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Abstract

This paper proposes a new wavelet domain denoising algorithm. In the results of conventional wavelet domain
denoising methods, ringing artifacts or wavelet-shaped noises are sometimes observed due to thresholding of small
but important coefficients or due to generation of large coefficients in flat areas. In this paper, nonlocal means filtering
is applied to each subband of wavelet decomposition, which can keep small coefficients and does not generate
unwanted large coefficients. Since the performance of nonlocal means filtering depends on the appropriate kernel
bandwidth, we also propose a method to find global and local kernel bandwidth for each subband. In comparison
with conventional methods, the proposed method shows lower PSNR than BM3D when pseudo white Gaussian noise
is added, but higher PSNR than the spatial nonlocal means filtering and wavelet thresholding methods. For the
mixture noise or Poisson noise, which may better explain the real noise from camera sensors, the proposed method
shows better or comparable results than the state-of-the-art methods. Also, it is believed that the proposed method
shows better subjective quality for the noisy images captured in the low-illumination conditions.

Introduction
Denoising is one of the fundamental image processing
problems and thus has been studied for a long time.
To name a few of the existing methods that are related
with our work and the state-of-the-art methods, there are
wavelet shrinkage methods [1,2], a total variation mini-
mization [3], a prior probability modeling [4], nonlocal
means filtering [5], and BM3D [6]. Among these, the
BM3D generally shows the highest PSNR when the noise
is additive white Gaussian.
In the case of wavelet domain thresholding methods

[1,2], an image is transformed into the wavelet domain,
and the coefficients in each subband are suppressed
by hard or soft thresholding. The advantage of wavelet
shrinkage methods is that they require not much com-
putations while providing pleasing results. The proba-
bilistic wavelet coefficient modeling method [4] fits the
neighborhoods of coefficients as Gaussian scale mixture
(GSM) model and applies the Bayesian least squares (BLS)
technique to adjust the coefficients. Although wavelet
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shrinkage methods and BLS-GSM provide relatively high
PSNR improvement, shrinking or modifying wavelet coef-
ficients sometimes bring ringing or wavelet-shaped arti-
facts. For example, wavelet transformation of a step edge
generates small coefficients up to the highest subbands.
Hence, when the small coefficients are removed by thresh-
olding and are inverse transformed, then ringing artifacts
arise due to the loss of high frequencies. In the case
of probabilistic wavelet coefficient modeling, unwanted
coefficients can be generated in the homogeneous region,
which result in wavelet-shaped artifacts in the spatial
domain. Another popular denoising method is the nonlo-
cal means filtering [5], which substitutes a noisy pixel by
the weighted sum of neighborhood pixels. The weights are
determined based on the kernel density estimation, which
can be regarded as a Nadaraya-Watson estimator, i.e., a
kind of local constant regression [7]. In other words, the
smooth kernel estimate in the nonlocal means approach
is a sum of bumps placed on the data points. The ker-
nel function determines the shape of the bumps, and the
‘smoothing parameter’ or ‘bandwidth’ controls the degree
of smoothness. In [8], an automatic bandwidth selection
method was proposed based on the reduction of entropy
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of image patterns, and the global bandwidth was applied
to the overall area of image. However, it is noted that
narrower kernels are suitable for the complex regions,
whereas larger kernels would be better for more sparse
areas. Hence, it is important to find an appropriate band-
width according to the local characteristics, which is not
an easy task. One of the main factors that strongly influ-
ence the local properties of the image is the noise statistics
in the neighborhood, and thus, the bandwidth needs to be
adaptively determined according to the local noise vari-
ance. In summary, we need to estimate the local noise
statistics for finding an appropriate bandwidth for the
given region. There are many methods for estimating the
variance of white additive noise in images, but they cannot
be used for the images with non-uniform noise variance.
In this consideration, the estimation of local noise statis-
tics is necessary to find the appropriate bandwidth for the
given area.
In this paper, inspired by the performance of nonlocal

means filtering method in keeping the structures of the
image while suppressing the noise, we attempt to apply
the nonlocal means filter to the wavelet coefficients. The
wavelet coefficients contain the information on the struc-
tures of the image, which have different but related char-
acteristics depending on the subbands. This property has
been extensively and effectively exploited in many image
processing applications, including denoising. However,
as stated previously, manipulation of wavelet coefficients
sometimes brings ringing artifacts and wavelet-shaped
noise. Hence, instead of thresholding or generating the
wavelet coefficients, we filter the coefficients based on
the nonlocal means approach. This approach keeps small
but important wavelet coefficients which would have been
thresholded in the conventional schemes and also does
not generate large coefficients in homogeneous regions
while effectively suppressing noisy ones. In applying the
nonlocal means filter, determining the bandwidth is also
an important factor for successful filtering. Hence, we
also propose a method that gives different bandwidths to
each subband and region, depending on its properties and
noise statistics.
The experiments are conducted with various types of

pseudo noises and also with real noise that is observed
in the images taken in low-illumination conditions. It is
shown that the proposed method gives lower PSNR than
the state-of-the-art methods such as BM3D [6] and BLS-
GSM [4] when the white Gaussian noise is added. How-
ever, it gives higher PSNR than the conventional wavelet
shrinkage methods and the spatial nonlocal means fil-
tering method. Also, it gives higher PSNR than BM3D
when the noise is a mixture of Gaussian and impul-
sive noises and when the noise model is Poisson which
better explains the real noise from CCD/CMOS sensors
[9]. For the experiments with real noise, images taken

under low-illumination conditions and film images are
denoised by various denoising methods. Subjective com-
parison shows that the wavelet domain nonlocal means
filtering provides competitive results for real noises,
which supports the simulation results with non-Gaussian
noises.
The rest of this paper is organized as follows. In the

second section, we review the nonlocal means filter and
its bandwidth parameter estimation. In the third section,
we propose the extension of nonlocal means filter to the
wavelet domain denoising with the bandwidth selection
method. Then, we show some experimental results on
the images degraded by various pseudo noise and the
images with real noise. The last section concludes this
paper.

Related works
Nonlocal means filter
Let us denote a noisy observation of an image as y(i) =
u(i)+n(i), where y(i), u(i), and n(i) are the noisy observa-
tion, original image, and the noise, respectively, at the ith
pixel. Also, we define Ni and Si as a square neighborhood
and a square search window centered at the pixel i, respec-
tively. Then, the nonlocal means filter can be described as
[5]

û(i) =
∑
j∈Si

1
Z(i)

e−
‖Yi−Yj‖2

h2 y(j), (1)

where Yi represents the vector of pixel intensities in Ni,

Z(i) = ∑
j∈Si e

− ‖Yi−Yj‖2
h2 is a normalizing factor, and h is

the smoothing kernel width which controls the degree of
averaging. The denoised pixel û(i) is obtained by locally
weighted averaging, which corresponds to the Nadaraya-
Watson estimator [10]. From Equation (1), it can be seen
that a small h shrinks the area of averaging, and thus,
the noise is not suppressed enough. Conversely, if h is
too large, the weights at the boundary of Si are also very
large, which results in a blurry output. In the conven-
tional work [5], h is set between 10σ and 15σ , where the
noise standard deviation σ is estimated from the image
statistics.

Bandwidth selection
Choosing an appropriate bandwidth is thus very impor-
tant for the balanced nonlocal means filtering. Tradition-
ally, the bandwidth h is selected to minimize the error
between the estimate and true density. For this purpose,
the mean square error (MSE) at a point x is defined as [7]

MSEx(pKDE) = E[(pKDE(x) − p(x))2] (2)
= E[ pKDE(x) − p(x)]2 + var(pKDE(x)),
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where pKDE(x) is the kernel density estimate of true den-
sity p(x), at a point x. This shows that there is a tradeoff
between the bias and variance, which also means that a
large bandwidth reduces the variance of the estimator but
increases the bias and vice versa.
There have been several approaches to bandwidth

estimation [11], which include subjective choice based
on the asymptotic mean squared error, cross-validation
methods using pseudo-likelihood maximization by the
leave-one-out criterion, and plug-in estimator based on
the asymptotically best choice of h. Also, the exist-
ing methods can be categorized as global or local
bandwidth adjustment, where the local adaptivity gives
better performance but requires heavy computational
burden.

Wavelet denoising
The wavelet transform has an excellent localization prop-
erty and thus shown to be effective in many image
processing applications. Since the work of Donoho and
Johnstone [1], there have been a lot of researches
on wavelet shrinkage method. These wavelet denoising
methods suppress the noisy coefficient magnitudes while
keeping the local structures. Ideally, only the wavelet
coefficients that correspond to the noise component
should be removed, whereas the coefficients contain-
ing a significant structure component should be less
reduced. Figure 1 shows the comparison of wavelet

coefficients of noisy and noiseless images, where it can
be seen that the small coefficients appear in the sub-
bands of noisy image. Hence, one of the popular wavelet
domain denoising methods is to shrink the coefficients
by thresholding [1,2], i.e., the coefficients under a cer-
tain magnitude are treated as nonsignificant and are
set to zero, while the remaining significant ones are
kept unmodified (hard-thresholding) or their magnitudes
are reduced (soft-thresholding). Unfortunately, the edges
often generate small wavelet coefficients up to the high-
est bands, along with the significant ones. Hence, the
suppression of the small coefficients around the sig-
nificant ones results in ringing artifacts, i.e., Gibb’s
phenomena.
Thus, instead of thresholding or making probabilis-

tic decision, bilateral filtering of wavelet coefficients is
shown to provide competitive results [12]. In our pre-
vious work [13], we have also shown that the wavelet
domain nonlocal means filter provides higher PSNR than
the spatial domain nonlocal means filtering. In this paper,
we improve the performance by finding the locally adap-
tive bandwidth for each subband and region, whereas the
previous work applied global bandwidth. In addition, we
test the algorithm for various kinds of noise model such
as mixture noise or Poisson noise, which better explains
the real camera noise. Also, it is tested on real noises
that arise in the low-illumination conditions and film
grain noise.

Figure 1 Noise in the wavelet domain.Wavelet coefficients of the vertical subband in a noisy image and a noise-free image.
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Figure 2 Block diagram of the proposedmethod.

Figure 3 Histogram of noise signal in the spatial domain local patches of wavelet domain. Histograms for (a) Poisson noise in the spatial
domain. (b) Poisson noise in the local patches of wavelet domain. (c) Real camera noise in the spatial domain. (d) Real camera noise in the local
patches of wavelet domain.



You and Cho EURASIP Journal on Image and Video Processing 2013, 2013:60 Page 5 of 22
http://jivp.eurasipjournals.com/content/2013/1/60

Wavelet domain nonlocal means filter with
adaptive bandwidth
The main idea of our work is to apply the nonlocal
means filtering to scaling and wavelet coefficients of an
image to keep small but important coefficients which
might have been shrunk in conventional wavelet denois-
ing. Another contribution is the derivation of global and
local bandwidth for the wavelet-domain nonlocal means
filtering, according to the subband’s statistics. It is noted
that each subband has different noise statistics which
may also vary depending on the location in each band.
Hence, for each subband, we first find a global band-
width that can be applied to the overall subband, based
on the plug-in method [14]. Then, from Abramson’s
rule [15] using the statistics derived in this process,
we also find the locally adaptive bandwidth in each
subband.
In kernel density estimation, the estimated density at

any point x is formulated as

f̂h(x) = 1
n

n∑
i=1

K
(
x − x(i)

h

)
, (3)

where x(i) is a neighboring point to x, n is the num-
ber of neighbors, K(·) is the kernel function, and h is
its bandwidth. The kernel function can be considered
a weighting factor that gives larger value when x(i) is
close to x, and h is also called the smoothing constant.
A typical shape of kernel function is Gaussian, and the
bandwidth h determines its width and thus smoothing
factor in estimating the kernel density. To obtain the glob-
ally optimal bandwidth for the given data, denoted as hgo,
the conventional method is to find the h that minimizes
the mean integrated squared error (MISE) between f̂h(x)
defined above and the true but unknown density f (x)
as [7]

hgo = argmin
h

MISE(f̂h) = argmin
h

∫
E{ f̂h(x) − f (x)}2dx.

(4)

Since the plug-in approach [14] is known to be one
of the best data-driven bandwidth selection methods, we
employ this approach to minimize the MISE, and we
obtain the bandwidth

hgo =
( ‖K‖2

‖f ′′‖2{μ2(K)}2M
)1/5

, (5)

where ‖K‖2 = ∫
K2(x)dx and μ2(K) = ∫

x2K(x)dx are
constants depending on the kernel function, and M is the
number of sample data in the subband. Note that ‖f ′′‖2
is the only unknown term in Equation (5), and the idea

behind the plug-in approach is to replace f ′′ by an estimate
from the data. Silverman’s rule of thumb [16] computes f ′′
as if f had the density of the normal distribution N(μ, σ 2)
and then the optimal global bandwidth for the subband
can be approximated as

hgo =
(
4σ̂ 5

3M

)1/5
∼= 1.06σ̂M−1/5, (6)

where σ̂ is the standard deviation of the noise to be esti-
mated. To obtain σ̂ , we employ the empirical preliminary
estimation from each subband’s wavelet coefficients as
introduced in [17]:

σ̂ = 1.4826med(‖r − med(‖r‖)‖), (7)

where r = {r1, r2, . . . , r|X|} is the set of residuals of the
entire wavelet coefficients in the subband, and |X| is the
total number of coefficients in the subband. The residual
ri is defined as

ri = 2Xm,n − (Xm+1,n + Xm,n+1)√
6

, (8)

where i is the index for the pixel position (m, n), and Xm,n
is the wavelet coefficient at that position. The residual can
be considered a prediction error of X(m, n) by its neigh-
boring data, and the median operation over the residuals

Table 1 Denoising performances (dB) of various methods
for the pseudo white Gaussian noise

Denoising σn Barbara Lena Hill Peppers

method 512 512 512 256

Nonlinear 20 25.79 30.55 29.07 28.87

TV[3] 30 23.96 26.37 25.84 25.76

Nonlocal 20 28.78 31.01 29.16 29.86

means[5] 30 26.65 29.22 27.26 27.53

Prob 20 29.30 31.80 29.65 29.80

shrink[18] 30 27.02 29.96 27.96 27.66

Multi. bi. 20 27.25 30.10 28.82 28.52

[12] 30 25.20 27.60 26.78 26.20

BLS- 20 29.08 32.24 30.10 30.56

GSM [4] 30 26.78 30.45 28.51 28.52

BM3D 20 31.77 33.05 30.71 31.28

[6] 30 29.81 31.26 29.15 29.28

Proposed 20 30.27 31.67 29.78 29.19

method 30 28.27 29.47 28.02 27.62
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Figure 4 Denoising results with Lena, σ = 30. Comparison of various methods for the Lena image. (a) Cropped image from Lena, σ = 30. (b)
Nonlinear TV. (c) Nonlocal means. (d) ProbShrink. (e)Multiresolution bilateral. (f) BLS-GSM. (g) BM3D. (h) Proposed method.



You and Cho EURASIP Journal on Image and Video Processing 2013, 2013:60 Page 7 of 22
http://jivp.eurasipjournals.com/content/2013/1/60

(e)

Figure 5 Denoising results with Barbara, σ = 20. Comparison of various methods for the Barbara image. (a) Cropped image from Barbara,
σ = 20. (b) Nonlinear TV. (c) Nonlocal means. (d) ProbShrink. (e)Multiresolution bilateral. (f) BLS-GSM. (g) BM3D. (h) Proposed method.

as Equation (7) gives approximated standard deviation
of data. In summary, we estimate the noise standard
deviation by Equation (7) for each subband and then the
nonlocal means filter with the bandwidth in Equation (6)
can be applied to the given subband.

In addition to the above global characteristics, the
consideration of local statistics brings better denoising
results. That is, applying locally adaptive bandwidth yields
better result than applying the above hgo to the overall
subband. For the derivation of locally adaptive band-
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Figure 6 Denoising results with Lena, σ = 20. Comparison of ringing artifacts. (a) Denoising result by BLS-GSM. (b)Magnified region around the
circles near the lip in (a). (c) Nonlinear TV. (d) Nonlocal means. (e) ProbShrink. (f)Multiresolution bilateral. (g) BM3D. (h) Proposed method.
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width, let us denote the ith wavelet coefficient in the lth
subband as

Xl(i) = αl(i) + εl(i), (9)

where αl(i) denotes a noise-free coefficient, and εl(i)
denotes a random variable assumed to be N(0, σ 2

εl
(i)).

When there seems to be no confusion, we will drop the
indexes and subscripts of the above notation in the rest of
the paper.
The main step for the locally adaptive filtering is to esti-

mate the local noise statistics σ̂lo from a set of L × L
coefficients centered at a pixel of interest. This requires
a hypothesis test for determining whether a coefficient
X is a noise coefficient or not and then we compute the
variance of the noise coefficients within the L × L win-
dow. Here, the hypothesis test follows the algorithm in
probabilistic wavelet shrinkage [18]. To be precise, we first
model the wavelet coefficient as a sample of generalized
Gaussian random variable with the probability density
function

fG(α) = λ · ν

2�( 1
ν
)
exp(−λ|α|ν), (10)

where �(z) = ∫ ∞
0 tz−1e−tdt, z > 0 is the Gamma func-

tion, λ > 0 is the scale parameter, and ν is the shape
parameter. To test whether a given X is a noise coefficient
or not, we test its significance by binary hypothesis test:
H0 is the hypothesis that X is a noise coefficient, and H1
is a significant one. To assess the hypothesis, we use the
Bayes’ rule, where it is assumed that a prior is known, and
its parameters are random variables. The Bayes’ rule pro-
duces the conditional probability P(H1|X) = μη/(1+μη),
where μ = P(H1)/P(H0), η = fG(X|H1)/fG(X|H0), and
the product μη defines the generalized likelihood ratio.
From the assumption of generalized Gaussian prior and
the Bayes’ rule, the estimate of the true coefficient is
represented as

β̂ = P(H1|X)X = μη

1 + μη
X (11)

which is a simple shrinkage rule for the given wavelet coef-
ficient under the hypothesis test. We use P(H1|X) = μη

1+μη

as a measure to decide the noisy coefficients.
For details of calculating the parameters above, the con-

ditional densities of the noisy coefficients fG(X|H0) and
the noise-free coefficients fG(X|H1) are defined as the
following convolutions [18]:

fG(X|H0) =
∫ ∞

−∞
φ(X − α; σ)fG(α|H0)dα

fG(X|H1) =
∫ ∞

−∞
φ(X − α; σ)fG(α|H1)dα, (12)

where φ(X; σ) is the zero mean Gaussian density, and the
standard deviation σ is computed as Equation (7). The
hypothesis test is to define an element as a significant one

when it is larger than a threshold and vice versa, and thus
the conditional densities are defined as

fG(α|H0) =
{
B0 exp (−λ|α|ν), if |α| ≤ Tα

0, if |α| > Tα

(13)

and

fG(α|H1) =
{
0, if |α| ≤ Tα

B1 exp (−λ|α|ν), if |α| > Tα ,
(14)

where Tα = σ̂ is the threshold, and B0 and B1 are the
normalizing constants as

B0 =
(∫ T

−T
exp (−|λα|ν)dα

)−1

and

B1 =
(
2

∫ ∞

T
exp (−|λα|ν)dα

)−1
.

The following steps are also from wavelet shrinkage
method [18], which is repeated here for convenience. The
parameters λ and ν are determined by the noise statis-
tics in each band. To be precise, let σX be the variance
of the overall coefficients in the subband, m4,X be their
fourthmoment, and σα be the standard deviation of noise-
free coefficients in the band. Then, from [19], ν and λ are
found from the equations as follows:

�( 1
ν
)�( 5

ν
)

�2( 3
ν
)

= m4,X + 3σ 4
α − 6σ 2

ασ 2
X

σ 2
X − σ 2

α

, and

λ =
(

(σ 2
X − σ 2

α )
�( 1

ν
)

�( 3
ν
)

)− 1
2

.

(15)

From the left equation above, ν can be derived numer-
ically, and it is used for computing λ from the right
equation above. The next step is to compute P(H0) and
P(H1) as [18]:

P(H0) = �inc

(
(λT)ν ,

1
ν

)
and P(H1) = 1−P(H0),

(16)

where �inc(x, a) = 1
�(a)

∫ x
0 ta−1 exp−t dt is the incomplete

gamma function.
From the parameters derived above, we can compute

P(H1|X) = μη
1+μη

in Equation (11) and test whether this is
above a certain threshold Tα . If P(H1|X) < Tα , then the
corresponding coefficient is considered a noisy one. For
all the coefficients that are determined to be noisy in the
L×Lwindow, the local noise variance σ̂lo is estimated, and
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in the same manner as hgo in Equation (6) is derived, the
local bandwidth is determined as

hlo(Xi) ∼= 1.06σ̂loL−1/5
lo , (17)

where Llo is the number of noise coefficients in the L × L
window centered at Xi. In summary, Figure 2 shows the
block diagram of overall process of the proposed method,
and the algorithm is summarized as follows:

Algorithm 1 Summary of wavelet domain denoising
For each subband,

- Compute the global noise standard deviation in
Equation (7)

σ̂ = 1.4826med(‖r − med(‖r‖)‖).

- Select the noise coefficients within the L×L window
centered at Xi based on the ProbShrink method as
follows, where the parameters μ and η are computed
according to the above global noise standard deviation
σ̂ .

for all Xj in the L × L window centered at Xi do
p̂j = P(H1|Xj) = μη

1+μη
in Equation (11)

if p̂j < T then
classify Xj as a noise coefficient

end for

- Compute the local noise standard deviation σ̂lo(Xi)
from the coefficients classified as noisy ones.

- Nonlocal means filtering of each coefficient Xi as

X̂i = ∑
j∈Si

1
Z(i)e

− ‖Xi−Xj‖2
h2lo Xj

hlo(Xi) ∼= 1.06σ̂loL−1/5
lo

where Llo is the number of the noise coefficients in
the L × L window.

Finally, it is worth mentioning that these procedures are
applied regardless of noise statistics in our experiments,
i.e., the same algorithm is applied to the images corrupted
by Gaussian noise, Poisson noise, mixture noise, and real
images without any modification. The hypothesis test that
we adopt is based on the generalized Gaussian distri-
bution of coefficients, whereas the Poisson noise or real
noise may not meet this assumption. However, we found
that almost all noises that we test show Gaussian statis-
tics in the wavelet domain, especially in local patches that

we process. Figure 3 shows some evidence for this, which
shows the histogram of noise over the local patches. It can
be seen that the histograms show generalized Gaussian
shape unlike their histograms in the spatial domain. More
precisely, Figure 3a is the histogram of Poisson noise,
which shows some peaky distribution, whereas Figure 3b
shows the distribution closer to Gaussian, although long
tail remains. In [20], they also show some experiments that
the camera noise has Gaussian shape in local areas even
though the noise is actually signal dependent.

Experimental results
Summarizing the experimental results in advance, the
proposed method yields higher PSNR than the spatial
nonlocal means filtering and conventional wavelet shrink-
age methods. However, it shows lower PSNR than the
BM3D for the denoising of images corrupted by additive
pseudo white Gaussian noise. A recent wavelet domain
approach, BLS-GSM, also gives quite high PSNR, slightly
less than BM3D. However, for more complex noise mod-
els such as mixture of impulsive and Gaussian, uniform
noise, or Poisson noise that better explains the real cam-
era noise, the proposed method yields higher PSNR and
better subjective quality than the above referenced meth-
ods. Also, it is believed that the proposed method yields
subjectively better output for the real noise, especially the
noises that are often observed in the images taken under
low-illumination conditions.
In the implementation of the proposed method,

Daubechie’s orthogonal wavelet is used for the subband
decomposition, specifically db8 filters inMATLAB is used
for one-level multiresolution analysis. The window size
centered at a wavelet coefficient is 21×21, and the thresh-
old Tα for classifying a noise coefficient is set as 0.3. In the
experiments with the pseudo Gaussian noise, the images
are artificially corrupted by the addition of noise with
standard deviation, σ = 20 and 30. The proposed method
is compared with several state-of-the-art algorithms, and
the results are summarized in Table 1. It can be seen that
the BM3D provides the best PSNR for the white Gaussian
noise, the proposedmethod gives the second best PSNR in
Barbara, and the BLS-GSM shows the second best PSNR
for the rest.
For the subjective comparison, Figure 4 shows cropped

parts of Lena image, processed by several methods ref-
erence in this paper and the proposed method. It can
be observed that the proposed method gives the least
blurry output. Figure 5 shows another result that the pro-
posed method yields less blurry output than the other
methods that show higher PSNR. Figures 6 and 7 show
that the result of proposed method has less artifacts that
are commonly found in the conventional wavelet domain
denoising. Specifically, Figure 6a shows the result of BLS-
GSM, where many wavelet-like noise are observed (in
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Figure 7 Denoising results for Lena corrupted by additive Gaussian noise, σ = 30. Denoising result comparison of the cropped part of Lena
(a) noisy image, σ = 30, (b) nonlinear TV [3], (c) nonlocal means filter [5], (d) ProbShrink [18], (e)multiresolution bilateral [12], (f) BLS-GSM [4], (g)
BM3D [6], and (h) the proposed method.

Table 2 Denoising performances (dB) of various methods for themixed noise, additive non-Gaussian noise, and Poisson
noise

Image Noise Noisy BLS- BM3D Poisson NL Proposed

PSNR GSM [4] [6] [21] method

Barbara 20% impulse noise 18.42 22.14 25.50 20.36 28.23

Lena 20% impulse noise + Gaussian (σ = 10) 17.98 22.06 25.27 20.36 28.92

Boat 10% impulse noise + Gaussian (σ = 10) 18.14 22.15 24.85 24.10 27.85

Boat 10% impulse noise + 10% uniform noise 11.95 27.38 30.50 20.48 29.60

Barbara Poisson noise, σ = 2 16.95 19.13 17.82 27.04 26.56

Lena Poisson noise, σ = 2 16.33 19.22 19.46 29.38 28.54

Boat Poisson noise, σ = 2 15.95 18.44 18.45 26.70 26.54
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Figure 8 Denoising results for Lena corrupted by mixture noise with 20% impulse noise and Gaussian noise, with σ = 10. Denoising result
comparison of the mixture noise for Lena. (a) Lena corrupted by mixed noise (PSNR = 17.98 dB), (b) denoising by nonlinear TV (PSNR = 19.36 dB) [3],
(c) denoising by nonlocal means filter (PSNR = 21.91 dB) [5], (d) denoising by ProbShrink method (PSNR = 22.05 dB) [18], (e) denoising by
multiresolution bilateral (PSNR = 18.09 dB)[12], (f) denoising by BLS-GSM (PSNR = 22.06 dB) [4], (g) denoising by BM3D (PSNR = 25.27 dB) [6],
(h) denoising by the proposed method (PSNR = 28.92 dB).
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Figure 9 Denoising results for Boat corrupted by mixture noise with 10% impulse noise and Gaussian noise, with σ = 10. Denoising result
comparison of the mixture noise for Boat. (a) Boat corrupted by mixed noise (PSNR = 18.14 dB), (b) denoising by nonlinear TV (PSNR = 25.78 dB) [3],
(c) denoising by nonlocal means filter (PSNR = 21.90 dB) [5], (d) denoising by ProbShrink method (PSNR = 21.23 dB) [18], (e) denoising by
multiresolution bilateral (PSNR = 18.24 dB) [12], (f) denoising by BLS-GSM (PSNR = 22.15 dB) [4], (g) denoising by BM3D (PSNR = 24.85 dB) [6],
(h) denoising by the proposed method (PSNR = 27.85 dB).
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Figure 10 Denoising results for Barbara corrupted by 20% impulse noise only. Denoising result comparison of impulse noise for Barbara. (a)
Barbara corrupted by impulse noise (PSNR = 18.42 dB), (b) denoising by nonlinear TV (PSNR = 24.84 dB) [3], (c) denoising by nonlocal means filter
(PSNR = 22.36 dB) [5], (d) denoising by ProbShrink method (PSNR = 21.15 dB) [18], (e) denoising bymultiresolution bilateral (PSNR = 18.52 dB) [12], (f)
denoising by BLS-GSM (PSNR = 22.14 dB) [4], (g) denoising by BM3D (PSNR = 25.50 dB) [6], (h) denoising by the proposed method (PSNR = 28.23 dB).
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Figure 11 Denoising results for Lena corrupted by corrupted by Poisson noise σ = 2. Comparison of Poisson noise removal. (a) Lena
corrupted by Poisson noise (PSNR = 16.33 dB), (b) denoising by MA filter (PSNR = 25.09 dB), (c) denoising by NLM (PSNR = 27.30 dB) [5], (d)
denoising by the Poisson NL (PSNR = 29.38 dB) [21], (e) denoising by the PURE LET (PSNR = 27.47 dB) [22], and (f) denoising by the proposed
method (PSNR = 28.54 dB).

the circles, and magnified in Figure 6b) due to the gen-
eration of large wavelet coefficients, whereas there is no
such artifacts in Figure 6h. Figure 7d shows the ringing
artifacts due to the shrinkage of wavelet coefficients in the

conventional method, where the proposed method shows
less artifacts.
Experiments for the mixture noise model and Poisson

noise model, which might explain the real noise in the
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Figure 12 Denoising results for Boat corrupted by Poisson noise σ = 2. Comparison of denoising results for the Poisson noise. (a) Boat
corrupted by Poisson noise (PSNR = 15.95 dB), (b) denoising by MA filter (PSNR = 22.80 dB), (c) denoising by NLM (PSNR = 24.76 dB) [5], (d)
denoising by the Poisson NL (PSNR = 26.70 dB) [21], (e) denoising by the PURE LET (PSNR = 26.16 dB)[22], and (f) Denoising by the proposed
method (PSNR = 26.56 dB).

low-illumination condition [21], are also conducted. The
results are summarized in Table 2, where it can be seen
that the proposed method provides higher PSNR than

the state-of-the-art methods in many cases, except for
the Poisson-specific NL method in [21] in the case of
Poisson noise corruption. Figures 8, 9, 10, 11, and 12
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Figure 13 Denoising results for a real image. The results of (a) real noisy image, (b) nonlinear TV [3], (c) NLM [5], (d) ProShrink method [18], (e)
multiresolution bilateral [12], (f) BLS-GSM [4], and (g) BM3D [6] contain more ringing artifacts and worse visual quality than that of the (h) proposed
method.

show the outputs by several methods for subjective com-
parison. Finally, the subjective comparisons for the real
noisy images are shown in Figures 13, 14, 15, 16, and 17.
From these results, it is believed that the proposedmethod
effectively reduces the real noise that arises due to low-
light conditions. Original-sized images of all the results in
this paper and additional ones can be found in http://ispl.
snu.ac.kr/sjyou21/project/denoising.

Finally, we have also performed experiments chang-
ing the decomposition levels and kind of wavelet fil-
ters. About the decomposition level, the maximum PSNR
was attained for the 1-level decomposition as in our
experiment. Further decomposition does not improve the
gain because the lower- and mid-band images become
small, and thus, there are not enough patches to be used
for smoothing the data. In the case of experiments on

http://ispl.snu.ac.kr/sjyou21/project/denoising
http://ispl.snu.ac.kr/sjyou21/project/denoising
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Figure 14 Denoising results for another real image. The results of (a) real noisy image, (b) nonlinear TV [3], (c) NLM [5], (d) ProShrink method
[18], (e)multiresolution bilateral [12], (f) BLS-GSM [4], and (g) BM3D [6] contain more ringing artifacts and worse visual quality than that of the (h)
proposed method.

different kinds of wavelet filters, there was not much
difference in the PSNR gain. It is believed that the
denoising effect is not much affected by the shape of
the coefficients which differs depending on the given
wavelet filters as long as the coefficients are effectively
denoised.

Conclusion
Wehave proposed a new image denoising algorithm based
on nonlocal means filtering in the wavelet domain. By
the nonlocal means filtering, small wavelet coefficients

that constitute an important image structure are well
preserved, while noisy coefficients are suppressed. Since
the local adaptation of the kernel bandwidth gives better
results, we have also proposed a method to find the
appropriate kernel bandwidth to each region for the
effective nonlocal means filtering. As a result, the pro-
posed method provides comparable or sometimes higher
PSNR than the state-of-the-art algorithms. Also, subjec-
tive comparisons show that the proposed method keeps
the structures of the images very well and gives less ring-
ing artifacts.
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(g) (h)
Figure 15 Denoising results for real images taken under low-light condition. The results of (a) real noisy image, (b) nonlinear TV [3], (c) NLM
[5], (d) ProShrink method [18], (e)multiresolution bilateral [12], (f) BLS-GSM [4], and (g) BM3D [6] contain more ringing artifacts and worse visual
quality than that of the (h) proposed method.
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(g) (h)
Figure 16 Denoising results for a real image from image database by Liu [23]. The results of (a) real noisy image, (b) nonlinear TV [3], (c) NLM
[5], (d) ProShrink method [18], (e)multiresolution bilateral [12], (f) BLS-GSM [4], and (g) BM3D [6] contain more ringing artifacts and worse visual
quality than that of the (h) proposed method.
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Figure 17 Denoising results for a grain noisy image. The results of (a) real noisy image, (b) nonlinear TV [3], (c) NLM [5], (d) ProShrink method
[18], (e)multiresolution bilateral [12], (f) BLS-GSM [4], and (g) BM3D [6] contain more ringing artifacts and worse visual quality than that of the (h)
proposed method.
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