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Abstract

Image sensors are increasingly being used in biodiversity monitoring, with each study generating many thousands or
millions of pictures. Efficiently identifying the species captured by each image is a critical challenge for the
advancement of this field. Here, we present an automated species identification method for wildlife pictures captured
by remote camera traps. Our process starts with images that are cropped out of the background. We then use
improved sparse coding spatial pyramid matching (ScSPM), which extracts dense SIFT descriptor and cell-structured
LBP (cLBP) as the local features, that generates global feature via weighted sparse coding and max pooling using
multi-scale pyramid kernel, and classifies the images by a linear support vector machine algorithm. Weighted sparse
coding is used to enforce both sparsity and locality of encoding in feature space. We tested the method on a dataset
with over 7,000 camera trap images of 18 species from two different field cites, and achieved an average classification
accuracy of 82%. Our analysis demonstrates that the combination of SIFT and cLBP can serve as a useful technique for
animal species recognition in real, complex scenarios.
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1 Introduction
Monitoring biodiversity, especially the effects of climate
and land-use change on wild populations, is a critical chal-
lenge for our society [1]. Sensor networks are a promising
approach for collecting the spatio-temporal data at scales
needed to address this challenge [2], especially visual sen-
sors that record images of animals that move across their
field of view (i.e. camera traps [3,4]). However, process-
ing the large volumes of images that such studies generate
to identify the species of animals recorded remains a
challenge.
At present, all camera-based studies of wildlife use a

manual approach where researchers examine each pho-
tograph to identify the species in the frame. For studies
collecting many tens or hundreds of thousands of pho-
tographs, this is a daunting task [5].
Computer-assisted species recognition on camera-trap

images could make this work flow more efficient, and
reduce, if not remove, the amount of manual work
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involved in the process. However, in comparison with
the typical video from surveillance of building and street
views, camera trap of animals amidst vegetation are
more difficult to incorporate into image analysis rou-
tines because of low frame rates, background clutter, poor
illumination, serious occlusion, and complex pose of the
animals.
Inspired by recent object recognition works [6,7] in the

computer vision community, we improved sparse cod-
ing spatial pyramid matching (ScSPM) method for species
recognition on images collected by camera traps. During
the local feature extraction, we combined dense scale-
invariant feature transform (SIFT) [8] of features with cell
structured local binary patterns (cLBP) [9] to represent
the object of interest. We apply weighted sparse coding
for dictionary learning, and thus enforce both sparsity and
locality, since locality may be more important than spar-
sity, as suggested by Wang et al. [7]. Then we used linear
SVM to classify image of species.
We tested our method with images collected by camera

traps that were deployed in two different environments,
tropical rainforest and temperate forest, that represent a
wide variety of backgrounds and conditions. From this
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collection, we selected sequences and species to keep the
data balanced. Then, we manually cropped animals from
all the frames to generate a dataset with 7, 196 images over
18 different vertebrate species.

2 Related work
Most related works are camera-based studies of wildlife
that use image analysis to identify individual animals of
select species with unique coat patterns (e.g., spots or
stripes). Bolger et al. [10] applied software to help identify
individual animals based on coat patterns for subsequent
photographic mark-recapture analysis. The data they used
was image based, which is a cost-effective, non-invasive
way to study population. The method they used was the
SIFT key points extraction and matching. Thus, they
only focused on individual animal identification for these
strongly marked texture species.
Identifying species from remote camera images remains

amajor challenge that has not been addressed. In the com-
munity of computer vision, there exist a lot of methods to
recognize general object. One of the most successful ones
is Yang’s work [6], in which ScSPM is applied. Spatial pyra-
mid matching (SPM) with max pooling [11] can not only
model the spatial layout of local image features, but also
achieve translation invariance of animal body. As being
easy and simple to construct, the SPM kernel turns out to
be highly effective in practice [12]. Sparse coding has been
successfully applied to model local features, and to con-
struct overcomplete dictionary that can sparsely represent
the local features. Sparse coding can yield better results
than vector quantization and hard assignment [6].

3 Materials andmethods
Our pattern extraction and classification program is based
on the ScSPM [6], as shown in Figure 1. The algorithm
first extracts local feature descriptor densely. We combine
two kinds of local descriptors: SIFT and cLBP. In order to
sparsely represent local features, the dictionary is learned
via weighted sparse coding, for each kind of descriptor
feature. Similar local features can generate similar codes
after sparse coding on the dictionary, which is essential for
recognition because it retains discriminative information
while suppressing the noise. Finally, max pooling using
SPM is used to construct the global image feature that
converts an image or a bounding box to a single vector.We
then apply linear multi-class SVMs to classify the global
feature to one category of species, assuming SVMs are
trained beforehand using training data.

3.1 Local feature extraction
The camera-trap images contain rich noise and clut-
ter. This requires us to develop a both discriminant and
invariant local feature to describe local image patches.
Dense SIFT feature, also known as dense histogram of ori-
ented gradients, is successfully used in some recognition
work. SIFT descriptor is invariant to moderate scaling and
shifting change of edges and linear illuminance variation
in image patch; however, it fails when nonlinear illumi-
nance change occurs. cLBP, in contrast, is the perfect local
texture descriptor that is invariant to moderate nonlin-
ear illuminance variation. In the area of computer vision,
for human detection [13], HOG and cLBP features are
concatenated to obtain the final feature. But the simple
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Figure 1 The architecture of ScSPM algorithm. The densely extracted local features are pooled across different spatial locations over different
spatial scales.
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concatenation would potentially cause the following prob-
lem: the feature space becomes more complex and more
difficult to classify. We thus used the procedure of Zhang
et al. [14] to extract HOG and cLBP, and concatenate
responses only after coding them separately.
The SIFT descriptor is similar to the HOG. Both are

histograms of oriented gradients. The SIFT descriptor
is illustrated in Figure 2. After calculating the gradient
map for each image, SIFT creates oriented gradient his-
tograms for 4×4 grid regions, instead of 2×2 as in HOG.
The full 128 dimensional SIFT descriptor is created by
concatenating the 16 histograms in 16 × 16 image patch.
cLBP is a very good texture descriptor that extracts his-

togram of the LBP patterns from local cells, as shown in
Figure 2. In order to filter out noises, LBP is modified into
a uniform LBP pattern [15]. We use the notation LBPun ,r to
denote LBP feature that takes n sample point with radius
r, and the number of 0-to-1 transitions is no more than
u. The pattern that satisfies this constraint is called uni-
form pattern [15]. For example, the pattern 0010010 is a
nonuniform pattern for LBP2, and is a uniform pattern for
LBP4 because LBP4 allows four 0-to-1 transitions. In our
approach, we set u = 2, n = 8, and r = 1. In this setting,
the dimension of LBP is 59.
The rationale for combination of SIFT and cLBP is that

at pixel level, the oriented gradient has been assigned to 8
bins in SIFT, while in uniform LBP28,1 the number of bins
is 59. At cell level, 16 cells are used in SIFTwhile only 1 cell
is used in cLBP. So SIFT is very accurate at the cell level
but invariant at the pixel level, while the opposite holds
for cLBP. The combination of the two solves the trade-off
between discrimination and invariance, at both the pixel
and the cell level.

3.2 Dictionary learning and weighted sparse coding
The goal of dictionary learning is to capture high-level
information, that is, to select some items to describe the
distribution of the input space. We get a local image fea-
ture set X by randomly sampling in feature space. Then
X approximates the distribution of the input space. But X

contains a huge number of signals, which make it impossi-
ble to useX directly in coding. Dictionary learning aims to
generate a compact dictionary that can sparsely represent
the incoming signal with minimum error.
Let X be in a D-dimensional features space, i.e. X =

[ x1, · · · , xN ]∈ RD×N . The dictionary is V = [v1, · · · , vK ]
∈ RD×K with K atoms. The traditional dictionary lean-
ing and sparse coding method formulate the problem as
follows:

min
V ,U

‖X − VU‖2 + λ‖U‖1
s.t. ‖vk‖ ≤ 1, ∀k = 1, 2, · · · ,K ,

(1)

where U = [u1, · · · ,uN ]∈ RK×N is the matrix of sparse
codes.
Inspired by the work of Wang et al. [7] in which encod-

ing of features is based on the locality in the feature space,
we adapt the original sparse coding to the weighted sparse
coding as follows to enforce both sparsity and locality:

min
V ,U

‖X − VU‖2 + λ‖WU‖1
s.t. ‖vk‖ ≤ 1, ∀k = 1, 2, · · · ,K ,

(2)

where W is a diagonal weighting matrix whose elements
are computed as

Wi(k, k) = ‖X i − V k‖2, k = 1, 2, · · · ,K . (3)

Many algorithms have been proposed to solve this dic-
tionary learning problem, e.g., [16]. V is well known as
a codebook and can be trained and fixed in the testing
phase. Recently, there has been a lot of work on supervised
dictionary learning (e.g., [17,18]) to adapt the dictionary
for classification purpose, but it is often computationally
expensive and cannot handle large multi-class problem
well. Thus, our work employs unsupervised dictionary
learning using weighted sparse coding, as in Equation 2.

3.3 Linear SPM andmulti-scale max pooling
Spatial pyramid matching is an extension of Bag of Words
(BoW) method, and it models the spatial layout of local
image features at multiple scales. Figure 1 illustrates the

16x16 
Patches

SIFT

cLBP

Figure 2 The procedure of extracting local features. First, calculate the gradients and LBP patterns on raw pixel patch. Second, create histogram
features for SIFT and LBP, respectively .
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Table 1 The numbers of sequences for each species

Common name Number of Number of Remained
total seq remained seq frames

Agouti 5,423 100 950

Collared peccary 904 100 901

Paca 298 100 1,196

Red brocket deer 588 100 982

White nosed coati 203 100 1,313

Spiny rat 130 100 712

Ocelot 345 100 548

Mouflon 216 100 2,365

Red deer 462 100 2,830

Wild boar 240 100 1,883

Wood mouse 264 100 1,350

Red squirrel 160 99 645

Great tinamou 130 99 1,194

Roe deer 620 99 1,271

Common opossum 93 93 916

White-tailed deer 93 92 2,226

European hare 87 87 700

Red fox 70 70 551

European badger 42 0 0

Panamanian white-throated
capuchin 42 0 0

Northern tamandua 36 0 0

Brown four-eyed opossum 29 0 0

Coiba Island white-tailed deer 28 0 0

Nine-banded long-nosed armadillo 24 0 0

Tayra 24 0 0

Common raven 19 0 0

Gray four-eyed opossum 10 0 0

Ruddy quail dove 9 0 0

Eurasian jay 9 0 0

European pine marten 9 0 0

Blackbird 8 0 0

Baird’s tapir 7 0 0

Crested guan 6 0 0

Forest rabbit 6 0 0

Unknown dutch mouse 6 0 0

White-faced capuchin 5 0 0

Skylark 5 0 0

Great spotted woodpecker 5 0 0

Turkey vulture 4 0 0

Spotted antbird 3 0 0

Howler monkey 3 0 0

Green iguana 3 0 0

Table 1 The numbers of sequences for each species
(Continued)

Song thrush 3 0 0

Wood pigeon 3 0 0

Carrion crow 3 0 0

Common buzzard 3 0 0

Robinson’s mouse opossum 2 0 0

Bank Vole 2 0 0

Black eared opossum 1 0 0

Crab eating racoon 1 0 0

Lizard 1 0 0

Armadillo 1 0 0

European rabbit 1 0 0

Chaffinch 1 0 0

Goshawk 1 0 0

Blue tit 1 0 0

European robin 1 0 0

whole structure of ScSPM. Let U be the matrix of sparse
codes of applying Equation 2 to a descriptor set X, assum-
ing the codebook V is pre-computed. The pooled features
from various locations and scales are then concatenated
to form a spatial pyramid representation of the image. In
each pyramid, a max pooling function is applied on the
absolute sparse codes:

zj = max{|uj1|, |uj2|, · · · , |ujM|} (4)

where zj is the jth element of z, uji is the matrix element
at jth row and ith column of U . Max pooling is beneficial
for translation invariance because the maximum response
will be filtered out if it is a small translation.
Let image Ii be represented by zi, a simple linear SPM

kernel is defined by [6]

κ(zi, zj) = zTi zj (5)

With linear SPM kernel, we can directly use linear SVM,
for which the training cost isO(n) in computation, and the
testing cost for each image depends on the dimension of
feature.

3.4 Multi-class linear SVM
Let {(zi, yi)}ni=1, yi ∈ Y = {1, 2, · · · , L} be the training data.
We stick to the implementation in Yang et al. [6], and use
one-against-all strategy to train L binary linear SVMs that
each solve the following unconstrained convex optimiza-
tion problem:

min
wc

J(wc) = ‖wc‖2 + C
n∑

i=1
l(wc; yci , zi), (6)



Yu et al. EURASIP Journal on Image and Video Processing 2013, 2013:52 Page 5 of 10
http://jivp.eurasipjournals.com/content/2013/1/52

Figure 3 Two sequences of agouti and collared peccary captured in day and night.

Table 2 The 18 terrestrial species, captured by camera
traps in Panama and the Netherlands

Common name Latin name Pictures (n) Site

Agouti Dasyprocta punctata 518 Panama

Paca Cuniculus paca 285 Panama

Collared peccary DTayassu tajacu 263 Panama

Red brocket deer Mazama americana 297 Panama

White-nosed coati Nasua narica 325 Panama

Spiny rat Proechimys semispinosus 175 Panama

Ocelot Leopardus pardalis 184 Panama

Red-tailed squirrel Sciurus granatensis 143 Panama

Common opossum Didelphis marsupialis 264 Panama

Great tinamou Tinamusmajor 350 Panama

White-tailed deer Odocoileus virginianus 1,091 Panama

Mouflon Apodemus sylvaticus 896 Holland

Red deer Cervus elaphus 802 Holland

Roe deer Capreolus capreolus 362 Holland

Wild boar Sus scrofa 487 Holland

Red fox Vulpes vulpes 120 Holland

European hare Lepus europaeus 176 Holland

Wood mouse Apodemus sylvaticus 455 Holland

Images were used to test the recognition algorithm.

where yci = 1 if yi = c, otherwise yci = −1, and l(wc; yci , zi)
is the hinge loss function. The standard hinge loss func-
tion is not differentiable everywhere, but here we can
use quadratic hinge loss as below instead to make use of
gradient-based optimization methods, e.g., LBFGS [6].

l(wc; yci , zi) = [max(0, 1 − wT
c z · yci )]2

4 Experimental results
4.1 Data set
We used images of wildlife captured with motion-
sensitive camera traps (Reconyx RC55, PC800 andHC500,
Holmen, WI, USA), which generate sequences of 3.1
Megapixel JPEG images at about 1 frame/s upon trig-
gering by an infrared motion sensor. Color images are
captured during the day and gray-scale images are cap-
tured at night using and an infrared flash, which is invis-
ible to most animals. We used images from tropical rain
forest (Barro Colorado Island, Panama) and temperate
forest and heathland (Hoge Veluwe National Park, the
Netherlands). Expert zoologists identified the animals in
the images. We did not edit the data set for ease of identi-
fication, so it includes many of the typical challenges faced
by camera trapping data, including cases where the animal
is too small or is occluded by vegetation.
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Figure 4 The cropped sample images. Each row contains a species. From top to bottom, they are the agouti, collared peccary, paca, red brocket
deer, white-nosed coati, spiny rat, and ocelot. Each sample image has their own scale, aspect ratio, and pose.
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Table 3 Confusionmatrix of species recognition, obtained by averagingmatrices resulting from 10 runs

Agouti Collared Paca Red brocket White-nosed Spiny rat Ocelot Red Common Great White-tailed Mouflon Red Roe Wild Red European Wood
peccary deer coati squirrel opossum tinamou deer deer deer boar fox hare mouse

Agouti 86.9 1.6 0.4 0.1 1.2 1.0 0.0 0.8 0.5 3.7 1.9 0.1 0.3 0.4 0.6 0.0 0.3 0.0

Collared peccary 7.5 77.1 1.3 2.7 1.8 0.0 1.0 0.0 1.4 1.8 4.4 0.0 0.3 0.0 0.5 0.0 0.0 0.4

Paca 0.5 0.1 90.7 1.7 0.7 0.7 0.7 0.0 1.6 0.2 2.2 0.0 0.0 0.0 0.2 0.1 0.5 0.0

Red brocket deer 0.1 0.2 0.3 58.1 0.7 0.0 0.4 0.3 0.0 0.6 36.4 0.0 1.8 0.6 0.4 0.0 0.0 0.0

White-nosed coati 3.6 0.3 0.1 0.0 88.5 0.0 0.0 0.8 0.3 1.2 4.0 0.0 0.4 0.5 0.1 0.0 0.1 0.1

Spiny rat 2.0 0.2 0.4 0.0 0.0 78.5 0.0 1.3 6.9 1.9 1.3 0.9 0.0 0.0 0.6 0.9 1.9 3.3

Ocelot 0.0 0.4 1.1 0.2 0.2 0.0 92.9 0.0 0.7 0.0 2.9 0.0 0.5 0.0 0.2 0.4 0.7 0.0

Red squirrel 16.5 0.0 0.5 0.0 5.8 1.9 0.0 64.7 0.7 4.2 1.4 0.9 0.9 0.0 0.0 0.0 0.0 2.6

Common opossum 2.6 1.4 3.5 0.3 0.3 3.8 0.0 0.0 79.1 0.8 5.0 0.3 0.4 0.0 1.0 0.5 1.1 0.1

Great tinamou 6.3 0.2 0.3 0.3 1.3 0.0 0.0 0.0 1.9 85.7 2.4 0.7 0.5 0.1 0.3 0.0 0.0 0.0

White-tailed deer 0.6 1.2 0.4 2.9 0.8 0.1 0.0 0.1 0.0 0.5 90.3 0.4 1.2 0.2 0.5 0.0 0.2 0.6

Mouflon 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 97.2 1.3 0.2 0.0 0.1 0.4 0.0

Red deer 0.2 0.0 0.0 0.1 0.0 0.0 0.0 0.2 0.0 0.0 1.3 2.8 92.7 1.6 1.0 0.0 0.0 0.1

Roe deer 0.7 0.4 0.4 0.1 0.0 0.0 0.0 1.5 0.2 0.2 3.1 4.9 10.3 76.4 0.3 0.8 0.8 0.0

Wild boar 1.1 0.0 0.1 0.1 0.2 0.0 0.1 0.3 0.0 0.0 0.1 0.7 0.7 0.1 96.4 0.1 0.1 0.1

Red fox 1.9 0.0 0.3 0.0 0.0 0.6 0.0 0.3 3.3 0.6 3.9 14.2 6.7 5.8 5.0 53.1 4.4 0.0

European hare 0.9 0.2 0.9 0.0 0.0 0.8 0.2 0.9 0.2 0.0 2.6 12.1 1.7 4.2 2.5 3.2 67.7 1.9

Wood mouse 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100

For the 18 species, accuracy averaged 82% with standard deviation of 0.9%.
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Table 4 The confusionmatrix of species recognition on Panama data

Agouti Collared Paca Red brocket White-nosed Spiny rat Ocelot Red Common Great White-tailed
peccary deer coati squirrel opossum tinamou deer

Agouti 90.1 1.2 0.6 0.2 0.8 0.6 0.0 0.6 1.3 2.9 1.7

Collared peccary 8.7 79.5 0.6 1.4 1.3 0.0 1.1 0.0 1.9 1.3 4.2

Paca 0.0 0.3 91.3 1.6 0.1 0.6 0.8 0.0 2.1 0.8 2.3

Red brocket deer 0.6 0.2 0.3 59.7 0.9 0.0 0.1 0.0 0.4 0.6 37.2

White-nosed coati 3.2 0.2 0.0 0.1 89.0 0.0 0.3 0.7 0.9 1.2 4.4

Spiny rat 2.2 0.6 1.1 0.0 0.0 84.3 0.0 0.4 8.1 2.0 1.3

Ocelot 0.0 0.2 3.4 0.2 0.4 0.2 91.4 0.0 0.2 0.0 4.1

Red squirrel 18.4 0.0 0.0 0.0 3.7 1.6 0.0 71.2 0.0 3.0 2.1

Common opossum 2.0 1.6 5.1 0.5 0.3 3.6 0.0 0.1 83.1 0.8 2.9

Great tinamou 4.5 0.0 0.0 0.0 1.0 0.2 0.0 0.2 1.5 90.6 1.9

White-tailed deer 1.0 1.1 0.4 3.2 0.5 0.2 0.1 0.1 0.3 0.7 92.4

For the 11 species, accuracy averaged 83.8% with standard deviation of 1.2%.
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In total, we got 10, 598 sequences over 57 species. The
numbers of sequences of each species were unbalanced.
As shown in Table 1, 40 out of 57 species have less than
50 sequences. we exclude these species and remain top
18 species. In order to build a balanced test data set, we
chose up to 100 sequences from each species. Where the
available number of sequences for a species was less than
100, we choose all of the sequences for that species. After
such operation, 1, 739 sequences for 18 species remained.
Table 1 lists the number of remained sequences and
frames for each species.
The camera trapped sequences are of low frame rate

(1 frame/s) and short length (about 10 frames/sequence).
Two typical image sequences are shown in Figure 3. The
first two rows show consecutive frames of the agouti, in
which the leaves dangled in the wind. The second two
rows are continual frames of the collared peccary. If the
peccary suddenly moved close to the camera, the illumi-
nation changes a lot because it cut out much of the light.
The common motion detection method cannot handle
this case very well. In order to get clear data, we man-
ually cropped all the animals from the sequences. Since
most of them are empty frames, in which the cameras are
activated by motion from background, only 7, 196 animal
images are kept. Table 2 lists the details of the proposed
dataset. During the progress of cropping, we kept the orig-
inal animal size, color, and aspect ratio. Figure 4 shows the
cropped samples for seven species.

4.2 Implementation and result
We developed a species recognition algorithm based on
ScSPM, implemented as follows. The images were all con-
verted into gray scale and both the SIFT descriptor and
the cLBP descriptor were then extracted from 16×16 pixel
patches. All the patches of each image were densely sam-
pled on a grid with stepsize of 4 pixels. Both SIFT and
cLBP were normalized to be unit norm with dimensions
128 and 59, respectively. For the dictionary learning pro-
cess, we extracted SIFT and cLBP from 20, 000 patches
that are randomly sampled on training set. Dictionaries
were trained for SIFT and cLBP separately, with the same
dictionary size K = 1, 024.
Following the standard benchmark procedures, we

repeated the experimental process by 10 runs to obtain
reliable results. In each run, we randomly selected 70%
of the images of each species for training and kept the
remaining 30% for testing. We report our final results as a
confusion matrix.
We first test our approach on all 18 species, and the

classification result is shown in Table 3. In real world sce-
narios, it is not necessary to distinguish species across the
two-place datasets. Thus, we also test our method on the
two datasets (Panama and Netherlands) separately. The
classification results are shown in Tables 4 and 5.

Table 5 The confusionmatrix of species recognition on
Holland data

Mouflon Red Roe Wild Red European Wood
deer deer boar fox hare mouse

Mouflon 97.3 1.5 0.4 0.2 0.2 0.4 0.0

Red deer 2.7 93.6 2.0 1.4 0.0 0.2 0.2

Roe deer 6.3 9.6 81.5 0.7 0.5 1.3 0.1

Wild boar 0.5 1.0 0.1 98.0 0.0 0.1 0.2

Red fox 14.2 7.8 7.5 6.7 53.3 10.6 0.0

European hare 8.9 3.0 7.4 2.8 2.8 73.8 1.3

Wood mouse 0.0 0.0 0.0 0.0 0.0 0.0 100.0

For the 7 species, accuracy averaged 85.4% with standard deviation of 1.5%.

Since the SIFT and cLBP can describe the texture at
different level, we did the experiment using SIFT, cLBP,
and the combination of SIFT and cLBP, respectively, to
show how the combination improved the performance.
The SIFT feature is good at extracting the silhouette of an
animal, while cLBP is powerful in describing the skin tex-
ture of animals. Thus, it is reasonable to combine SIFT
and cLBP. As we can see in Table 6, SIFT feature is more
discriminative than cLBP, and the performance is boosted
much by combining them.
In Table 3, we can see that the overall accuracy is about

82%. Wood mouse is correctly recognized 100%, which is
surprising, considering that none biometric features are
used. For over one third of the 18 species, this experi-
ment obtained classification accuracy over 90%, such as
paca, ocelot, red deer, and wild boar. As expected, red
brocket deer is easily misclassified as white-tailed deer
because they are of the same ontology and have the simi-
lar appearance. In order to better classify the two species
like these, biometric features, such as spots on the fur and
shape of antlers, play a key role in species recognition.
However, automatically identifying biometric features is a
challenging task, to our best knowledge.

5 Conclusion
We have shown that object recognition techniques from
computer vision science can be effectively used to
recognize and identify wild mammals on sequences of
photographs taken by camera traps in nature, which are

Table 6 Performance of different procedures for
recognition of local image features

Feature Average accuracy (%) Standard deviation (%)

SIFT 78.9 0.7

cLBP 74.5 1.1

SIFT + cLBP 82.0 0.9

The combination of SIFT and cLBP improves performance a lot.
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notorious for high levels of noise and clutter. Although
some species are of the same ontology, the proposed
method can detect imperceptible differences between
them. The combination of SIFT and cLBP as descrip-
tors of local images features significantly improved the
recognition performance, which is abundant in texture
description at multiple scales.
In the future work, some biometric features that are

important for species analysis will be included in the local
features, such as color, spots, and size of the body. Since
the original sequences captured with motion-sensitive
camera traps have motion information, we will develop an
automatic animal segmentation algorithm in the future.
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