same database, facial landmark
based 3D dynamic features [49] (90% recognition rate)
substantially outperforms the recognition rate by the 2D
Gabor features (approximately 50%), and also the bimodal
features (approximately 82%).
Figure 11 Recall and precision against false alarm rate for the
test databases.
In general, some existing methods perform quite well
when localizing a small number of facial feature points
such as the corners of the eyes and the mouth, however,
none of them detects and tracks all the 26 facial landmarks
illustrated in Table 1. To present a straightforward
comparison with state-of-the-art, we conduct extensive
experiments using two publicly available face databases,
BIOID database [50] and BUHMAP database [11],
with manually marked ground truth positions. Table 1
summarizes the comparative experimental results along
with that from some state-of-the-art methods on the same
test sets. The results from other methods are taken from
expanded AAM [14], factorized PF [29], SIR PF [51] and
Gabor feature PF [52].
As is evident from these results, our method achieves

the best overall performance of 90.8% average rate. In
Figure 12 Displacement accuracy based on the
normalized distance.



Table 1 Comparisons based on different public databases

Fiducial points Proposed Expanded AAM [14] Factorized PF [29] SIR PF [51] Gabor PF [52]

BIOID BUHM AP BIOID BUHM AP BIOID BUHM AP BIOID BUHM AP BIOID BUHM AP

P1 92.89 91.97 85.45 86.13 83.66 83.27 81.35 79.19 87.42 89.73

P 2 94.68 93.06 87.15 88.56 84.81 82.99 79.64 80.61 86.25 86.44

P 3 93.33 89.56 84.21 83.68 79.40 76.72 74.39 75.65 82.91 80.19

P 4 90.94 91.76 84.48 81.95 78.38 78.49 76.34 73.71 82.03 84.97

P 5 95.31 94.28 90.33 89.95 82.67 82.01 79.08 80.14 89.50 90.32

P 6 88.86 89.59 80.94 81.38 77.78 74.91 75.12 72.92 79.74 80.63

P 7 94.99 93.47 88.34 87.45 82.40 82.74 82.94 81.68 80.42 81.06

P 8 89.33 88.45 83.47 81.97 79.61 74.96 76.27 75.54 79.24 78.62

P 9 96.01 94.73 91.04 90.15 81.92 82.59 79.35 76.54 81.48 79.20

P 10 86.31 87.14 79.69 80.41 74.02 79.14 76.05 79.13 79369 79.06

P 11 89.03 90.02 86.63 87.37 82.33 81.86 85.02 82.46 85.24 83.15

P 12 85.12 86.24 80.31 81.06 75.21 75.83 73.66 76.98 79.45 79.13

P 13 91.92 93.10 86.69 87.81 82.70 83.51 81.12 83.06 81.28 83.67

P 14 84.97 83.15 79.62 78.38 78.26 77.44 78.45 77.96 79.66 81.71

P 15 91.24 92.45 84.71 84.55 82.83 81.34 76.52 75.43 86.01 86.93

P 16 89.56 88.74 85.35 86.16 78.25 79.59 78.05 79.29 86.36 82.98

P 17 82.49 86.35 79.22 81.74 76.17 78.79 74.62 73.64 81.31 84.52

P 18 89.45 90.12 86.08 85.15 81.93 83.58 80.23 80.71 85.51 85.78

P 19 88.94 90.84 87.11 87.84 80.81 82.14 76.03 75.34 84.18 86.19

P 20 91.03 93.21 82.21 81.16 79.85 79.62 76.82 78.02 84.45 85.56

P 21 89.62 88.82 81.74 81.06 81.48 84.44 82.82 79.12 79.82 80.43

P 22 93.87 92.53 83.94 80.09 85.30 86.52 79.99 79.21 85.28 86.58

P 23 96.40 94.77 86.37 85.52 86.23 85.17 84.80 82.95 86.34 84.42

P 24 90.85 91.06 85.81 81.03 79.41 78.30 79.27 78.13 84.73 83.96

P 25 94.97 95.43 89.24 86.11 83.22 83.80 80.59 80.62 88.27 86.48

P 26 91.67 90.28 83.67 84.84 76.53 79.43 76.27 78.74 77.75 78.58

Ave. 90.86% 84.51% 80.66% 78.58% 83.35%
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contrast with other approaches, the most evident im-
provement of the proposed method is that the prediction
step and the measurement step are integrated together
instead of functioning separately. The use of the priors
provides sufficient constrains for reliable tracking at the
presence of appearance changes due to facial expressions.
The measurement function evaluates the resemblance
between image features generated by hypothesis and
those generated by ground truth positions, as the criterion
for judging the correctness of hypothesis.
The proposed method has demonstrated its ability to

handle pose variations problems and can be used for
both image and video based facial expression recognition.
Computationally, the proposed method has the advantages
of automatic initialization by using the scale invariant
features extraction over the other methods that examine
pixels one by one. Note that the method proposed in
[27] achieved a better overall detection rate. However,
this method is only tested on perfect manually aligned
image sequences and no experiments in fully automatic
conditions were reported. In addition, only 13 sequences
were experimented on in [27]. Therefore, the result is far
from conclusive.

5. Discussions and conclusions
Automatic facial landmark detecting and tracking is a
challenging task in facial expression analysis. In this
paper, we proposed an automatic approach to detect and
track facial landmarks for varying facial expressions. We
first construct a set of facial landmark detectors with scale
invariant feature. Locating feature points automatically on
a single frame makes it possible to eliminate the manual
initiation step for the tracking algorithm.
We also adopt the multiple DE-MC filters for facial

landmarks tracking. Compared with the existing multi-
target tracking methods, such as the joint probabilistic
data association filter (JPDAF) [53], moving horizon esti-
mation [54], various modifications of the Kalman filter
[55], or the interior point approaches [56], the DE-MC
particle filter leads to a more reasonable approximation to
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the proposal distribution. It incorporates the advantage of
the Differential Evolution algorithm in global optimization
and the ability of the Monte Carlo Markov Chain in
reasonably sampling a high-dimensional state space. It
evidently boosts the performance of the traditional
tracking method in terms of more accurate motion vector
prediction. Based on the fact that the posterior depends
on both the previous state and the current observation in
a visual tracking application, the DE-MC particle filter can
also considerably improve the accuracy for tracking by
building a path connecting a sampling with measurement.
Taking the advantage of the DE-MC algorithm’s ability,
we can obtain reasonably distributed samples that are
concentrated on important regions of the state space. A
novel Kernel correlation with robust color histograms is
proposed for the observation likelihood to deal with
changes in the facial appearance of different expressions.
Furthermore, the facial landmarks are tracked by utilizing

prior knowledge on the facial feature configurations. It
provides a consistent way to resolve the ambiguities that
arise in associating multiple objects with measurements of
the similarity criterion between the target points and the
candidate points. Instead of simply applying the single
DE-MC filter for multiple point tracking, we utilize the
M-component non-parametric mixture model for the
multiple DE-MC filters' posterior distribution over the
states of all target points. This approach yields a result
reasonably close to that obtained by sampling strictly
according to the ground truth posterior distribution.
For future work, we plan to improve the detection and

tracking performance and extend our real-time algorithm
to cope with both self and other forms of occlusions.
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