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Abstract

95 percentile scene disparities together.

Excessive depth perception in 3D video is one of the major factors that causes discomfort to the viewer and that can
decrease the viewer's quality perception of 3D video. With the idea of real-time quality control of 3D videos, we
proposed an edge-based sparse disparity estimation algorithm with a novel similarity metric. The comparative
assessment with other four state-of-the-art similarity metrics, implemented within the proposed edge-based disparity
estimator, showed higher performance for the novel metric. User tests are conducted to assess the relation between
certain disparity statistics and user perception of 3D scene quality that is a retrospective subjective experience of
quality. Subjective tests indicate that the viewer discomfort can be predicted best by using maximum and slew rate of

Keywords: Visual discomfort; 3D quality; Maximum disparity; Stereo video; Sparse disparity map

1 Introduction

The consumer market is moving rapidly toward 3D
motion image delivery, and content providers, distribu-
tors, and equipment manufacturers see this as an opportu-
nity. Consequently, there is an intense development effort
in the field of 3D technologies, which range from com-
pressive coding to 3D displays. In parallel, the 3D content
production is growing rapidly in the form of 3D cinema
and television programs. It is expected that 3D video will
attain a large usage both at home theaters and mobile plat-
forms in the coming years . The penetration of 3D video
into our lives brings in concomitantly the question of mul-
timedia user experience. In particular, the comfort level of
3D viewing will be of paramount importance in contrast
to 2D video; in fact, negative aspects such as visual strain
and viewer fatigue will curb the wide adoption of 3D. In
this paper, we address two issues: (1) realizable and effi-
cient estimation of large disparities in 3D video and (2) the
impact of excessive disparities on 3D viewing comfort.
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In 3D broadcasting besides having visually good images
for each stereo channel, it is also important that the chan-
nels match with each other. Research in stereo quality
control has identified a number of factors affecting view-
ing experience, such as parallax (disparity) irregularities,
focus mismatch, color mismatch, geometry mismatch,
vertical parallax, object edge tearing, cardboard effect,
pincushion distortion, etc. Such distortion factors affect-
ing 3D video quality are well documented [1].

The mechanism of depth perception in the human
visual system is fairly well understood. It is known that
depth perception uses both psychological and physiolog-
ical cues. On the psychological aspect, the human visual
system (HVS) uses cues related to perspective, such as
overlap, shadow, apparent size, and texture; on the physi-
ological aspect, the main cues include binocular parallax,
motion parallax, accommodation, and convergence [1].
Among them, the binocular parallax, while being the most
common method for 3D stereo rendering, is also one of
the most dominant factors affecting the viewing expe-
rience. Binocular parallax is the relative spatial distance
between similar points, which share the same physical ori-
gin, in the left and right stereo image pairs. It is governed
by the binocular disparity, that is, the horizontal separa-
tion between the retinal images of the two eyes, when
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convergence to a specific distance is achieved. Hence, it
can be conjectured that the quality of 3D video from
the viewers’ point of view is largely determined by the
binocular disparity. This calls for an automated 3D video
quality assessment tool based on the estimated disparities
between stereo frame pairs as a function of time. Such a
tool would not only provide an overall quality figure for a
given video but could also be able to provide information
regarding the frequency of parallax errors with respect to
scenes as a guidance for video post-processing.

It is known that the brain uses binocular disp arity to
infer depth information from the 2D retinal images result-
ing in 3D perception, that is, stereopsis. The creation of
the sense of depth via binocular disparity in stereoptical
screens is influenced by the size of the 3D display and the
viewing distance, given the same relative parallax. Thus,
the disparity requirements vary proportionally for cin-
ema viewing (typically 20 m), home TV viewing (typically
1.5 m), and mobile device viewing (typically 0.2 m). In
practice, smaller screens require a larger stereo baseline
to provide more disparity as a fraction of the image width
to retain a good impression of depth. It has been recom-
mended that perceived depth range be upper bounded at
a visual angle of 60 arcmin to ensure visual comfort for the
majority of the viewers [2-5].

In order to create a satisfying sense of depth, the dispar-
ities between the image pairs should be made compatible
with HVS 3D perception. Excessive disparity values cor-
respond to an exaggerated depth range; they may strain
the binocular fusion faculty of the subject and may cause
the scene depth to be perceived inaccurately. Such defec-
tive image pairs can cause a weakened depth sense in the
observer, and it can even result in headache or nausea
when exposed for a long time. The effects of such defec-
tive image pairs on human visual system [3,6-8] and some
quality assessment methods based on disparities [9] have
been investigated in recent years.

The viewer discomfort is known to be affected by multi-
ple factors and is observed in multiple ways. It is generally
accepted that the vergence-accommodation conflict is a
dominant factor in viewer discomfort and eye strain. Two
major consequences of excessive disparities are vergence-
accommodation conflict and double vision. Under fixed
viewing conditions, the vergence-accommodation conflict
can be related to the maximum disparity. The double
vision is, however, affected by not only the stereo proper-
ties of 3D video, such as disparity, but also by its content
and viewing environment. Lambooij et al. have noted that
even with plausible disparity range, there are video char-
acteristics such as fast motion or spatial and temporal
inconsistencies that may contribute to the visual discom-
fort [8]. In this work, we focus solely on the effect of dis-
parity, that can be measured efficiently with the proposed
novel method, on discomfort.
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In accordance with our goal of viewing comfort pre-
diction using estimated excessive disparities, the main
contributions of this paper are the following:

e We introduce a new edge-based efficient sparse
disparity estimation approach.

e We introduce a novel similarity metric (correlation of
gradient orientations (CGO)) for disparity estimation
and carry out a comparative performance assessment
with respect to the state-of-the-art metrics.

e We report the results of a pilot study exploring the
correlation between the perceived 3D video quality
and a number of statistical measures extracted from
the sparse disparity estimates.

The disparity is estimated only on detected edge pixels;
hence, the resulting disparity field is sparse in compari-
son to conventional dense disparity estimators in [10-13].
The sparse approach is chosen since the intention is not to
reconstruct the entire disparity field but to find large range
disparities in frames; as a byproduct, edge sparseness
enables more rapid and efficient estimation of disparity
statistics. We have introduced a new block similarity mea-
sure called CGO. This method is found to be a more
efficient and reliable disparity estimator compared to sev-
eral other block search methods. We also investigate the
relationship between certain disparity statistics and user
viewing comfort in order to develop a predictor of subjec-
tive 3D video quality. Such a quality indicator would help
screen content provided by third parties prior to purchase
decision; it would also be instrumental in quality-based
scene selection in 3D video during post-processing and
prior to broadcast.

The rest of the paper is organized as follows. In
Section 2, we describe the proposed edge-based sparse
disparity estimation algorithm and the similarity metrics
used including the novel CGO. In Section 3, we explain
the test material used together with the details of the
similarity metrics we defined. The performance results
on both reference databases, with ground-truth informa-
tion, and on actual video streams from TV industry are
presented and discussed in Section 4. The concluding
remarks are given in Section 5.

2 Disparity estimation methods

Disparity estimation has been the subject of much inter-
est in the last two decades, and a plethora of algorithms
have been developed. These algorithms and their rela-
tive performances are well documented in the literature
[14,15].

Several advanced algorithms have been proposed to
reconstruct dense disparity fields through global opti-
mization methods [12,13]. Such approaches, primarily
due to their computational load, are not suitable for our



Giirol et al. EURASIP Journal on Image and Video Processing 2013, 2013:53
http://jivp.eurasipjournals.com/content/2013/1/53

major goal of providing a 3D video quality metric fast
enough to meet the needs of broadcast companies in
selecting and/or post-processing the 3D video prior to
purchase/broadcast. Furthermore, dense disparity fields
are not required for our purpose. In order to differentiate
our method from the dense disparity map methods in the
literature, we will call ours the point disparity estimator
and the outcome as sparse disparity map.

Our sparse disparity map algorithm, as illustrated in
Figure 1, consists of image pre-processing, disparity
search guided by the image edge field, and post-processing
for error correction. These stages will be explained in
detail in the following.

2.1 Image pre-processing for disparity estimation
We have confined our sparse disparity map estimation on
image edges because (1) the block matching-based dispar-
ity estimation, irrespective of the similarity metric used,
can best be done on non-flat image patches and (2) HVS is
most sensitive to edges; hence, a computationally low-cost
approach should be prioritized on edges. The well-known
Canny edge detector is used for this purpose. Assum-
ing that the cameras are rectified, we limit our search
for stereo correspondences only in the horizontal direc-
tion. Furthermore, we eliminate all horizontal edges as the
horizontal search along them yields ambiguous results.
In short, we limit the search to edges with orientations
within the 60° to 120° cone. The edge field is extracted in
only one of the images in the stereo pair, and it is used to
guide the placement of the disparity search window in the
other image. The selected edges are dilated horizontally
through morphological operations to make them s pixels
wide (see Appendix). Illustration of these edge processing
stages is given for the left image of a stereo pair in Figure 2.
Both left and right images are preprocessed to mitigate
the illumination artifacts and to enhance the edge struc-
tures [15]. The rank filter is applied prior to disparity
search whenever a pixel intensity difference-based sim-
ilarity metric is used [16]. The rank filtering is omitted
for other metrics as it decreases the dynamic range as
explained in Section 2.2. The rank filtering simply consid-
ersa W x W window around each pixel, rank orders these
pixel values, and assigns the rank of each pixel as its new
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pixel value € [1, W?2]. This filtering is applied to both of
the stereo images and the choice of W = 15 was found
to be adequate, so that original gray values are mapped to
the range [1, 225].

2.2 Disparity search

The two images composing the stereo image pair are
termed as the reference image (fz) and the target image
(fr). Either left image or right image can be labeled as ref-
erence or target. The disparity search is done by means of
sliding a search block, taken from fz, over the search range
defined on fr. A search block, of size N = h x b pixels,
is defined to be the & x b image patch centered at a pre-
detected edge point (x,y) as fp(x —h/2: x+h/2,y —b/2 :
y + b/2). The matching block is searched for in fr by slid-
ing the aforementioned search block, with reference to its
center point, over a range of horizontally shifted positions
in fr, namely over (x,y — k : y + k). For each shifted
position, a similarity cost is computed, i.e.:

C@=v(frx—h/2:x+h/2,y—b/2:y+ b/2),
frix—n/2:x+h/2,y—b/2+d:y+b/2+d));
d e [—k k]
1)

¥ is the similarity metric (similarity cost function), C(d)
is called the cost profile, and the estimated disparity is

dt = argmin(C(d)). The parameters /% and b are chosen
d
empirically as the smallest block sizes providing robust

estimation of similarity costs used in the study. The choice
of k upper bounds the disparity estimates. Too small
k values would result in underestimation of disparities,
while too large k values would cause the algorithm to
match unrelated image patches based on some structure
or intensity similarity. We have k = 80, based on the
properties of HVS and the datasets used, as detailed in
Section 3.

We considered five state-of-the-art similarity cost func-
tions including the proposed CGO. The definitions of the
five similarity cost functions and the details of the cost
aggregations are given in the following.

Left . Edge
Imagej Selection
| |
i i Sparse
= Preprocessing | * D;:‘;?_::y ~ Post-processing P

Right

Image /

Figure 1 General flowchart of the algorithm. Both of the image pairs are subject to pre-processing. Edge selection is only applied to reference
image (left image). The resulting edge map guides the disparity search and post-processing steps.
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(a)

(b)

(d)

Figure 2 An example of pre-processing and estimated sparse disparity map. Left image of a stereo pair is given in (a) and its edge map in (b).
After removing the horizontally aligned edges and dilating the remaining ones the edge map becomes as in (c). Estimated sparse disparity map is
shown in (d) with blue lines. Green dots in (d) represent the unreliable (non-validated) disparities.

2.2.1 Sum of absolute differences

Sum of absolute differences (SAD) [10] is a well-studied
matching cost calculation method for stereo matching and
motion estimation tasks. SAD is defined as:

L b2
SAD@) =~ > Y le+my+m)

n=—h/2 m=—>b/2
—k<d<k
(2)

—fux+ny+m+dl;

where N = hxb. The SAD value at candidate disparity d is
obtained as the sum of the absolute difference of the two
blocks from fz and fr at d units horizontal shift from each
other.

2.2.2 Hermann Weyl’s discrepancy measure

Hermann Weyl’s discrepancy measure (HWDM) [17] is a
similarity measure, which recently gained popularity for
its usage in texture analysis tasks. HWDM uses the inte-
gral image concept. The pixel differences (not the absolute

difference) of the two blocks are considered; these differ-
ences are integrated along four directions, namely, left to
right and top to bottom (LRTB), left to right and bottom
to top (LRBT), right to left and top to bottom (RLTB), and
right to left and bottom to top (RLBT). For example, in
the LRTB direction case, the integral image is obtained by
summing the pixels from left to right and then from top to
bottom; in other words, the image is first integrated hori-
zontally and then vertically. Once the four integral images
are obtained (each of size & x b), the difference between
maximum and minimum values in each integral image is
calculated as n}cz}x(lq) — n;iyn(lq), and finally, the maximum

among these four difference values from integral images
is taken as the cost value. Accordingly, HWDM can be
defined as:

HWDM(d) = max | max(I,) — min(I ;
(d) = m3 (Wu) x,yu,)) “
q € {LRTB,LRBT, RLTB, RLBT}

Here, I, represents the integral image obtained along the
direction g. The minimum values of the integral images
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are subtracted from the maximum ones in order to con-
strain the final costs to be positive. The coordinate loca-
tion that yields the minimum HWDM is taken as the
disparity estimate.

2.2.3 Adaptive support windows

In this method the search block is divided into five over-
lapping sub-blocks as shown in Figure 3. The central
smaller sub-block is one third in size of the larger corner
blocks. Accordingly, the final cost value at shift 4, adaptive
support windows (ASW (d)) [18], is calculated by adding
the two smallest SAD costs of the four corner sub-blocks
to the cost value of the center sub-block:

ASW(d) = SAD5(d) + min_; SAD;(d)
+ second min_; SAD;(d)

where SAD;(d) represents the SAD cost of the ith sub-
block at shift d.

(4)

2.2.4 Sum of absolute differences of scale invariant feature
transform vectors

The images fr and fr are processed to extract their scale
invariant feature transform (SIFT) fields [19]. The SIFT
vectors are obtained by dividing the 16 x 16 neighbor-
hood of each pixel into 4 x 4 cells and then quantizing the
orientation in each cell into 8 bins [19]. Thus, each pixel
in both of the images is replaced with a SIFT vector of
size 128, and the corresponding SIFT vector images are
obtained. The disparity search consists of matching blocks
between the reference and target SIFT image blocks using

Block 1 Block 2

Block 5

Block 3

Figure 3 Overlapping sub-blocks in ASW. Blocks 1, 2, 3,and 4 are
the support windows of block 5. Final cost value is obtained by
adding the sum of the two minimum costs from the support
windows to the cost of block 5.
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simply the SAD criterion. Note that this algorithm does
not need the pre-processing step of rank filtering (Section
2.1), since SIFT already uses the image contrast in the
neighborhood. Again, the matching is performed only on
edges of the reference image.

2.2.5 Correlation of gradient orientations

In this method, first the complex gradient fields of the
reference and target blocks are calculated [20]. The weak-
est pixels, that is, pixels with gradient magnitude below a
given threshold are eliminated. The gradient orientation
fields {Og, O} at the reference and target are calculated
on the ‘stronger’ pixels. Finally, the SAD score of the two
orientation fields is computed at shift d, that is:

) b/2

1
CGOM) = n;ﬂ m;ﬂ |ORGx + 1,y + m1)
—Or(x+ny+m+d)l; k<d<k
(5)

CGO algorithm can be summarized as:

1. Complex gradients of both of the images ( f;(x, y)
where i € {R, T} ) are calculated:

Gi(%,y) = Vifi(x y) +/Vofi(%,9)

2. Pixels with sum of absolute gradient values less
than some threshold Z are eliminated

(Gi(x,y) = Gi(x,9)):
IVafiGe, )|+ [Vyfi(x, )| < Z — 0
3. Gradient orientation maps (O;(x, y)) are obtained:
Gj(%,9)
GG )l
4. The correlation between gradient orientations at

shift d, (CGO(d)) is calculated by taking SAD
between Og and Ot (Equation 4).

Oi(x,y) =

Notice that this algorithm also bypasses the rank filter-
ing step due its use of gradients.

We determined the block sizes empirically. For fairness
in the performance comparison of disparity estimation
methods, we take the block size that yields the best results
for each method. Thus, we used the following /1 x b figures:
the size of the search block is 25 x 25 in SAD and ASW;
in the latter, the four overlapping sub-blocks are of size
15 x 15 and the middle sub-block is of size 5 x 5. For
HWDM, the block size is 11 x 11, for SADSIFT, 5 x 5, and
for CGO, it is taken as 15 x 15.

As a post-processing step, each disparity estimate is val-
idated by cross-checking. If a block at some position (x, y)
in fz finds its match in fr at (x,y + dF), where dF is the
estimated disparity, then one searches for matching block
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in fr this time starting from the reference point in fr. If
the two estimations: fg — fr and fr — fr are consistent
with each other, that is, they are within 2 pixels distance
from each other, then the estimate is considered as valid.
Otherwise, the pixel under investigation is labeled as unre-
liable in the disparity map. Such cross-checking is useful
in determining the occluded regions and hence helps to
reduce wrong disparity estimates.

3 Experimental setup
We describe here briefly the stereo image database, video
test material, and the metrics used in experiments.

3.1 Stereoimage database

We used 35 stereo image pairs, with known dense
ground-truth disparity maps, in the Middlebury stereo
image database for quantitative performance assessments
[21,22]. These images are known to be rectified and have
unidirectional disparity. The maximum disparity values
occurring in Middlebury database are as follows: for 6 of
the images, their absolute maximum disparities are less
than 20 pixels (= 5% of the scene), and in the remaining 27
images, the absolute maximum disparities vary between
38 to 71 (= 10% to 16% of the scene). Accordingly, in all
of our experiments with the Middlebury dataset, we set
k = 80 (=~ 18% of the scene), such that the disparity search
ranges between (x,y — 80) and (x,y + 80) for any pixel
at location («,y). Thus, the search limit k is chosen larger
than the maximum true disparity value of the image set,
and hence, it allows for some overestimation. Any larger
setting of the range k would have the potential to induce
erroneous and somewhat unrealistic disparity estimates.

3.2 Video test material

In order to assess the potential of using the edge-based
maximum disparity estimation for subjective 3D video
quality prediction, we used a custom test video set con-
sisting of 12 different stereo scenes from the footages
provided by a commercial digital broadcasting company
(Digitiirk A.S.). Eight of these footages were taken in a
soccer stadium by an expert 3D broadcasting crew; one
of them is a computer animation, and three of them were
taken in public locations around the city. The stereo shots
have frame rate of 25 frames per second, and the scenes
have durations that range from about 17 to 60 s. There
is a 1-s length black screen between the scenes. The total
length of the test video is 9,963 frames (= 6.5 min). The
scenes do not contain any subtitles.

The original resolution of the videos were 1,080 x 1, 920
pixels, but we down-sampled them to 270 x 480 for
practical purposes. The videos, shot by the professional
crew, were not rectified; however, their vertical disparity
was negligible. The stereo shots were taken with a slight
angular shift between the cameras. Therefore, they have
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bi-directional disparities, such that when the left image is
taken as the reference, then the resulting disparities for
background objects can be expected to be positive and for
foreground objects as negative. Some of these video shots
contain large disparities as the offset between the cam-
eras was intentionally and randomly modulated during
the shootings.

Although these video scenes do not have ground-truth
information according to which k could be set (as in
Section 3.1), we have set k = 80 (~ 17% of the scene)
manually, based on the observed maximum absolute dis-
parity between the stereo pairs throughout the video. A
disparity of 17% of the scene is equivalent to 64 arcmin
angular disparity in our subjective test setup. This search
range slightly exceeds the 60 arcmin of visual angle, which
is the threshold for HVS to be able to fuse stereo images
for 3D perception [2-5]. Therefore, k = 80 would be a
suitable choice in our setup for the prediction of excessive
disparity-related visual discomforts within the limits that
still enable fusion.

3.3 Performance metric

Since the goal of our algorithm is to detect the largest
disparities in the scene, we have developed performance
measures to this effect. Our experience has shown that the
absolute disparity estimation error is proportional to the
size of the actual disparity. Furthermore, it can be conjec-
tured that the largest disparities per frame and per scene
affect the viewer comfort level the most. We therefore
compute the mean of the largest 5% of the actual dispari-
ties, the true 95 percentile mean, 195, for each image and
use it as an indicator of estimation error. In fact, we rank
the Middlebury images according to their ground-truth
195 values in ascending order and reported the disparity
estimation performance as a function of ascending 195.
The metrics we used are as follows:

Criterion 1: percentage of erroneous disparities
(Erroneous%)
In this error criterion, we consider a disparity estimate as
erroneous if it exceeds 10% of its true value. If d€ is the
ground-truth and dF is the estimated disparity, then the
test T(d®, d¥) is expressed as:

1 ifldS — df| > | %]

T(d®,df) =
0 ifld® —df| < %)

(6)
The mapping between the disparity value and tolerable
absolute disparity errors is given in Figure 4. Notice that
the staircase behavior due to round-down is effectively a
quantization.

This criterion tolerates errors in proportion to the actual
disparity size; for example, the tolerance for disparity val-
ues d° < 151is 1, for 15 < d° < 25 is 2, while larger
disparities allow for larger errors. A disparity estimation
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Figure 4 Threshold curve for calculating an erroneous disparity
(Equation 7). Absolute disparity versus tolerable disparity estimation
error. Disparity errors above the staircase function are penalized.

figure of merit can be obtained for the whole image in
terms of the percentage of erroneous disparity estimates
vis-a-vis the total number of pixels, C, at which disparity
is estimated.

C
> TS, df)
i=1

Erroneous% = x 100

C (7)

This metric gives scores in the [0,100] range, with O
corresponding to perfect estimation

Criterion 2: 95 percentile absolute error (Diff95%)
To put the disparity performance at large values into bet-
ter evidence, for each image, we calculate the 95 percentile
of disparities. In other words, we rank the disparities
in ascending order and take the pixels corresponding
to the highest 5% of disparities and then calculate the
disparity errors at this particular cut point. More specifi-
cally, consider the rank ordered ground-truth disparities:
{le,dg, .. .,dg}, and consider the threshold value v for
the largest 95% disparities: v = [0.95 x C]. Then one has
the following:

Diff95% = |d¢ — df| 8)

where the notations d¢ and df signify the vth rank-
ordered true and estimated disparities (95 percentile
disparities). Criterion 2 yields the absolute discrepancy
between the 95 percentile values of the ground-truth and
estimated disparities. Obviously, the range of this met-
ric is between 0 for perfect estimation and k, the largest
attainable error.

Criterion 3: 95 percentile ratios (Ratio5%)
In this measure, the disparities are again sorted as in
95% absolute error, and we consider the ground-truth and
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estimated disparities in the last 5 percentile (between 95
and 100 percentiles) sets, respectively, are calculated. We
then consider the ratio of the means of the disparities d*
and d°. If this ratio is close to 1, then there is a good
agreement; ratio scores above 1 means that the algorithm
overestimates the disparities, and the ones below under-
estimates the disparities. This criterion can be expressed
as

C
1 E
C—v Z |dz |
i=v

Ratio5% =

C
1 G
C—v Z Idz |
i=v

4 Results and discussion

4.1 Performance results on stereo images

To assess the performance of the proposed similarity met-
ric quantitatively and in comparison with state-of-the-art
metrics, in this case of large disparities, the Middle-
bury dataset is used. The quantitative disparity estima-
tion performance results are given in Figure 5 for three
performance indicators and five similarity metrics (cost
functions).

Figure 5a shows the scatter plot of the disparity esti-
mation errors, quantified as the percentage of erroneous
disparity estimates (Erroneous%), as a function of ©95. It
is observed that the disparity estimation error is corre-
lated with the amount of true disparity, as represented by
195. Furthermore, this plot shows that CGO, on the aver-
age, performs better than the other metrics. Table 1 shows
the rank sum performances of the five disparity estimation
methods considered. For any one method, rank 1 corre-
sponds to the number of images where it has performed
best and rank 5 where it has performed the worst. CGO
ranked the best performing metric in 22 image pairs out
of 35.

Figure 5b,c confirms further the high performance of
CGO in comparison to the other four methods based on
the absolute disparity estimation error and the relative
disparity scores, respectively. CGO resulted in Diff95%
values larger than 0 in only 10 image pairs (out of 35) with
an outlier in a single image pair. The nearest performance
is realized by SAD method, which results in 11 image pairs
with Diff95% value larger than 0. When we consider the
Ratio5% measure, both the SAD and CGO scores are clus-
tered around 1 (which represents perfect performance).
CGO has an outlier in a single image pair, though in gen-
eral, CGO results are more tightly clustered around 1 as
compared to SAD.

It is interesting to observe that all methods overesti-
mated the disparity as I‘Zg‘l
gives us confidence that the methods we applied would
not miss large disparities, albeit at the risk of false alarms

> 1 in almost all cases. This
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by estimating the disparities larger than their actual val-
ues. It can be observed that HWDM is more prone to give
false alarms since it overestimates the disparity more fre-
quently. In this respect, CGO is a more reliable metric
than the others with its Ratio5% values clustering around
1 without large outliers.

In terms of Diff95% and Ratio5% metrics, SAD and
CGO may seem to have similar performances though it
should be noted that the results in Figure 5 are obtained
by selecting the best performing search block parameters
for each similarity metric. In this sense, SAD required a
larger search block size (25 x 25) to be taken in order to
yield similar performance to CGO, where a block size of

Table 1 Rank sums of the disparity estimation methods
according to the percentage of erroneous disparity value
(Erroneous%) of each image pair

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5
SAD 4 3 9 14 5
HWDM 3 3 4 3 22
ASW 6 11 9 6 3
SADSIFT 0 12 9 9 5
CGO 22 6 4 3 0

15x15 sufficed. Obviously, larger block sizes are computa-
tionally more costly and the computational burden arising
from larger block size in SAD is far greater than the simple
gradient orientation map computations in CGO.

4.2 Subjective assessment of stereo scenes

We employed 15 subjects to assess the quality of the 3D
stereo video data (as described in Section 3.2), and they
reported their viewing experience in a follow-up question-
naire. This population size is suggested in the ITU-BT.500
recommendation as the lower limit of the cohort size.
These subjects were chosen among students within an age
range of 20 to 30. The subjects had normal visual acu-
ity since none of them were normally wearing eye glasses.
All subjects confirmed that they had previously watched
stereoscopic 3D movies and that they did not experience
any trouble in perceiving different levels of depth. For
our calculations, we take the interpupillary distance of
the subjects as 65 mm as it corresponds to the average
human eye separation [3]. The display was a commercial
3D TV having 1,920 x 1080 pixel resolution and 89 x 50
cm screen dimensions. The stereoscopic display system
was a two-view TV based on temporal multiplexing (shut-
ter glasses) to create the stereoscopic depth sense. The
subjects watched the videos sitting in a comfortable chair
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at a distance of approximately 2 m in a room lit by sub-
dued daylight. The subjects were not guided for looking
at a particular point or object on the screen. The comfort-
able viewing zone is defined as a perceptual depth range,
where the stereoscopic visual comfort is maintained [2].
Accordingly, the foreground and background distances of
the comfortable viewing zone in our experiments are 0.57
and 1.33 m, respectively. After watching each scene, the
subjects were asked if they felt any strain on their eyes at
any part of the scene.

The d” (estimated 95 percentile disparities, see Section
3.3) scores of the CGO algorithm on the whole set of
video data (12 scenes resulting in 9,963 frames) are plotted
in Figure 6 together with the number of subjects report-
ing eye strain for each scene. The ordinate on the left
corresponds to the df score for each frame; the ordi-
nate on the right corresponds to the subjective eye strain
evaluation data, and the abscissa is the frame sequence
number. The piecewise constant curve denotes the num-
ber of subjects reporting eye strain in the corresponding
video scene (recall that we have 12 test scenes, hence 12
levels in the dashed and dotted curves). The results show
a strong relation between the visual discomfort per scene
with the maximum of estimated 95 percentile disparities
(max(df)) per scene. Except for scenes 3 and 10, the num-
ber of subjects with eye strain is larger than 5 (33% percent
of the population) whenever max(dZ) is above 3% of the
frame resolution. The results for scenes 3 and 10 may be
attributed to the small variation of 4€ within these scenes.

Table 2 presents the results of the same experiment in
alternative units, where the max(df) per scene appears in
the top three rows in terms of the percentage of frame
resolution, absolute minutes of arc and pixels, respec-
tively. Maximum 95 percentile disparities are expressed
in pixels and in percentage of frame resolution so as
to take into account any downsampling effect. Further-
more, angular max(d4%) values are also given in absolute
minutes of arc. The linear regression between the scene-
wide max(d£) values and the number of subjects with eye
strain, depicted in Figure 7, confirms the above obser-
vation. We further performed single and multivariable
regression between the number of subjects with eye strain
per scene and estimated mean, standard deviation, and
slew rate of 95 percentile disparities (pc(df), a(df), and
SR(d‘VE ), respectively). The u,(df ) statistic is related to the
amount of excessive disparities similar to max(d%), while
the statistics a(df) and SR(df) are related to the tem-
poral change of excessive disparities within each scene.
The temporal change of excessive disparities in the scenes
relates to the property of HVS that causes sudden dis-
parity changes to induce visual discomfort. The regres-
sion results are reported in mean absolute error (MAE)
in Table 3. These MAE results confirm that scene-wide
max(d£) is the best performing single parameter for pre-
dicting viewer discomfort observed as eye strain.

Multivariable regression of max(d4) and SR(4f) yields
the lowest MAE score and hence the best prediction.
In comparison to single variable regression with only

Table 2 Measures of estimated maximum 95 percentile disparity and the number of subjects reporting discomfort for the

12 scenes

Scene 1 2 3 4 5 6 7 8 9 10 11 12
max(dg) (in % of the frame resolution) 2.5 15.8 52 1.7 2.7 115 16.7 133 144 44 7.1 2.5
max(dé) (in absolute minutes of arc) 10 61 20 6 10 44 64 51 55 17 27 10
max(dg) (in pixels) 12 76 25 8 13 55 80 64 69 21 34 12
Number of subjects who reported eye strain 1 13 2 0 1 10 14 9 8 1 6 2
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Table 3 Mean absolute errors of linear regression between
explanatory variables and the number of subjects
reporting eye strain

Independent regression parameters MAE
max(dt) 1.0725
wu(dh) 26737
o (df) 1.1415
SR(dE) 33606
max(dt) and u(df) 10742
max(d5) and o (df) 0.9710
max(dt) and SR(dF) 0.8032
u(dh) and o (d5) 15752
u(dh) and SR(dE) 2.5470
o (df) and SR(d5) 16919
max(dt), u(df) and o (dh) 0.9330
max(d5), u(df) and SR(d5) 0.8099
max(db), o (df) and SR(df) 0.8092
u(dd), o (df) and SR(dE) 1.5163
max(d5), n(d5), o (df) and SR(dE) 0.8097

The variables are: maximum disparity (max(d%)), mean disparity (1(d5)),
standard deviation (o (dg)) and slew rate (SR(dg)). MAE scores reflect the average
prediction error over 12 scenes.

max(df), using the slew rate of 95 percentile disparities
(SR(df)) together with max(df) improves the prediction
performance by yielding 25% lower MAE score (0.8032).
Although the SR(dE) yields the worst single parameter
prediction results, it is interesting to observe that it can
significantly improve the viewer discomfort prediction
performance when combined with max(df). Slew rate of
95 percentile disparities gives a notion about the rate of
the disparity changes within the scenes. Our experiments
confirm that the sudden disparity changes, captured with
SR(df) statistics, are also an important factor in the
assessment of stereo video quality together with maxi-
mum disparity statistics captured with max(df). In any
case, it is encouraging to observe that eye strain can be
predicted with an average error rate of 1 person among 15
subjects (6.7%).

We would like to discuss the limitations of our work.
Recently, it has been pointed out that subjective assess-
ment requires an evaluator cohort larger than the sug-
gested size in ITU-BT.500. In our exploratory study,
the material provided to us consisted mostly of outdoor
scenes. A richer repertoire of video material including
indoor scenes would be desirable. For example Lambooij
et al. have shown that the visual comfort of video char-
acteristics depends on the activity in the scene [8]. In
addition to the post-session questionnaire, on-session
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monitoring of the viewer’s comfort, e.g., with a slider
command would be valuable, for example, to monitor
the onset of discomfort. Our questionnaire was binary;
enabling multilevel qualified answers, allowing for exam-
ple, bad, poor, fair, good, and excellent gradations would
yield richer information but would possibly demand more
experienced, if not expert, subjects. Finally, and perhaps
most importantly, we have addressed only one aspect of
visual discomfort.

5 Conclusion

In this study, we proposed a new maximum disparity
estimation method and evaluated its performance in com-
parison with other four state-of-the-art methods, as a
simple, fast, and objective 3D video quality assessment
method. As the driving force for this study is to develop
and validate a simple, objective, and fast method for 3D
video quality assessment from the view point of viewers’
comfort, to be used by broadcast companies, the video
content and viewing environment dependent factors are
not considered.

A combination of maximum and slew rate of 95 per-
centile disparity statistics per scene, estimated with the
proposed CGO algorithm, was shown to predict viewer
discomfort, seen as eye strain, with higher accuracy. The
results of limited user tests suggest that the viewer dis-
comfort is directly affected by even short duration of high
disparities and sudden disparity changes in a scene, lead-
ing to low quality perception of the scene. This may be due
to cognitive processes that drive the perception of video
on the basis of scenes. This fact is especially important
in decision making regarding the broadcast of 3D video
content. A direct use of the proposed method would be a
monitoring tool to preempt uncomfortable viewing expe-
rience especially for live 3D video shooting. In a future
study, CGO algorithm can further be enhanced by using
time-correlated information between consecutive frames
to improve estimation reliability and smooth disparity
time sequence.

Appendix
Disparities in a band
A disparity estimate at an edge pixel is chosen from among
the s estimates in the band around the edge. Recall that
edges were dilated horizontally (Section 2.1) by s pixels
(typically, s = 5) via morphological operators resulting in
s disparity estimates at and around each edge pixel. This
many-to-one mapping helps to eliminate quite a num-
ber of unreliable (non-validated) disparities. As shown in
Figure 8, there can be positive, negative, and unreliable
disparities inside the s-wide band surrounding an edge
point.

Along the depth of a scene, the disparity values are
expected to range from the smallest negative values in
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Figure 8 Example of disparities in a band post-processing step.
The disparity values over the edge bands are given in (a) and the
chosen disparities are given in (b). The gray squares in (a) and red
squares in (b) represent the original edge before dilation. Unreliable
disparities are marked as u.d.

the foreground to the largest positive values in the back-
ground (left image is taken as the reference). Accordingly,
choosing the smallest signed disparities across the band
means choosing the disparities that belong mostly to
foreground objects. Since large disparities are typically
associated with foreground objects, this processing step
is consistent with our goals and is helpful in resolving
some of the ambiguities. The s-wide band around each
edge pixel is processed according to the following rule
(Figure 8):

e If the number of unreliable estimates < s/2, then
chose the minimum disparity.

e [f the number of unreliable estimates > s/2 and
center pixel is reliable, then chose the minimum
disparity.

e If the number of unreliable estimates > s/2 and
center pixel is unreliable, then leave as unreliable.
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