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Abstract

We propose a generic framework to handle missing weak classifiers at testing stage in a boosted cascade. The main
contribution is a probabilistic formulation of the cascade structure that considers the uncertainty introduced by
missing weak classifiers. This new formulation involves two problems: (1) the approximation of posterior probabilities
on each level and (2) the computation of thresholds on these probabilities to make a decision. Both problems are
studied, and several solutions are proposed and evaluated. Themethod is then applied to two popular computer vision
applications: detecting occluded faces and detecting faces in a pose different than the one learned. Experimental
results are provided using conventional databases to evaluate the proposed strategies related to basic ones.
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1 Introduction
Boosted cascade is a popular technique in the field of
object detection. Boosting algorithms are learning algo-
rithms that combine weak classifiers to produce a strong
classifier. A weak classifier is a classifier that is slightly
better than random to detect objects. A strong classifier
is a classifier which is supposed to have high detection
performance. When a candidate area is to be processed,
each weak classifier is applied to a part of this area (see
Figure 1a). In many computer vision detection applica-
tions, the algorithm has to handle partial observations, i.e.,
the object is partially occluded (see Figure 1b) or has to
be detected in a pose different than the one learned (see
Figure 1c). In such situations, weak classifiers that are in
charge of classifying occluded areas tend to corrupt the
final decision, i.e., the candidate area will often be classi-
fied as a non-object. Existing solutions consist in defining
a set of finite occlusion configurations (or a set of pose
configurations) and train multiple boosted cascades, one
per configuration (see [1] for an example of multiview face
detection). In the proposed solution, multiple training is
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avoided (only one classifier is used) and occluded weak
classifiers are considered asmissing data. A weak classifier
is occluded when the data window of the weak classifier
has hit an occluded part of the face.
Missing data in classification can be divided into two

subproblems: (1) missing data at training stage and (2)
missing data at testing stage. In this paper, we assume that
missing data only occur at testing stage and that training is
done with complete data. A recent study on missing data
at testing stage can be found in [2] where Saar-Tsechansky
and Provost evaluate different methods to handle missing
data at testing stage. They compare two kinds of approach:
reduced models and predictive value imputation. Their
study does not focus on boosted cascades; the solution
we propose in this paper is, to our knowledge, the first
algorithm that handles missing data in a boosted cascade
without modifying the initial training. Most existing solu-
tions are based on learning algorithms that are designed to
be robust to missing data. For example, Smeraldi et al. [3]
used a modified version of adaptive boosting (AdaBoost)
where weak classifiers can abstain when a feature is miss-
ing. Another algorithm was proposed by Globerson and
Roweis [4] which is built to be robust to feature dele-
tion. In the same way, Dekel and Shamir [5] improved this
idea with an algorithm robust to feature deletion and fea-
ture corruption. Chen et al. proposed [6] a solution to
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Figure 1 Subwindows of weak classifier on an upright face, an occluded face, and a turned face. (a) An example of learned weak classifiers.
Each one is in charge of classifying a subwindow. In (b), the face is occluded, and the subwindow of h1 and h3, filled in red, might be classified as
non-face. Similarly, the face in (c) is turned 45°, and all subwindows might be classified as non-face.

detect occluded faces using only one upright face classi-
fier, but they lost the cascade structure resulting in a high
detection time.
Here we propose a generic solution to the problem of

occluded object detection where occluded weak classifiers
are considered as unavailable. Unavailable weak classifiers
are seen as missing data, and this fact is incorporated in
the cascade structure. We evaluate the proposed method
for two different applications: (1) detecting occluded faces
and (2) detecting faces in a pose different than the one
learned. For each application, we explain how weak clas-
sifiers can be considered as available or not. Our method
differs from former studies [1,7] in two aspects: the pro-
posed solution does not need the training of multiple
classifiers, and, as opposed to existing methods where
classifiers are designed to detect objects in a specific pose
or with specific occlusions, the proposed solution relies
on only one classifier that can adapt to specific poses or
occlusions.
Section 2 presents the principle of boosted cascade. A

new algorithm that handles missing weak classifiers in a
boosted cascade is then detailed in Section 3. Application
to occluded faces is presented in Section 4, followed by
application to multiview face detection in Section 5. The
proposed method is then evaluated in Section 6.

2 Boosted cascade overview
This section presents the principle of boosted cascade.
The boosting algorithm was introduced by Schapire [8],
and many extensions have been proposed. The main idea
is to combine the performance of many weak classifiers to
produce a powerful strong classifier. The goal is then to
perform binary classification. In this paper, we focus on
real boosting algorithms (e.g., Real AdaBoost, LogitBoost,
or Gentle AdaBoost) whichmeans that weak classifiers are
real-valued functions.
Let L = {(xi, yi)}Ni=1 be a training set where xi are train-

ing examples and yi ∈ {−1, 1} are their corresponding

labels (1 is for the object class, also called positive class).
Given this set, a real boosting algorithm iteratively finds T
weak classifiers ht to form a strong classifier sign(H(x)) =
sign(

∑T
t=1 ht(x)) where x is a sample to be classified.

Moreover, sign(ht(x)) gives the label of x predicted by ht ,
and the value |ht(x)| represents the confidence of the pre-
diction. Each training example xi is an image Ri of the
object or non-object, and each weak classifier ht is learned
on a set of subwindows {rti}Ni=1 which correspond to dis-
criminative areas in all images {Ri}Ni=1 (see Figure 1a for an
example of such subwindows).
To speed up classification, Viola and Jones [9] proposed

a cascade structure where several strong classifiers are
associated into successive levels. The idea is that the first
strong classifiers reject most of the negative examples,
while the last strong classifiers try to discriminate positive
examples from hard negative examples. In such cascades,
strong classifiers are slightly changed into sign(Hj(x) −
αj) = sign(

∑Tj
t=1 hjt(x) − αj) where αj are thresholds

that are fixed during training (without cascade, αj = 0).
The training of a boosted cascade requires five elements:
(1) the value fmax, the maximum acceptable false-positive
rate per level; (2) the value dmin, the minimum acceptable
detection rate per level; (3) the value F, the overall false-
positive rate to be achieved, (4) a set Sp of positive images;
and (5) a set B of background images that will be used
to generate interesting negative examples during training.
The training of the level j consists of two steps: (1) apply-
ing the current cascaded detector (level 1 to j − 1) on
B to generate false-positives and create a set of negative
examples Sn and (2) using Sp and Sn to train the strong
classifier sign(Hj−αj). This one is designed so that a detec-
tion rate of at least dmin and a false-positive rate of at
most fmax are achieved. Both parameters dmin and fmax are
fixed by the user. These two steps are repeated until the
constraint defined by F is satisfied. In this paper, we con-
sider that the training stage is already done: the cascade
of strong classifiers {sign(H1 − α1), . . . , sign(HK − αK )} is
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available. The following section presents a generic frame-
work to use this cascade when some weak classifiers hjt
are missing at testing stage.

3 Handlingmissing weak classifiers
This section presents the problem of missing weak classi-
fiers in a boosted cascade, and solutions to this problem
are then detailed. To explain our motivation, suppose we
want to detect a face occluded by a scarf. In such a sit-
uation, all subwindows located on the lower part of the
face will overlap the scarf, and thus all associated weak
classifiers will tend to classify these subwindows as non-
face. On the other hand, subwindows on the upper part of
the face are likely to be classified as face. This is why we
propose to consider weak classifiers corresponding to fea-
tures on the lower part of the face as unavailable. Weak
classifiers on the upper part of the face remain available.
An example with three weak classifiers is given in Figure 2.
In this section, it will be assumed that some weak clas-
sifiers are available and some are unavailable. We do not
focus on why a weak classifier is available or not. These
details will be given in Sections 4 and 5 which are ded-
icated to occluded face detection and to multiview face
detection.

3.1 Naive approach
Suppose that we want to classify a sample x with a strong
classifier sign(H − α) where H is made up of a set of weak
classifiers {h1, . . . , hT }. Suppose also that only p < T weak

Figure 2 Example of a situation where some weak classifiers are
missing. The face is occluded by a scarf. Rather than using all weak
classifiers, we propose to use only the weak classifiers that should
classify the upper part of the face (in green in the figure). The others,
in red, are considered as unavailable.

classifiers are available, given by {ha1 , . . . , hap}. The set
of unavailable weak classifiers is defined as {hu1 , . . . , huq}
where q = T−p. In such a situation, the easiest strategy to
classify x consists in setting all unavailable weak classifiers
to zero, i.e., hu1(x) = · · · = huq(x) = 0. If we noteHa(x) =∑p

t=1 hat (x), the strong classifier becomes sign(Ha − α).
By applying this principle to all cascade levels, the set of
strong classifiers becomes {sign(H1a−α1), . . . , sign(HKa−
αK )}. To sum up, the naive approach consists in setting
all unavailable weak classifiers to zero and keeping all cas-
cade thresholds unchanged. This approach will be used
as our baseline in the experiments section and will be
referred to as ‘naive approach’.

3.2 Probabilistic formulation of a boosted cascade
In a real boosting algorithm, the predicted label y ∈
{−1, 1} of a sample x can be seen as a discrete random
variable andH(x) can be interpreted as the probability of y
being an object given the example x (also called the poste-
rior probability) using the following sigmoid function [10]:

P(y = 1|x) = eH(x)/(eH(x) + e−H(x)). (1)
Thus, each cascade level computes P(yj = 1|x) where yj

is the predicted label of the level j. If a sample x reaches
the level j, it means that it has passed all previous lev-
els and is a candidate for an object. This is why we have
P(yj = 1|x) = P(yj = 1|x, y1 = 1, . . . , yj−1 = 1). When
weak classifiers are missing, uncertainty is introduced on
each predicted label yj. This uncertainty is not considered
in the probability P(yj = 1|x, y1 = 1, . . . , yj−1 = 1) as
labels y1, . . . , yj−1 are supposed to be positive. This is why
we propose to compute P(y1 = 1, . . . , yj = 1|x) on level
j. Thus, the predicted label on level j will also depend on
predicted labels of level 1 to j − 1. In the rest of the paper,
the event y1 = 1, . . . , yj = 1 will be noted y1:j = 1 to sim-
plify the notation. To compute P(y1:j = 1|x), the following
rule is used:

P(A,B|C) = P(B|A,C)P(A|C). (2)

This rule gives:
P(y1:j = 1|x) = P(yj = 1|x, y1: j−1 = 1)

× P(y1: j−1 = 1|x) ∀j > 1. (3)

By applying this rule recursively, we get:

P(y1:j = 1|x) =
j∏

i=2
P(yi = 1|x, y1:i−1 = 1)

× P(y1 = 1|x) ∀j > 1 (4)

=
j∏

i=1
P(yi = 1|x). (5)

This probabilistic formulation is very close to the one
of Lefakis and Fleuret in [11]. Our motivation remains
different because they proposed a new learning algorithm
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based on a probabilistic cascade formulation. In our case,
we use a probabilistic formulation to handle the fact that
some weak classifiers are missing at testing stage.
In a conventional cascade formulation, each level j

applies a strong classifier Hj to x and compares Hj(x)
with a threshold αj. With the probabilistic formulation,
all thresholds αj disappear and new thresholds βj are
introduced. Indeed, we have P(yj = 1|x) ≤ 1, and so:

j∏
i=1

P(yi = 1|x) ≤
j−1∏
i=1

P(yi = 1|x)

≤ · · · ≤ P(y1 = 1|x) (6)

Equation 6 shows that if P(y1:j = 1|x) is lower than
a value βj, the cascade process should stop because
P(y1:j+1 = 1|x), . . . ,P(y1:K = 1|x) will be even smaller.
In the proposed framework, a strong classifier is defined
as sign(P(y1:j = 1|x) − βj). The complete modified
boosted cascade is then defined by the set of strong clas-
sifiers {sign(P(y1 = 1|x) − β1), sign(P(y1:2 = 1|x) −
β2), . . . , sign(P(y1:K = 1|x) − βK )}. In the following, we
refer to this modified cascade as boosted McCascade for
boosted cascade with missing classifiers. Figure 3 sums up
the differences between a cascade structure and a McCas-
cade structure. Section 3.4 explains how values β1, . . . ,βK
are computed, and the following section focuses on the
estimation of P(yj = 1|x).

3.3 Posterior probability estimation
When weak classifiers are missing, the probability P(y =
1|x) can no longer be computed and an approximation
must be used. We propose three different approximation
strategies to do this:

• The simplest strategy to estimate P(y = 1|x) is to
compute a probability based on available weak
classifiers. Thus, we define Pboost(y = 1|x) as:

Pboost(y = 1|x) .= eHa(x)/(eHa(x) + e−Ha(x)). (7)

• A second strategy, noted Pknn(y = 1|x), tries to
benefit from the initial training. Indeed, each training
example xi provides a set of weak classifier values
hxi = (h1(xi), . . . , hT (xi)) and an associated label yi.
All these weak classifier values form a set
H = {(hxi , yi)}Ni=1, and the subset of available weak
classifiers formHa = {(haxi , yi)}Ni=1 where
haxi = (ha1(xi), . . . , hap(xi)). The resulting setHa is
used as a training set to approximate P(y = 1|x) with
the help of the k-nearest neighbor (k-nn) algorithm.
Given a sample x, its associated available weak
classifier scores hax = (ha1(x), . . . , hap(x)) are first
computed. Then, the k-nn algorithm searches the k
nearest neighbors of the point hax in the spaceHa.
Considering the labels {y∗

1, . . . , y∗
k} of the k nearest

neighbors, the probability Pknn(y = 1|x) is computed
as:

Pknn(y = 1|x) .=
k∑

i=1

1l{y∗i =1}
k

, (8)

where 1lpred = 1 if the predicate (pred) is true and
1lpred = 0 otherwise. Figure 4 illustrates the
computation of Pknn(y = 1|x) when two weak
classifiers are available.

• An additional strategy, noted Pcomb(y = 1|x),
consists in combining the two previous methods as
the simplest way:

Pcomb(y = 1|x) .= Pboost(y = 1|x) + Pknn(y = 1|x)
2

.

(9)

3.4 Boosted McCascade threshold estimation
Before a McCascade can be used to classify a sample x,
the threshold β1, . . . ,βK must be estimated. The thresh-
old β1, . . . ,βK estimation can be seen as the training stage
of aMcCascade. This is achieved through an iterative pro-
cedure which uses sets Sp and B from the initial training
stage. This procedure is described in Algorithm 1. At iter-
ation j, the threshold βj of the level j is computed using
the following scheme: all probabilities pji

.= P(y1:j = 1|xi)
are first computed. Then, the set of probabilities {pji}Ni=1
is sorted and βj is chosen among the set of finite values
p̃ji

.= 0.5(pji + pj(i+1)), i ∈ {1, . . . ,N − 1}. The func-
tion find_optimal_threshold (see line 14) finds the
threshold that minimizes a cost function defined on false-
positive and true-positive rates. Contrary to the initial
cascade where each level ensures reaching a true-positive
rate of at least dmin with a false-positive rate less than fmax,
the McCascade cannot guarantee the same performance.
The cost function’s goal is to ensure that each threshold
found provides a performance close to the initial cascade
performance. Three cost functions are proposed:

• FP_cost is defined on the false-positive rate fβ
associated to a threshold β :

FP_cost(fβ)
.= max(0, fβ − fmax). (10)

The false-positive rate fβ is computed on the training
examples. Using this function means that the
threshold found provides a false-positive rate which
is as close as possible to fmax (it remains greater or
equal to fmax).

• TP_cost is defined on the true-positive rate dβ

associated to a threshold β :

TP_cost(dβ)
.= max(0, dmin − dβ). (11)

The true-positive rate dβ is computed on the training
examples. The threshold computed with this
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Figure 3 Differences between a cascade and a McCascade for the classification of a sample x. In a cascade, all weak classifiers are used. At
level j, Hj(x) is computed and is compared to the threshold τj . An occluded face is most of the time rejected because occluded subwindows corrupt
the decision on each level. In a McCascade, only a subset of weak classifiers is used. In the figure, only weak classifiers in charge of classifying the
upper part of the face are used. At level j, P( y1:j = 1|x) is computed and is compared to the threshold βj . An occluded face is most of the time
detected. In contrast to the decision at level j of a cascade, the decision at level j of a McCascade incorporates the decision of previous levels.

function will ensure a true-positive rate close to dmin
(it remains lower or equal to dmin).

• FP_TP_cost is defined on both false-positive and
true-positive rates:

FP_TP_cost( fβ , dβ )
.= FP_cost( fβ ) + TP_cost(dβ ). (12)

This last cost function is a compromise between a
false-positive rate of fmax and a true-positive rate of
dmin.



Bouges et al. EURASIP Journal on Image and Video Processing 2013, 2013:55 Page 6 of 22
http://jivp.eurasipjournals.com/content/2013/1/55

Figure 4 Computation of Pknn(y = 1|x). Two weak classifiers are
available: ha1 and ha2 . Applying these weak classifiers on a training
database gives the set of pointsHa (the red circles are positive points
and the blue squares are negative points). Given an unknown sample
x, ha1 (x) and ha2 (x) are computed and the k nearest neighbors of
(ha1 (x), ha2 (x)) are searched inHa. In the figure, k = 3, and the
nearest neighbors are two positive points and one negative point
which leads to Pknn( y = 1|x) = 2/3.

A detailed version of find_optimal_threshold
with the cost function FP_TP_cost is given in Algorithm 2.
Once all the thresholds β1, . . . ,βK are estimated, the
McCascade can be used to classify any unknown
sample x.

Algorithm 1:McCascade threshold estimation
Input:

• Positive image set Sp;
• Background image set B;
• Set of probability law

{P(y1 = 1|x), . . . ,P(y1:K = 1|x)};
Output: Thresholds β1, . . . ,βK .

1 for j = 1 to K do
2 if j = 1 then
3 Create the negative image set Sn by randomly

extracting areas in images of B ;
4 else
5 Apply the McCascade {sign(P(y1 =

1|x)−β1), . . . , sign(P(y1:j−1 = 1|x)−βj−1)} on
images of B to generate false-positives which
are used to create the negative image set Sn ;

6 end if
7 P = ∅ ;
8 Y = ∅ ;
9 foreach example (xi, yi) ∈ Sp ∪ Sn do

10 Compute the probability pji = P(y1:j = 1|xi);
11 P[ i]= pji ;
12 Y[ i]= yi ;
13 end foreach
14 βj = find_optimal_threshold(P, Y) ;
15 end for

Algorithm 2: find_optimal_threshold
Input:

• P: array of probability values ;
• Y: array of labels yi ∈ {−1, 1} associated to

each value P[ i].
Output: Optimal threshold β∗.

1 c∗ = +∞;
2 β∗ = 0;
3 N = length(P);
4 P = sort(P);
5 for i = 1 to N − 1 do
6 β = 0.5 × (P[ i]+P[ i + 1] );
7 Compute the true-positive rate d and

false-positive rate f associated to β on (P,Y);
// Change the following line to use

another cost function
8 c = FP_TP_cost(f , d);
9 if c < c∗ then

10 c∗ = c;
11 β∗ = β ;
12 end if
13 end for

3.5 Cascade andMcCascade training time

When a McCascade is created, the threshold β1, . . . ,βK
must be computed. This step can be seen as the training
stage of a McCascade. Compared to the training stage of a
cascade, a McCascade needs fewer time to be trained. The
training time of a cascade depends on a lot of parameters:
number of training samples, number of levels, imple-
mentation (C++/MATLAB), . . . Rather than giving precise
training times to compare a cascade and a McCascade,
rough estimates are given here to emphasize the fact that
a McCascade is faster to train than a cascade.
The training stage of a cascade can be split into three

steps:
1. Gather training data. Training data are made up of

the positive images and of the background images.
This step can last a few seconds if a public database
exists. It can also last a few days if images must be
manually gathered.

2. Generate false-positives. At the beginning of each
level, the negative samples are generated by applying
the current classifier to the set of the background
images. This step can last a few seconds to a few
minutes.

3. Train a cascade level. At each boosting iteration,
several weak classifiers are learned (one for each
subwindow), and the best one is kept. The number of
iteration depends on the classification performance
that must be reached. This step can last a few
minutes to a few hours.
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The training stage of a McCascade can be split into two
steps:

1. Generate false-positives. At the beginning of each
level, the negative samples are generated by applying
the current classifier to the set of the background
images. This step can last a few seconds to a few
minutes.

2. Fix the level threshold. A probability is computed for
each training example, and the threshold is
computed according to these probabilities. This step
can last a few milliseconds to a few seconds.

An object detector trained with a cascade is designed to
detect the object in a specific pose or with specific occlu-
sion. When the object has to be detected in a new pose
or with new occlusion, a new object detector has to be

designed. Using a cascade means that the three steps must
be done again. On the opposite, using a McCascade just
requires two steps that are not so time consuming. This is
illustrated in Figure 5.

4 Application to occluded face detection
Occlusions can greatly change the appearance of a face,
and an upright face detector will easily fail to detect such
faces. A cascaded detector that can deal with occlusions
has already been proposed by Lin et al. [7]. Their solu-
tion relies on the training of nine cascaded detectors (one
main cascade + eight occlusion cascades) that are then
combined. This solution exhibits good performance at the
cost of a prohibitive training time. On the other hand,
Chan et al. [6] also proposed a detector to handle occlu-
sion with only one training. They first train a boosted

Figure 5 Differences between a cascade and a McCascade when several object detectors must be created. A rough estimate of the
execution time is given for each step of the training process. (a) A new cascade must be trained for each new object detector. Each new training
can last several hours to several days. (b) A new object detector can be trained using a McCascade. Each training just lasts several minutes.
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cascade and then combine all the weak classifiers learned
to obtain a detector robust to occlusions. The problem is
that the cascade structure is lost, resulting in an exten-
sive execution time. Our solution relies on the use of
an upright face detector C and the definition of several
occlusion configurations where each occlusion configu-
ration is associated with a McCascade. Each occlusion
configuration is associated with a set of occluded weak
classifiers from all the weak classifiers of the upright face
detector. Based on this set, a McCascade that uses non-
occluded weak classifiers can be built. Each McCascade
created is called an occlusion cascade. Hence, we build
several occlusion cascades which are then combined with
the principle of cascading with evidence explained later.

4.1 Occlusion cascade creation
Several occlusion cascades are created. Each one is in
charge of a given occlusion type. To limit complexity, the
case of two occlusion types is presented: bottom occlusion
(called typeA in Figure 6a) and top occlusion (called type
B in Figure 6b). In occlusionA, the lower third of the face
is considered as occluded. In occlusion B, the upper third
of the face is considered as occluded.
Let OI be the occluded area with I ∈ {A,B}, the set

of occlusion configurations. Let Sjt be the region cov-
ered by the subwindow associated with the weak classifier
hjt (see Figure 7). For each occlusion type I , the set of
available weak classifiers must be defined to build the
associated occlusion cascade. A weak classifier hjt is avail-
able for occlusion I if the area Sjt does not intersect OI .
In other words, the associated subwindow is considered as
occluded for the occlusion I if the area Sjt intersects OI .
For I ∈ {A,B}, two sets HA and HB of available weak
classifiers are defined:

HA = {hjt|Sjt ∩ OA = ∅}, (13)

HB = {hjt|Sjt ∩ OB = ∅}. (14)

Based on these two sets, twoMcCascades CA and CB can
be created. CA only uses weak classifiers defined in HA.
In the same way, CB only uses weak classifiers defined in
HB . Finally, thresholds βj of both McCascades are fixed
with the help of Algorithm 1.

4.2 Cascading with evidence
To combine themain cascade C and the two occlusion cas-
cades CA and CB , the principle of cascading with evidence
proposed by Lin et al. [7] is used. When a sample x must
be tested, it first goes through the main cascade. At level j
of this cascade, in addition to applying the strong classifier
Hj, an additional feature vector εj(x) is also computed:

εj(x) = (HA
j (x),HB

j (x)), (15)

where
HI
j (x) =

∑
t|Sjt∩OI=∅

hjt(x)withI ∈ {A,B}. (16)

The vector εj(x) is called the evidence of x at level j.
Equation 16 means that HI

j only involves weak classi-
fiers over subwindows that do not intersect withOI . With
the evidence vector presented in Equation 15, weak classi-
fiers can now be defined as available or not depending on
the occlusion encountered. Indeed, let x be an occluded
face example of typeA and suppose that the main cascade
C rejects it at level j becauseHj(x) < αj. Before rejecting it,
we check the evidence vector of x. In particular, themajor-
ity ofHA

1 (x), . . . ,HA
j (x) should be positive, indicating that

x is an occluded face of type A. Based on this fact, weak
classifiers that can handle occlusion A (i.e., hjt verifying
Sjt ∩ OA = ∅) are defined as available, and x continues
the classification process with the McCascade CA defined
on available weak classifiers. Generally speaking, if a sam-
ple is occluded of type I and if this sample is rejected
by the main cascade, this sample will be passed to the
McCascade CI . Note that with this principle of cascading
with evidence, there is no explicit occlusion detection.

Figure 6 Definition of two occluded areas (one-third occlusion). (a) An example of typeA occluded face. (b) An example of type B occluded
face.
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Figure 7 Region covered by the subwindow associated to a
weak classifier. The weak classifier hjt must classify the region Sjt ,
filled in green.

Using C, CA, and CB with the principle of cascading
with evidence, we can detect occluded faces following
the testing procedure described in Algorithm 3 where CI

represents the McCascade that can handle occlusion I .
The testing procedure is also illustrated in Figure 8. All
the above explanations remain valid with other types of
occlusions. Note that the number of occlusions that can
be handled only depends on the weak classifiers learned
during the initial training. For example, if all the weak clas-
sifiers learned are associated with subwindows located on
the upper part of the face, it would be impossible to handle
occlusions of type B.

Algorithm 3: Detecting occluded objects with several
McCascades combined with cascading with evidence
Input: An unknown example x
Output: Label of x: Face, Non-Face, or type-I

occluded Face
1 if x goes through C then return Face;
2 if x is rejected at level j and all HI

j (x) < 0 then return
Non-Face;

3 Dispatch x to CI if HI
j (x) > 0 and

∑j
i=1HI

i (x) is the
largest;

4 if x goes through CI then
5 return type-I occluded Face;
6 else
7 return Non-Face;
8 end if

5 Application tomultiview face detection
In this section, we are interested in the detection of faces
with rotation-off-plane (ROP) angles. Examples of such
faces are exposed in Figure 9. Upright face detectors are
robust to slight ROP angles (they can usually detect faces
turned up to ±20°). Detection of faces with bigger ROP
angles need specific solutions. Most of the existing meth-
ods adopt the view-based approach: several classifiers
are trained and then combined to get a multiview face
detector [1,12,13]. In such an approach, each classifier is
trained to detect faces with ROP angles in a given range
which means that multiple training is necessary. To avoid
these multiple trainings, we propose to create a classi-
fier that can detect faces in a pose different than the one
learned.

5.1 Detecting faces with ROP angle
Our solution is composed of an upright face detector
that we modify to be able to detect faces with a given
ROP angle. To incorporate the fact that faces may have
out-of-plane rotations, we propose to adjust all the sub-
window positions. Our idea is illustrated in Figure 10c.
Figure 10a shows three interesting subwindows used to
detect upright faces. In Figure 10b, we represent the same
subwindows on a face turned 45°. The three subwindows
are not anymore informative. To alleviate this problem,
we can modify the position of the three subwindows (see
Figure 10c). Note that the position modification can lead
to a modification of the subwindow size (see the yellow
subwindow) or the disappearance of some subwindows
(see the red subwindow).
To modify a subwindow position, we propose to use

the three-dimensional (3D) transformation which exists
between an upright face and the same face in another
pose. In our case, these transformations are the set of rota-
tions around the x-axis and y-axis. To simulate a rotation,
we need a 3D face model. Building an accurate 3D face
model requires at least two images per face. As our inten-
tion is to avoid gathering images other than upright faces,
we decide to represent a face with the simplest model:
an ellipsoid. The idea is then to place each subwindow
on the ellipsoid, turn the ellipsoid, and finally get back all
the new subwindows positions. Let us consider a point
pi1 = (u1 v1)T of an image of size w × w (the same size as
training images) whose coordinates are expressed in the
image coordinate system CS i. The process to compute the
position of this point after a rotation defined by an angle
of θx around the x-axis and an angle of θy around the y-axis
is made up of the following three steps:

1. We associate a point Pi1 = (u1 v1 w1)T to the point
pi1. P

i
1 is the 3D point with the same x-coordinate

and y-coordinate as pi1 that belongs to the ellipsoid.
We just have to compute the z-coordinate w1 with
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Figure 8 Testing procedure of the association of a cascade and a McCascade. Example x is first processed by initial cascade C and then
dispatched to McCascade CA to finally be detected as typeA occluded face.

the help of the ellipsoid equation expressed in CS i
(see Figure 11a):

(u − u0)2

a2
+ (v − v0)2

b2
+ (w − w0)2

c2
= 1, (17)

where uo = w/2, vo = w/2, and wo = 0 and a, b, and
c are the ellipsoid’s parameters.

2. We express Pi1 in the coordinate system CSe whose
origin is the ellipsoid center. This gives us the Pe1
point:

⎡
⎢⎢⎣

x̃1
ỹ1
z̃1
d̃1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1 0 0 −w/2
0 1 0 −w/2
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
u1
v1
w1
1

⎤
⎥⎥⎦ , (18)

and then, we have Pe1 = (x̃1/d̃1 ỹ1/d̃1 z̃1/d̃1)T = (x1
y1 z1)T to which we apply the rotation to obtain the
Pe2 point (see Figure 11b):

Pe2 = (x2 y2 z2)T = Ry(θy) × Rx(θx) × Pe1, (19)

where Ry(θy) and Rx(θx) are rotation matrices
around the y-axis and x-axis.

3. Finally, we express Pe2 in CS i to get the Pi2 point (see
Figure 11c):

⎡
⎢⎢⎣

ũ2
ỹ2
z̃2
d̃2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1 0 0 −w/2
0 1 0 −w/2
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

−1 ⎡
⎢⎢⎣
x2
y2
z2
1

⎤
⎥⎥⎦ . (20)

We have Pi2 = (ũ2/d̃2 ṽ2/d̃2 w̃2/d̃2)T = (u2 v2 w2)T .
The point we are looking for is pi2 = (u2 v2)T .
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Figure 9 Example of faces with rotation-off-plane angles around the y-axis. The face is turned 90° in (a), 67.5° in (b), 45° in (c), and 22.5° in (d).

To know the position of a subwindow rjt after a rotation,
we apply the above process to the top left corner and to
the bottom right corner of rjt . The problem is that some
subwindows can disappear (as shown in Figure 10c with
the subwindow of h3 in red). If a subwindow rjt disappears,
then the associated weak classifier hjt becomes unavail-
able. By applying this rule to all the subwindows, the set of
available weak classifiers can be defined and an associated
McCascade can be built. Hence, creating a classifier that
can detect non-upright faces calls for three steps:

1. Modifying the position of all subwindows using an
ellipsoid model,

2. Defining the set of available weak classifiers by
checking that their associated subwindows do not
disappear after rotation, and

3. Creating the McCascade using available weak
classifiers.

5.2 Amultiview system
The solution presented in the last section aims to detect
faces with a given ROP angle θy. When faces with a ROP
angle in a range [−θmin

y ,+θmax
y ] are to be detected, one

solution is to combine several detectors. Each one is spe-
cialized in detecting faces with a given ROP angle θy. In

practice, it is generally assumed that each detector can
detect faces in the range [ θy − 15, θy + 15]. For exam-
ple, if the total range is [−45,+45], three detectors must
be used: an upright face detector H0, a detector of faces
turned +30° H+30, and a detector of faces turned −30°
H−30. Detectors H+30 and H−30 are created by modify-
ing all subwindow positions by H0. To combine the three
detectors, the solution proposed by Huang et al. [14] is
applied. It is illustrated in Figure 12. To speed up the clas-
sification process, a pose estimator is used. For an input
example x, this estimation consists in applying the first
three levels of every detector to x. Then, the classification
process continues with the detector that accepts xwith the
highest classification score. The pose estimation function
is defined by:

pose(x) = argmax
θy∈{−30,0,30}

(
Hθy
3 (x)

)
. (21)

Note that the system used to combine the three detec-
tors can be extended to get a face detector robust to
pose and to occlusion. Indeed, using this system, several
occlusion cascades (presented in Section 4.1) and several
pose-specific detectors (presented in Section 5.1) can be
combined.

Figure 10 Detecting turned faces with an upright face detector. (a) An example of three discriminative subwindows of an upright face
detector. h1, h2, and h3 are the associated weak classifiers. (b) The face is turned 45°, and all subwindows could be classified as non-face. To alleviate
the pose problem, we propose a three-dimensional geometric transformation to adjust all subwindow positions (see (c)). Note that the weak
classifier h3 becomes unavailable.
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Figure 11 Rotation process of a point using an ellipsoid. (a) The image point pi1 = (u1, v1) is associated with the point Pi1 = (u1, v1,w1) on the
ellipsoid using the ellipsoid equation. (b) Pi1 is expressed in the ellipsoid coordinate system which gives the point Pe1. The rotated point Pe2 is
computed using rotation matrices. (c) Pe2 is expressed in the image coordinate system which gives the point Pi2 = (u2, v2,w2) and the image point
pi2 = (u2, v2).

6 Experiments
This section presents the experiments achieved in order
to (1) evaluate the performances of McCascade compared
to the naive approach and (2) evaluate the McCascade
algorithm for two concrete applications: occluded face
detection and multiview face detection. In these experi-
ments, upright face detectors are similar to the system of
Tuzel et al. [15]: covariance matrices are used as features
[16], and the learning algorithm is a cascade of LogitBoost
[10]. Weak classifiers are linear functions that are learned
from a set of feature vectors. A feature vector is derived
from a covariance matrix by taking its upper triangular
part. The only difference with the system [15] is that we
assume that a feature vector lies on a vector space (in [15],
a feature vector lies on a Riemannian manifold).
The first part of the experiments related to McCascade

performance (Sections 6.2 and 6.3) are done with an
upright face cascaded detector of three levels with 5, 10,
and 25 weak classifiers, respectively. Positive examples

come from the labeled upright faces in the wild database
[17], and negative samples were generated from 1,310
images containing no face. A total of 4,000 positive exam-
ples and 8,000 negative examples are used to train each
cascade level. The second part of the experiments related
to applications (Sections 6.4, 6.5, and 6.6) are done with an
upright face detector of nine levels. This detector is noted
C. Each level was trained with 5,000 positive examples and
5,000 negative examples. Each level was designed so that a
detection rate of at least dmin = 0.998 and a false-positive
rate of at most fmax = 0.5 were achieved on training
examples. The positive examples again come from the
labeled upright faces in the wild database, and negative
samples were generated from 2,500 images containing
no face. The FLANN library [18] is used to perform
nearest neighbor searches (used in Pknn and Pcomb). The
test database is the CMU frontal face test A which con-
sists of 42 images showing 169 upright faces with varied
background [19].

Figure 12 Themultiview system. The input example x first goes through the three levels of detectors H−30, H0, and H+30. The estimated pose of x
is obtained by considering the detector that accepts x with the highest classification score, and then x continues with the selected detector.
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In the first part of the experiments, receiver opera-
tor characteristic (ROC) curves are used to evaluate and
compare performances, and all performances exhibited
are raw, i.e., the post-processing step of merging mul-
tiple detections is not taken into account here. This
means that the false-positive rate can be reduced with
this post-processing step without modifying the true-
positive rate. When multiple detections occur for the
same person, only the one with the highest classifica-
tion score is kept. The others are simply ignored. In
the second part of the experiments, free ROC(FROC)
curves are used, andmultiple detections are merged. Con-
trary to the ROC curve which plots detection rate versus
false acceptance rate, the FROC curve plots the detec-
tion rate versus the number of false-positives and is more
suited to evaluate performances of an object detector
in specific applications. Different experiments were con-
ducted to evaluate the different aspects of our method.
In Section 6.2, we test the three proposed cost functions
TP_cost, FP_cost, and FP_TP_cost used in the computa-
tion of McCascade’s thresholds. Then, Section 6.3 deals
with the evaluation of the different strategies used to
estimate posterior probability: Pboost, Pknn, and Pcomb.
After these two series of experiments, we apply our
method to two specific applications: detecting faces
occluded by a scarf or sunglasses (see Section 6.4) and

detecting faces in a pose different than the one learned
(see Section 6.5).

6.1 Good detection criterion
Building ROC or FROC curves requires computing true-
positive rates and false-positive rates. A criterion must be
defined to decide if a given detection is a true-positive or
a false-positive. The criterion used in these experiments
is defined in the overlap between the detection and the
ground truth. It was proposed by Yao and Odobez [20].
The overlap is computed with the F measure Foverlap:

Foverlap(GT,D) = 2ρπ

ρ + π
where ρ = |GT ∩ D|

|GT|
and π = |GT ∩ D|

|D| .

(22)

ρ stands for the precision area and π for the recall area.
GT is the ground truth area, and D is the detection area.
The operator |R| is the number of pixels in the area R. A
detection matches with ground truth if Foverlap > 0.5.

6.2 Evaluation of threshold estimation strategies
In this first part, we evaluate the influence of the cost func-
tion in threshold βj estimation when a given proportion

Figure 13 Performance of classifiers produced with the three cost functions: TP_cost, FP_cost and FP_TP_cost. In (a, b, c), 50% of the weak
classifiers are unavailable, while 60% of the weak classifiers are unavailable in (d, e, f). In (a) and (d), posterior probabilities are computed with Pboost.
In (b) and (e), Pknn is used, and Pcomb is used in (c) and (f). The number of neighbors in Pknn and Pcomb is fixed at 3.
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of weak classifiers is missing. We chose to consider 50%
and 60% of missing weak classifiers because these rates
are realistic in occluded face detection. Given a missing
weak classifier rate, we randomly create two sets of weak
classifiers per level to be considered as unavailable. For
example, consider the level 2 of the classifier which has
ten weak classifiers. If 60% of the weak classifiers are miss-
ing, then 6weak classifiersmust be selected as unavailable.
For each of the two sets of unavailable weak classifiers,
we randomly select six weak classifiers to be considered
as unavailable. These two sets could be {h21, h22, h23, h24,
h27, h29} and {h22, h23, h25, h26, h27, h28}. Given the sets
of the three levels, there are 2 × 2 × 2 = 8 possible con-
figurations to test resulting in eight ROC curves. Means
and standard deviations are then computed to produce the
final ROC curve. For each configuration, thresholds are
first computed and the resulting classifier is applied to the
test database. This test process is repeated for each cost
function associated to each posterior probability compu-
tation strategy: Pboost, Pknn, and Pcomb. For the last two
strategies, we fix the number of neighbors k at 3. All the
ROC curves are available in Figure 13. In all the curves,
the cost function TP_cost produces a classifier that out-
performs the other classifiers produced with FP_cost and
FP_TP_cost.
ROC curves are useful in evaluating the overall per-

formance of a classifier. When we train a classifier, this
presents a given true-positive rate and a given false-
positive rate which should be consistent with the appli-
cation targeted. In face detection, we are interested in
having a high true-positive rate and a low false-positive
rate. This is why, in addition to ROC curves, we present
the false-positive rate, noted FP, and the true-positive rate,
noted TP, of classifiers produced by the three cost func-
tions. Results for a missing rate of 50% can be found in
Table 1, while results for 60% are available in Table 2.
In these tables, we also print the mean number of levels
evaluated per negative example, noted nlevel. This cri-
terion reflects the impact of the cost function on the
execution time of the classifier. Indeed, a high number
of evaluated levels per negative example will bring a high
execution time. In both tables, we print in italics the
cost function that provides the most consistent perfor-
mance. As expected, the use of cost functions FP_cost
and FP_TP_cost involves low false-positive rates but also
involves low true-positive rates (some of them lower than
10%), which means that these classifiers do not have a
practical value. Furthermore, the impact on the mean
number of evaluated levels is not very significant: we
note an increase of about 7% between the cost function
TP_cost and the two others. These experiments prompt
us to keep the cost function TP_cost because FP_cost and
FP_TP_cost tend to decrease the true-positive rate and
the overall performance.

Table 1 Evaluation of cost function used to compute
thresholds βj when 50% of weak classifiers are missing

k Cost function
FP

TP nlevel×10−3

Pboost -

TP_cost 3.21 0.88 1.61

FP_cost 0.066 0.1 1.48

FP_TP_cost 0.08 0.15 1.48

Pknn 3

TP_cost 5.56 0.95 1.29

FP_cost 0.14 0.52 1.26

FP_TP_cost 0.17 0.44 1.29

Pcomb 3

TP_cost 5.43 0.95 1.62

FP_cost 0.006 0.12 1.48

FP_TP_cost 0.03 0.24 1.48

Three evaluation terms are exposed: the false positive rate, the true positive rate
and the mean number of evaluated levels per negative example noted nlevel .

6.3 Performance of the posterior probability estimation
In this section, we evaluate the three strategies to estimate
posterior probabilities proposed in Section 3.3: Pboost,
Pknn, and Pcomb. The evaluation methodology is the same
as the previous section (same cascaded detector, same
test database, same missing rate). Here, the cost function
used to compute thresholds is TP_cost. Five configura-
tions are compared: (1) ‘CascadeF’ is the initial cascade
with the full set of weak classifiers (can be seen as an
upper bound), (2) ‘CascadeA’ is the naive approach pre-
sented in Section 3.1 where the initial cascade is only
used with available weak classifiers, (3) ‘McCascade +
Pboost’ is a McCascade used with available weak clas-
sifiers where posterior probabilities are computed with
Pboost, (4) ‘McCascade + Pknn’ is a McCascade used with
available weak classifiers where posterior probabilities are
computed with Pknn, and (5) ‘McCascade + Pcomb’ is

Table 2 Evaluation of cost function used to compute
thresholds βj when 60% of weak classifiers are missing

k Cost function
FP

TP nlevel×10−3

Pboost -

TP_cost 8.4 0.95 1.64

FP_cost 0.058 0.06 1.48

FP_TP_cost 0.17 0.29 1.49

Pknn 3

TP_cost 8.25 0.96 1.32

FP_cost 0.15 0.56 1.26

FP_TP_cost 0.28 0.58 1.32

Pcomb 3

TP_cost 11.9 0.97 1.67

FP_cost 0.005 0.11 1.48

FP_TP_cost 0.16 0.49 1.5

Three evaluation terms are exposed: the false positive rate, the true positive rate
and the mean number of evaluated levels per negative example noted nlevel .
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a McCascade used with available weak classifiers where
posterior probabilities are computed with Pcomb. When
Pknn and Pcomb are used, only the best results are plot-
ted (k = 7 for Pknn and k = 3 for Pcomb). The results
can be found in Figure 14. In both cases, the McCascade
structure improves the performance. The most interest-
ing results are obtained when Pknn and Pcomb are used.
In that case, the true positive rate increases from 10 to
30% when 50% of weak classifiers are unavailable. When
60% of weak classifiers are unavailable, the improvement
is even higher: from 20% to 60%. In both cases, the
proposed method outperforms the naive approach. More-
over, McCascade is really more stable than the naive
approach (see standard deviations in each curve) which
ensures good performance in every case. Finally, the pro-
posed method does not suffer from the additional 10% of
unavailable weak classifiers. Even if Pknn and Pcomb are
close in terms of performance, we note that Pknn is slightly
better.
The influence of the number of neighbors in the

McCascade coupled with the strategy Pknn can be found
in Figure 15. In both cases, k = 7 gets the best perfor-
mances, but k = 3 should be preferred as it provides
similar performance and lower computational cost. In all
the following experiments, the McCascade is used with
the Pknn strategy and k = 3.
An additional result is given in the Figure 16 where

30% of the weak classifiers are missing. Below this
rate of 30%, the naive approach and the McCascade
get close performances. However, when at least 30%
of the weak classifiers are missing, using a McCascade
becomes interesting. Indeed, it can be noted in Figure 16
that a McCascade with the strategy Pknn increases the
true-positive rate up to 30% compared to the naive
approach.

6.4 Occluded face detection
In this section, we evaluate the performance of
McCascade coupled with the principle of cascading with
evidence in a specific application: detecting faces with top
occlusions (like sunglasses) or bottom occlusions (like a
scarf ). We only consider these two types of occlusions
for two reasons. The first is that we are working in a
video surveillance context in which these two types of
occlusions are often encountered. The second reason is
that a public database with these two types of occlusion is
available: the AR database.

6.4.1 Evaluation on the AR database
The AR database [21] is used first. In particular, we use
the 765 images of faces occluded by a scarf and the 765
images of faces occluded by sunglasses. The classifier used
here is the upright face detector of nine levels. Using this
cascade C, we build a McCascade CA that can handle bot-
tom occlusion and a McCascade CB that can handle top
occlusion. Also, a detector that associates C, CA, and CB

with the principle of cascading with evidence is created.
This detector will be noted ‘McCascades + evidence’ in the
results. The McCascade CA has, on average, 42% unavail-
able weak classifiers per level. The McCascade CB has, on
average, 46% unavailable weak classifiers per level.
Two scenarios are tested:

• Scenario 1. We consider images of faces occluded by
a scarf, and we then compare (1) the cascade C, (2)
the McCascade CA, and (3) the detector McCascades
+ evidence.

• Scenario 2. We consider images of faces occluded by
sunglasses, and we then compare (1) the cascade C, 2)
the McCascade CB , and (3) the detector McCascades
+ evidence.

Figure 14 Comparison of different strategies to estimate posterior probability in a boosted McCascade. They are for different rates of
missing weak classifiers. In (a), 50% of weak classifiers are missing, while in (b), 60% are missing. Each McCascade can be compared with the naive
approach presented in Section 3.1 where the initial boosted cascade is used with available weak classifiers (noted CascadeA). In each curve, we also
plot the performance of the boosted cascade when all weak classifiers are known (noted CascadeF) to show the effect of missing weak classifiers on
initial performance (best view in color).
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Figure 15 Influence of the number of nearest neighbors k in the strategy Pknn. In (a), 50% of weak classifiers are missing, and in (b), 60% of
weak classifiers are missing.

For all scenarios, FROC curves are computed. To create
the FROC curve of a cascaded detector, several thresh-
old values are tested for the last level which results in
corresponding points of detection rate and number of
false-positives. To get more points (points with a higher
detection rate and a higher number of false-positives), the
last level must be removed, and then different thresholds
for the new last level are tested. This procedure con-
tinues until enough points are collected. When several
cascades are associated (e.g., in the system ‘C + CA + CB +
evidence’), creating a FROC curve is not straightforward
because each cascade has its own thresholds. To alleviate
this problem, we use the idea proposed by Viola and Jones
in [22]. To create FROC curves from multiple cascades,
thresholds are simultaneously modified in all cascades. In
the same way, layers are simultaneously removed in all
cascades.

Figure 16 AMcCascade becomes interesting when at least 30%
of the weak classifiers are missing.

The FROC curve of scenario 1 is available in Figure 17.
TheMcCascade CA (noted ‘McCascade’) greatly improves
the detection rate (up to 30%). The drawback of CA is
that it is designed to detect faces with bottom occlusions.
When the encountered occlusion is unknown (top or
bottom), the detector McCascades + evidence can be
used, and Figure 17 shows that its performances are close
to the ones of CA.
The FROC curve of scenario 2 is available in Figure 18a.

On faces occluded by sunglasses, the initial cascade and
the proposed solutions (the detector CB and the detec-
tor McCascades + evidence) expose very poor results.
The poor results in scenario 2 are due to a limitation in
our solution: the fact that each weak classifier does not
have the same performance. Several works on face detec-
tion noticed that learned weak classifiers often rely on the

Figure 17 Comparison of different face detection systems on
faces occluded by a scarf. Three systems are compared: the initial
cascade C (noted Cascade), the McCascade CA (noted McCascade),
and the association of C , CA and CB with the principle of cascading
with evidence (noted McCascades + evidence).
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Figure 18 Limitation of the proposed solution. (a) Comparison of the initial cascade C (noted Cascade), the McCascade CB (noted McCascade),
and the association of C , CA , and CB with the principle of cascading with evidence (noted McCascades + evidence) on faces occluded by
sunglasses. (b) Performance map of all the weak classifiers in the initial cascade. Note that most of the performance is located on the upper part of
the face (best seen in color).

upper part of the face to make a decision because the eye
area is very discriminative. When our upright face detec-
tor was trained, we noticed the same phenomenon: most
of the weak classifiers are located on the upper part of the
face, and they are more powerful than the weak classifiers
located on the lower part of the face. This fact can be seen
in Figure 18b which represents a performance map M of
all the weak classifiers in the initial cascade. To build this
map, we first initialize all values to zero. Then, for all the
weak classifier hjt , we compute its classification rate CRjt
(rate of well-classified positive and negative examples),
and we updateM with:

M(x, y) = M(x, y) + CRjt ∀(x, y) ∈ Sjt ⊂ M. (23)

Finally, we normalize all the values between 0 and 1.
Based on this map, we understand that our method fails
on faces occluded by sunglasses because, in this sce-
nario, we only use weak classifiers located on the lower
part of the face which are too weak to ensure good
performance.
In scenario 2, the existing solutions such as [7] will

exhibit better results. Indeed, a specific classifier will be
trained to detect faces with top occlusions. In scenario 1, it
is interesting to compare our system with [7]. Rather than
building the complete system described in [7], a specific
classifier was trained to detect faces with bottom occlu-
sion. This specific classifier is close to cascade C, except
that all the learned weak classifiers are located on the area
that it is not occluded. This specific classifier is then com-
pared with the McCascade CA. Results can be found in
the Figure 19. Except with a very low number of false-
positives, the specific classifier gets a higher detection rate
(up to 10%).

6.4.2 Evaluation in real-life scenario
A test is also done in a real-life scenario. A camera is
placed on a pole to film a group of 15 persons. Some of
them have their face occluded by a scarf, coat, or hood.
Examples of images from the sequence are available in
Figure 20. There is a small angle (around 20°) between
the optical axis of the camera and the ground to imitate
conditions of a video surveillance context.
Three detectors are applied to this sequence:

• Upright face detector C. It is noted ‘FDcov’ in the
results.

• Detector that associates C, CA, and CB with the
principle of cascading with evidence. It is noted
‘FDcov + occlusion’ in the results.

• Upright face detector of the OpenCV library (the file

Figure 19 Comparison of McCascade CA (noted McCascade)
and specific cascade on faces occluded by a scarf.
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Figure 20 Images from a realistic sequence. A group of 15 persons are filmed by a camera on a pole. Some of them have their face occluded by a
scarf, coat, or hood. The 15 persons can be seen in (a), (b), and (c).

haarcascade_frontalface_alt_tree.xml
is used). This detector is the implementation of the
solution of Lienhart et al. [23]. This classifier is a
cascade of boosted classifiers. Haar features are used.
It is noted ‘FDhaar’ in the results.

The detector FDhaar just gives output detections. The
classification score of each detection is not known. This
detector is applied first on the sequence. Then, with the
help of ground truth, the detection rate per person is
computed. The number of false-positives nbFPhaar is also
noted. The other two detectors are then applied to the
sequence. The rejection thresholds of the two detectors
are modified so that they obtain nbFPhaar false-positives.
Then, the detection rate per person is computed. The
results are available in Figure 21. The red line is the aver-
age detection rate of the detector FDhaar. The yellow line
is the average detection rate of the detector FDcov, and

Figure 21 Comparison of FDhaar, FDcov, and FDcov + occlusion on
a realistic sequence. Each number on the horizontal axis is
associated to a person in the sequence. The vertical axis is the
detection rate. The red line is the average detection rate of FDhaar.
The yellow line is the average detection rate of FDcov and the green
line is the average detection rate of FDcov + occlusion.

the green line is the average detection rate of the detector
FDcov + occlusion. The worst performances are obtained
with FDhaar with 38% true-positive rate. FDcov gets a 47%
true-positive rate. The best performances are achieved
by FDcov + occlusion with a true positive rate of 75%.
Moreover, we note that FDhaar does not detect persons
11, 12, and 14. They are detected by the other two clas-
sifiers. Detection examples of these persons are given in
Figure 22.

6.5 Multiview face detection
In this part of the experiments, the boosted McCas-
cade algorithm has been applied to another specific
application: detecting faces in different poses using an
upright face detector. The FERET database [24] was used
to evaluate the system. We test our method on faces
turned 22.5°, 45° and 67.5°. For each angle, all the sub-
window positions are first adjusted using the procedure
described in Section 5.

6.5.1 Ellipsoid parameters
To modify the subwindow positions, parameters w, a, b,
and c must be fixed. Parameter w corresponds to the size
of the training images which is 24 in our case. To fix ellip-
soid parameters a, b, and c, we do an exhaustive search
and keep the parameters, giving the best results on vali-
dation sets from the FERET database. Two validation sets
were created: one for the angle 22.5° and one for 45°. For
each angle, we keep half of the images to fix the ellip-
soid parameters. The other half is used to evaluate the
complete system. For each parameter value (ai, bi, ci), we
apply the following methodology:

1. Based on the upright face classifier, we create two
classifiers C22.5 and C45 by adjusting all the
subwindow positions using ellipsoid parameters
(ai, bi, ci). Subwindows that disappear are handled by
the naive approach presented in Section 3.1, i.e.,
associated weak classifiers are simply ignored.

2. C22.5 is applied to the validation set of images of faces
turned 22.5°, and the ROC curve is computed. Then,
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Figure 22 Persons that are not detected by FDhaar. In (a), the person is occluded by a hood. In (b), the glasses and the beard make the person
difficult to detect. In (c), the person is occluded by a scarf.

the area under ROC curve is computed which gives
auc22.5i (auc is a criterion to compare ROC curves:
the higher it is, the better the ROC curve). Using C45,
we also get auc45i .

3. Finally, the overall value auci = auc22.5i + auc45i is
computed.

Parameters with the best value auci were kept. We found
that a = 2.0 ∗ w/2, b = w. and c = w/2 give the best
results.

6.5.2 Modification of subwindow positions
Here, the use of an ellipsoid to modify subwindow posi-
tions is evaluated. Three detectors are built:

• C22.5 is a detector of faces that turned 22.5°,
• C45 is a detector of faces that turned 45°, and
• C67.5 is a detector of faces that turned 67.5°.

Each one is built from C by modifying subwindow posi-
tions. Subwindows that disappear are handled by the naive
approach. These detectors are then applied to images

from the FERET database. The results are available in
Figures 23 and 24. In each curve, the upright face detec-
tor C is noted ‘Cascade’. Detectors C22.5, C45 and C67.5 are
noted ‘MaCascade’ (for cascade with multiview adapta-
tion). On faces turned 22.5°, the improvement is slight
because the appearance of such faces is still close to the
appearance of upright faces. The improvement is greater
on faces turned 45°. Indeed, the detection rate increases
from 30% to 40%. Finally, we see that the detection of faces
turned 67.5° can be seen as a limitation of the proposed
method. A detection rate increase (up to 60%) only occurs
when the number of false-positives becomes high (> 30).
This limitation comes from the step of adjusting the sub-
window positions:

1. The subwindow position modification should
compensate the modified appearance of a turned face
of an angle θy. When the angle θy increases, it
becomes much more difficult to compensate the
modified appearance as the modification becomes
stronger and stronger.

Figure 23 Performances of different detectors on faces turned 22.5° in (a) and 45° in (b). The detector Cascade is the upright face detector.
The detector MaCascade is built from the upright face detector and aims to detect turned faces. Subwindow positions are modified and unavailable
weak classifiers are handled by the naive approach. The detector MaMcCascade is the same detector as MaCascade except that unavailable weak
classifiers are handled with a McCascade. The detector MaMcCascade multiview is a multiview system that combines three MaMcCascades: one for
the angle 22.5°, one for 45°, and one for 67.5°.
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Figure 24 Performances of different detectors on faces turned
67.5°. The detector Cascade is the upright face detector. The
detector MaCascade is built from the upright face detector and aims
to detect turned faces. Subwindow positions are modified and
unavailable weak classifiers are handled by the naive approach. The
detector MaMcCascade is the same detector as MaCascade except
that unavailable weak classifiers are handled with a McCascade. The
detector MaMcCascade multiview is a multiview system that
combines three MaMcCascades: one for the angle 22.5°, one for 45°,
and one for 67.5°.

2. In Section 5, we explain that some subwindows can
disappear due to rotation. In fact, the number of
subwindows that disappear increases with the angle
θy. This loss impacts the initial performance.

6.5.3 Association with aMcCascade
The three detectors of the previous section C22.5, C45, and
C67.5 have some unavailable weak classifiers:

Figure 25 Comparison of the classifier MaMcCascade and the
specific cascade on faces turned 45°.

Table 3 Mean detection time on faces turned 45°

Classifier Mean time Minimum time Maximum time
(ms) (ms) (ms)

Cascade 234 ± 46 196 593

MaMcCascade 296 ± 96 201 663

Times for the initial upright face detector (noted Cascade) and for the
MaMcCascade system are compared.

• C22,5 has, on average, 18% unavailable weak classifiers
per level.

• C45 has, on average, 27% unavailable weak classifiers
per level.

• C67,5 has, on average, 44% unavailable weak classifiers
per level.

Unlike using the naive approach to handle these unavail-
able weak classifiers, it could be interesting to modify
the cascade structure into a McCascade. In this section,
the structure of the three detectors is changed into a
McCascade. The strategy Pknn is used with k = 3 neigh-
bors, and thresholds βj are fixed using the cost func-
tion TP_cost. In Figures 23 and 24, these detectors are
noted ‘MaMcCascade’. On faces turned 22.5° and 45°, the
improvement compared to the naive approach is slight
(increase of the detection rate from 2% to 5%). The impact
of using a McCascade is greater on faces turned 67.5°.
Indeed, contrary to the naive approach, the McCascade
allows for the detection rate to be improved with only a
few false-positives. However, performances remain lim-
ited. For example, 55% of faces are detected with 12 false-
positives, while this rate is 90%when faces are turned 22.5°
and 45°.
Detecting faces turned 67.5° with the existing solutions

such as [1,12,13] will exhibit better results. Indeed, a spe-
cific classifier will be train to detect faces turned 67.5°.
When faces are turned 45°, it is interesting to compare
the system MaMcCascade with a specific classifier. Thus,
a specific classifier was trained using the same train-
ing parameters as the cascade C, except that the positive
images were extracted from the FERET database. A total
of 132 images of faces turned 45° were extracted to train
the specific classifier (these images are not used during the
testing stage). Results can be found in Figure 25 where we

Table 4 Mean detection time on faces occluded by a scarf

Classifier Mean time Minimum time Maximum time
(ms) (ms) (ms)

Cascade 375 ± 43 272 610

McCascade + evidence 468 ± 63 335 758

Times for the initial upright face detector (noted Cascade) and for the cascade
associated with a McCascade (McCascade + evidence) are compared.
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see that the specific classifier gets a higher detection rate
(up to 10%).

6.5.4 Themultiview system
In the previous sections, the pose of faces was known.
Here, a multiview system is evaluated. This system can
detect faces with different ROP angles. The three detec-
tors C22,5, C45, and C67,5 are combined to get themultiview
system following the principle of Section 5.2. Unavail-
able weak classifiers are handled with a McCascade. In
Figures 23 and 24, this detector is noted ‘MaMcCascade
multiview’. It gets performances that are close to per-
formances of specific detectors (noted MaMcCascade on
each curve).

6.6 Computation time
In this section, we compare the execution time of the pro-
posed method on the two applications. For the multiview
application, we compare the initial upright face detector
and the system MaMcCascade on faces turned 45°. The
mean detection time per image, the minimum detection
time, and the maximum detection time can be found in
Table 3. For the occluded face detection application, we
compare the initial upright face detector (noted Cascade)
with the system of the initial cascade associated with a
McCascade with the principle of cascading with evidence
(noted McCascade + evidence) on faces occluded by a
scarf. Table 4 contains detection times of the two systems.
In both applications, classifiers were run five times and
detection times were averaged. In both tables, we see that
averaged detection time increases by about 25% when we
use our solution.

7 Conclusions
We have presented a solution for handling missing weak
classifiers in a boosted cascade. Our method relies on
a probabilistic formulation of the cascade structure and
on the computation of posterior probability on each
level. To make a decision on each level, thresholds have
been introduced and are fixed through an iterative pro-
cedure that minimizes a cost function. All aspects of
the proposed solution have been tested. Moreover, the
method has been successfully applied to two specific
applications which involve occluded faces. During exper-
iments on occluded faces and on turned faces, we also
discuss limitations of the proposed solution which are
due to performance differences between weak classifiers.
On the other hand, the main advantage of the proposed
method is that it only uses an existing face classifier; addi-
tional training is not needed to detect occluded faces
or faces in another pose. Future work will focus on the
method’s limitation on occluded faces. During experi-
ments on occluded faces, we notice that the proposed
solution can fail on some occlusion types because learned

weak classifiers do not cover the face with the same per-
formance. To alleviate this problem, we plan to modify the
initial training by adding constraints to the weak classifier
locations.

8 Consent
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Figures 20 and 22 used for this publication.
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