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Abstract

In this paper, we present a new metric to estimate the perceived difference in contrast between an original image and
a reproduction. This metric, named weighted-level framework �EE (WLF-DEE), implements a multilevel filtering based
on the difference of Gaussians model proposed by Tadmor and Tolhurst (2000) and the new Euclidean color
difference formula in log-compressed OSA-UCS space proposed by Oleari et al. (2009). Extensive tests and analysis are
presented on four different categories belonging to the well-known Tampere Image Database and on two databases
developed at our institution, providing different distortions directly related to color and contrast. Comparisons in
performance with other state-of-the-art metrics are also pointed out. Results promote WLF-DEE as a new stable metric
for estimating the perceived magnitude of contrast between an original and a reproduction.

1 Introduction
The quality of image reproduction depends on many fac-
tors that cannot be completely distinguished since they
are mutually dependent. It is generally considered that the
quality of color in an image reproduction may be quanti-
fied by measuring how accurate the reproduction of color
is to the original when viewed by a human observer. Color
discrimination is determined by many factors, including
the spatial pattern of the image and the visual process-
ing, which starts with cone activation and is followed by
adaptation to the illumination. Images are constituted by
spatial color patterns, which are different from the uni-
form color patches considered in the colorant factories.
Color discrimination and appearance in images are a func-
tion of spatial pattern, and color differences are harder
to detect at higher frequencies, where contrast plays an
important role. Moreover, color opponencies have a role
in color discrimination, especially differences along the
blue-yellow color direction [1]. As a consequence, for
measuring the perceptual difference between an original
image and its reproduction, a perceptual image difference
metric is needed. Generally, this metric is obtained by
extending the color difference formulae to the color of a
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complex image. The history of the color metrics is more
than one century long.
Over the years, many image difference metrics have

been proposed [2], some for measuring general image
quality and image difference and some for detecting spe-
cific distortions. However, at the moment, no universal
image difference metric exists. Image difference metrics
are based on a number of different ideas but are usually
following a general framework. The image and its repro-
duction are first transformed into a suitable color space,
preferably a perceptually uniform one. Then, a simulation
of the human visual system (HVS) is carried out, from
simplistic methods as smoothing of the image by a local
neighborhood to more complex methods, e.g. using con-
trast sensitivity functions (CSFs). Finally, the difference is
calculated usually by a color difference formula. Thus, an
efficient image difference metric needs a filter which is
able to mimic the HVS and a suitable color difference for-
mula. This work will mainly focus on the filtering side,
particularly taking into account that contrast is an impor-
tant image attribute playing an important role in image
quality discrimination [3]. However, recent improvements
of color difference formula and image processingmethods
will be considered for the development of our metrics.
After introducing the improvements of color differ-

ence formulae in Section 2 and image difference metrics
in Section 3, we present our proposal in Section 4. We
propose a new image difference metrics based on multi-
level contrast filtering using the difference of Gaussians

© 2013 Simone et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.



Simone et al. EURASIP Journal on Image and Video Processing 2013, 2013:39 Page 2 of 26
http://jivp.eurasipjournals.com/content/2013/1/39

(DOG) model proposed by Tadmor and Tolhurst [4]. This
metric will use also the new Euclidean color difference
formula in log-compressed OSA-UCS color space pro-
posed by Oleari et al. [5] instead of the traditional �E∗

ab
that most of the state-of-the-art metrics generally use.
Section 5 presents the description of three state-of-the-
art databases used to evaluate the performance of the new
metric with the experimental results and discusses how
our proposal reflects perceptual image difference estima-
tion performance. Finally, in Section 6 conclusions are
drawn.

2 Color difference metrics
The first studies on color difference metrics date back
to the end of the nineteenth century [6]. In color met-
rics history, a milestone is represented by the CIELAB
color system [7,8] proposed by the International Com-
mission on Illumination (CIE) in 1976 as a uniform color
space, in which the color difference between two colors is
represented by the Euclidean distance �E∗

ab.
Since 1976, the main effort was to improve the CIELAB

color difference formula, and almost all the proposals
are based on the CIELAB space. Then, the structure of
such a space has strongly conditioned the shape and the
quality of almost all other proposals. The empirical color
difference data used for evaluating and improving the
color difference formulae were the supra-threshold Brad-
ford University (BFD) ellipses [9], here represented on the
a∗
10b

∗
10 coordinates of the CIELAB space (Figure 1).

In 1984, the British ‘Colour-Measurement Committee’
(CMC) of the ‘Society of Dyers and Colourist - UK’

Figure 1 BFD ellipses represented on the a∗
10b∗

10. The ellipses
show only approximate regularity, with exclusion of the
blue-magenta hues, where the ellipses are distorted. The CIEDE2000
formula is particularly complicated for regularizing such a distortion.

recommended a color difference formula, �ECMC, that
has been integrated into some ISO standards [10]. The
�ECMC formula introduces a local metric tensor in the
CIELAB space with the consequence that the color toler-
ances in the CIELAB space are represented by ellipsoids
with semi-axis lengths depending on the point in the
space and with one axis oriented as the lightness, one
as the chroma and one as the hue, i.e. as a function of
the differences of �L∗, �C∗ and �H∗. Moreover, the
weighting factors of the formula are hue-dependent. The
CMC formula has acceptance in industrial color control
applications.
In 1987, Luo and Rigg [11,12] proposed the BFD color

difference formula providing a correction of the CMC
formula in the blue region. In 1994, CIE proposed the
non-Euclidean formula �E94 [13] by introducing a local
metric tensor in the CIELAB space in analogy with the
CMC formula. In 2000, CIE proposed its last color differ-
ence formula, named CIEDE2000 and denoted by �E00
[14], which is based on an enlarged dataset of empiri-
cal color differences, known as the COM dataset [14],
which is added to the original BFD color difference data.
This formula is only apparently based on the CIELAB
space because a coordinate transformation is made in
order to correct hue distortions typical of this space.
The CIEDE2000 formula represents distorted ellipsoids.
Although enlarged, the empirical dataset shows an evident
noise, and the data related to different laboratories are
not completely in agreement. The quality of these datasets
combined with the large number of parameters used in
their fitting induces us to suppose a risk of over-fitting.
These color difference formulae have been also applied

to natural images, and evaluation of some of them for the
measurement of color image reproduction quality can be
found in [15-18].
In 2009, a color difference formula for small-medium

color differences not based on CIELAB was published.
This formula, termed �EE , is Euclidean [5]. The empir-
ical color difference data plotted in the OSA-UCS space
show a higher regularity than what has been seen before
(Figures 2 and 3), inducing the authors to state a hue-
independence hypothesis. On the basis on this hypothesis,
the OSA-UCS space has been chroma log-compressed,
and in this new space, the color difference formula
assumes a Euclidean shape.
Since this formula is used in this work, let us recall the

formula completely from Oleari et al. [5]. The transfor-
mation from the tristimulus space (X10,Y10,Z10), where
Y10 is the percentage luminance factor, and the OSA-UCS
space (LOSA,G, J) is the following: the lightness is the same
as defined by the OSA-UCS committee:

LOSA ≡ 5.9
{[
Y 1/3
0 − 2

3
+ 0.042(Y0 − 30)1/3

]
− 14.4

}
1√
2
,

(1)
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Figure 2 BFD ellipses on the coordinates JG of the OSA-UCS
space. The ellipses show a general regularity that suggests the
hue-independence hypothesis and consequently a simple ellipsoidal
color difference formula [5,21], which is based on all the existing data
(COM dataset [14]). The next step towards the Euclidean formula [21]
is the logarithmic compression of the chroma (Figure 3).

with

Y0 ≡ Y10(4.4934x210 + 4.3034y210 − 4.276x10y10
− 1.3744x10 − 2.5643y10 + 1.8103), (2)

the tristimulus values in the main reference frame [19,20]
are

Figure 3 OSA-UCS constant lightness plane with
log-compression of the chroma (cfr. Figure 2). The BFD ellipses are
compared with circles with unitary radius, showing the goodness of
the Euclidean color difference formula.

⎡
⎣ A
B
C

⎤
⎦ =

⎡
⎣ 0.6597 0.4492 −0.1089

−0.3053 1.2126 0.0927
−0.0374 0.4795 0.5579

⎤
⎦

⎡
⎣ X
Y
Z

⎤
⎦ (3)

(this is an active transformation that takes into account
the adaptation to the visual situation used to define the
OSA-UCS system), and the OSA-UCS coordinates (g, j)
obtained by computation and denoted by (G, J) are(

J
G

)
=

[
2(0.5735LOSA + 7.0892) 0

0 −2(0.7640LOSA + 9.2521)

]
[
0.1792 0.9837
0.9482 −0.3175

]⎛
⎝ ln

(
A/B
0.9366

)
ln

(
B/C
0.9807

)
⎞
⎠ (4)

h = arctan
(

− J
G

)
and the chromaCOSA =

√
G2 + J2.

(5)

Then, the logarithmic compression that transforms
(LOSA,COSA, h) into (LE ,GE, JE) is

LE = 1
bL

ln
[
1 + bL

aL
(10LOSA)

]
with (6a)

aL = 2.890, (6b)
bL = 0.015, (6c)

{
GE = −CE cos(h),
JE = CE sin(h) with (7a)

CE = 1
bC

ln
[
1 + bC

aC
(10COSA)

]
, (8a)

aC = 1.256, (8b)
bC = 0.050. (8c)

Finally, the Euclidean color difference formula is

�EE =
√

(�LE)2 + (�GE)2 + (�JE)2. (9)

This formula is as equally good as CIEDE2000 in the
prediction of many available empirical datasets, but with
higher simplicity [21]. The transformation between the
tristimulus space and theOSA-UCS psychometric space is
simple and shows a clear relationship with visual process-
ing. No hue distortion, as in CIELAB, exists. The chroma
log compression is required in the passage from large to
small color differences. Because the image quality is eval-
uated in the visual situation of the small-medium color
differences, we think this formula is a good candidate for
the color image metrics [22,23].

3 Image difference metrics
Nowadays, more than 100 image difference metrics are
available in the literature [2], some for general image qual-
ity and image difference and some for specific distortion
detection, and it would be impossible to report all of
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them. For this reason, in this paper we discuss a small
selection of important image difference metrics, focusing
on those based on contrast filtering or which have been
shown to have high correlation with observer perceived
difference [2,24]. In this work, we will consider only full-
reference image difference metrics, where the original and
the reproduction are both available.
In 1997, Zhang and Wandell [25] proposed a spa-

tial extension to the CIELAB color metric. This metric,
named Spatial-CIELAB (S-CIELAB), should fulfill two
goals: a spatial filtering to simulate the blurring of the
HVS and a consistency with the basic CIELAB calcula-
tion for large uniform areas. The image is separated into
an opponent color space, and each opponent color image
is spatially convolved with a kernel defined on the spatial
visual sensitivity for the color opponencies. Finally, the fil-
tered image is transformed into the CIELAB system, and
�E∗

ab is used for calculation of the color differences in
each pixel; these are averaged to obtain a single quality
value for the whole image.
The structural similarity (SSIM) index, proposed by

Wang et al. in 2004 [26], attempts to quantify the visi-
ble difference between a distorted image and a reference
image. This index is based on the UIQ index of Wang
and Bovik [27]. The algorithm defines the structural infor-
mation in an image as those attributes that represent the
structure of the objects in the scene, independent of the
average luminance and contrast. The index is based on a
combination of luminance, contrast and structure com-
parison. The comparisons are done for local windows in
the image, and the overall image quality is the mean of all
these local windows.
In 2006, Egiazarian et al. [28] proposed the peak signal-

to-noise ratio (PSNR)-HVS metric based on the HVS and
PSNR, which is a measure of the peak error between the
original and the reproduction. The metric uses a scan-
ning window to removemean shift and contrast stretching
similar to UIQ [27]. PSNR-HVS is then calculated on the
scanned images by using PSNR, where MSE is calculated
as described by Nill [29]. An extension of this metric that
incorporates contrast masking, PSNR-HVS-M, was given
by Ponomarenko et al. [30].
In 2007, Chandler and Hemami [31] proposed a new

metric, termed visual signal-to-noise ratio (VSNR), based
on near-threshold and supra-threshold properties of the
human visual system, incorporating both low-level and
mid-level features. Low-level features are related to con-
trast sensitivity and mid-level features to global prece-
dence, which states that the HVS visually integrates image
edges in a coarse-to-fine-scale (global-to-local) fashion.
The metric consists of two stages: First, contrast thresh-
olds are used to detect visible distortions in the image,
which is done in the wavelet domain by computing the
contrast signal-to-noise ratio (CSNR). Then, the contrast

detection threshold is computed based on the CSNR,
which is done for each octave band. The contrast is then
compared with the detection threshold, and if above,
the distortion is assumed supra-threshold (visible). In
this case, a second stage is carried out, where a model
of global precedence is proposed to account for mid-
level properties of the HVS. The global precedence takes
into account that contrasts of distortions should be pro-
portioned across spatial frequency. The final metric is
computed as the combination of perceived contrast of
the distortion and disruption of global precedence. The
VSNR is an interesting metric since it is based on contrast
thresholds and does not modulate the entire image as the
CSFs in, for example, S-CIELAB.
Spatial-DEE (S-DEE) developed in 2009 is the first

metric using the Euclidean color difference formula in
log-compressed OSA-UCS space (see Section 2), and it
has been proposed by Simone et al. [32]. This metric is
based on the modified S-CIELAB workflow developed by
Johnson and Fairchild [33] in 2001. Themetric is obtained
by substituting �E∗

ab with �EE in the last step of the
workflow.

4 From contrast to image difference: WLF-DEE
The history of contrast is over a century long, and a lot of
effort has been concerned on developing accurate contrast
measures which are able to predict observer perceived
contrast in natural images [34]. Furthermore, recent stud-
ies have shown that contrast is an important image quality
attribute that falls under the umbrella of image quality [3].
In this work, we will propose a new image difference

metric based on the work on contrast from Tadmor and
Tolhurst [4] with two key features:

1. It uses a multi-level approach (or the so-called
pyramidal image structure) as first suggested by
Frankle and McCann in 1983 [35] and then Adelson
et al. in 1984 [36] in order to perform a full
investigation of all the frequencies in the image.

2. It uses the new Euclidean color difference formula in
log-compressed OSA-UCS space proposed by Oleari
et al. [5] and described in detail in Section 2.

In 2000, Tadmor and Tolhurst [4] based their analysis
of contrast on the DOG model, which is modified and
adapted to natural images. Since this model is used in this
work, let us recall it completely:
In the conventional model, the spatial sensitivity in the

center of receptive fields is described by a bi-dimensional
Gaussian function with unit amplitude:

Center(x, y) = exp

[
−

(
x
rc

)2
−

(
y
rc

)2
]
, (10)



Simone et al. EURASIP Journal on Image and Video Processing 2013, 2013:39 Page 5 of 26
http://jivp.eurasipjournals.com/content/2013/1/39

where the radius rc represents the distance at which the
sensitivity decreases to 1/e and (x,y) are the spatial coor-
dinates of the receptive field. The surround component
is represented by another Gaussian curve, with a larger
radius, rs:

Surround(x, y) = ρ

(
rc
rs

)2
exp

[
−

(
x
rs

)2
−

(
y
rs

)2
]
,

(11)

where the scaling factor ρ = 0.85 sets the integrated sen-
sitivity of the surround component to be 85% of that of the
center. This scaling factor used by Tadmor and Tolhurst
[4] is representative of the values reported for retinal gan-
glion cells and lateral geniculate nucleus (LGN) neurons
of cat and monkey [37,38]. When the central point of the
receptive field is placed at the location (x,y), the output of
the central component is calculated as

Rc(x, y) =
i=x+3rc∑
i=x−3rc

j=y+3rc∑
j=y−3rc

Center(i− x, j− y)I(i, j), (12)

while the output of the surround component is

Rs(x, y) =
i=x+3rs∑
i=x−3rs

j=y+3rs∑
j=y−3rs

Surround(i − x, j − y)I(i, j),

(13)

where in both cases I(i,j) is the image pixel value at
position (i,j).
The result of the DOGmodel is given by

DOG(x, y) = Rc(x, y) − Rs(x, y). (14)

The conventional DOG model [39] assumes that the
response of a neuron depends uniquely on the local lumi-
nance difference (�I) between the center and the sur-
round. After the light adaptation process, the gains of the
ganglion cells of the retina and the neurons of the LGN
depend on the average local luminance I. Thus, the model

response depends on the contrast stimulus. After testing
three different outputs for contrast

CTT (x, y) = Rc(x, y) − Rs(x, y)
Rc(x, y)

(center-only scheme), (15a)

CTT (x, y) = Rc(x, y) − Rs(x, y)
Rs(x, y)

(surround-only scheme), (15b)

CTT (x, y) = Rc(x, y) − Rs(x, y)
Rc(x, y) + Rs(x, y)

(center-plus-surround scheme),

(15c)

they propose the criterion in Equation 15c for the contrast
measuring, which is similar with the Michelson definition
of grating contrast [40].
In this approach, a new metric is proposed and referred

to as weighted-level framework �EE (WLF-DEE). This
metric is analogous to the S-CIELAB approach, but the
original S-CIELAB spatial filtering is replaced with a
multi-level DOG calculation, while �E∗

ab is replaced with
the �EE color difference formula. The general workflow
of the metric is the following: The images are subsam-
pled to various levels. The undersampling is simple since
the images are reduced to half, and antialiasing filtering
avoids artifacts at low resolutions. A pixelwise neighbor-
hood contrast calculation is executed at each level by
using the DOG on the three channels separately. Thus,
local contrast maps for each level and each channel are
obtained. An example is shown in Figure 4. Local contrast
differences are computed by using the �EE , described in
Section 2. A weighted recombination of the local con-
trast maps is computed and represented by a global image
difference metric. Once local contrast maps are gener-
ated for each level, how to reduce the concept of contrast
from local values at each pixel location to a single num-
ber representing the global image difference is still subject
to debate. The simplest strategy is taking the mean of
each level and averaging all together. This newmetric per-
forms a weighted recombination of the levels, given by the

Original Level 0 Level 1 Level 2 Level 3

Figure 4 Original and local contrast maps generated by WLF-DEEwith rc = 2 and rs = 4. Here the first four filtered levels are shown. The
total number of levels is image size dependent. The brightness of all images have been increased to make them suitable for a printable version of
the article.
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following equation, which leads to the final global image
difference:

WLF-DEE = 1
Nl

Nl∑
l=1

λl · cl, (16)

where Nl is the number of levels, cl is the mean con-
trast in the level l, and λl is the weight assigned to each
level l. So with the final measure, WLF-DEE aims at pre-
dicting the perceived magnitude of contrast between an
original and a reproduction. This value can be used also
as a quality indicator as contrast is one of the main quality
attributes [3].

4.1 WLF-DEE characteristics
4.1.1 Parameter tuning
As we can see from the previous Section, the DOGmodel
is affected by the radius of the center component rc,
the radius of the surround component rs and the scaling
factor of the surround component ρ, in addition to the
three different schemes described in Equation 15. With
the weighting parameters λ, WLF-DEE is subject to a
total of four parameters. Since this metric comes out as
a direct application of the research on perceptual con-
trast of Simone et al. [34] and performing the calculation
of all possible values for these four parameters would be
computationally exhausting, we have followed their rules
of thumb for the choice. Table 1 reports our selection of
tested configurations.
We have chosen four different configurations of rc and

rs, with the particular choice of rc = 2 and rs = 4, which

Table 1 Selected values of parameters for WLF-DEE

Configuration rc rs ρ λ

A 1 2 0.85 Uniform

B 2 3 0.85 Uniform

C 3 4 0.85 Uniform

D 2 4 0.85 Uniform

E 1 2 0.85 Variance

F 2 3 0.85 Variance

G 3 4 0.85 Variance

H 2 4 0.85 Variance

I 1 2 1.00 Uniform

J 2 3 1.00 Uniform

K 3 4 1.00 Uniform

L 2 4 1.00 Uniform

M 1 2 1.00 Variance

N 2 3 1.00 Variance

O 3 4 1.00 Variance

P 2 4 1.00 Variance

can be considered as the most effective in the identifi-
cation of edges and blocks in relation to contrast [34].
Using larger radiuses would reduce the identification of
local contrast. For the scaling factor of the surround com-
ponent, in addition to the value ρ = 0.85 suggested by
Tadmor and Tolhurst [4], we have chosen ρ = 1.0 jus-
tified by the fact that when the central and surround
components are placed on a completely uniform area,
the DOG model would give an output of contrast even
though no contrast would be perceived by an observer.
For theweighting level, we have chosenuniformweighting
(λ = 1), which is the simplest strategy, and the variance of
the level, which means that λ assumes values taken from
the image itself. Thus, λ becomes level and image depen-
dent. This strategy has shown benefits in correlation with
observer perceived contrast [34]. For the three different
schemes of the DOGmodel proposed, we have decided to
test all of them. In conclusion,WLF-DEEwill be tested for
a total of 48 different configurations.

4.1.2 Computational complexity
The computational complexity ofWLF-DEE follows other
state-of-the-art image difference metrics using multi-level
approach, which is

�
(
N logN

)
, (17)

where N is the number of pixels in the image.

5 Tests and results
5.1 Databases
Many different databases have been used for evaluating
the image difference metrics, but in order to extensively
test WLF-DEE, we have chosen three databases: the pub-
lic Tampere Image Database 2008 (TID2008) and two
databases developed at ‘Norwegian Colour and Visual
Computing Laboratory’.
The first database, the TID2008 database [24], contains

a total of 1,700 images, with 25 reference images (Figure 5)
and 17 types of distortions over four distortion levels.
The mean opinion scores are the results of 654 observers
attending the experiments. No viewing distance is stated
in the TID database; therefore, we have used a standard
viewing distance of 50 cm for the metrics requiring this
setting. The authors have decided to include the images
where distortions provide directly or indirectly a change in
contrast, narrowing the TID2008 to a total of 400 images
equally divided in the following four categories: masked
noise, quantization noise, denoising and contrast change.
The second database, proposed by Pedersen et al. [41],

contains four original images (Figure 6), three portraits
and one illustration. The originals were altered in light-
ness, where each image had four versions with global
lightness differences and four versions with local lightness
changes. The lightness changes were 3 and 5 �E∗

ab. Four
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Figure 5 TID2008 database [24]. The 25 reference images.

versions were brighter than the original, and four darker,
for a total of 32 modified images. The psychophysical
experiment was done on a calibrated CRT monitor, LaCie
electron 22 blue II (LaCie, Basel, Switzerland), in a grey
room . The observers were seated approximately 80 cm

from the screen. The light wasmeasured to approximately
17 lux in front of the monitor. A total of 25 observers
were recruited for the experiment, and they were asked
in a pairwise comparison experiment to choose the
image most similar to the original. This database is

Figure 6 Pedersen database [41]. The four reference images changed globally and locally in lightness.
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particularly of our interest because contrast is directly
related to change in luminance [40], which is related to
lightness [7,8].
The third database fromAjagamelle [42] contains a total

of 10 original images covering a wide range of charac-
teristics and scenes Figure 7. The images were modified
using Adobe Photoshop software on a global scale with
separate and simultaneous variations of contrast, light-
ness and saturation, resulting in a total number of 80 test
images. The experiment was carried out as a category-
judgment experiment with 14 observers. Each pair of
images was displayed on an Eizo ColorEdge CG241W
digital LCD display (Eizo Corporation, Ishikawa, Japan).
The monitor was calibrated and profiled using Gretag-
Macbeth Eye-One Match 3. The settings on the monitor
were sRGB with a resolution of 1, 600 × 1, 200 pixels.
The experiment took place in a windowless room with
neutral grey walls, ceiling and floor. The ceiling lights in
the room was set to provide a level of ambient illumina-
tion around 40 lux, which is below the upper threshold
of 64 recommended by the CIE [43]. The white point
was set to the D65, the gamma to 2.2 and the lumi-
nance level to 80 cd/m2. The display was placed at a
viewing distance of 70 cm. The images presented were
750 × 499 pixels or 499 × 750 pixels, which subtended
roughly 20° of the visual angle when viewed at this
distance.

5.2 Performance measures
Two types of correlation coefficients are computed [45] in
order to evaluate the performance of WLF-DEE:

1. The Pearson product-moment. It assumes that the
variables are ordinal, and it evaluates the linear
relationship between two variables. This is a
performance measure relating to the prediction
accuracy of the metric [46].

2. Spearman rank. It is a non-parametric measure of
correlation, and it is used as a measure of linear

relationship between two sets of ranked data, instead
of the actual values. This describes the relationship
between variables with no assumptions on the
frequency distribution of the variables and on how
tightly the ranked data clusters are around a straight
line. This is a performance measure relating to the
prediction monotonicity of the metric [46].

The relationships between the metrics and the
observers are not necessarily linear. In order to remove
any non-linearities due to the subjective experimental
process and to facilitate comparison of the metrics in a
common analysis space, we investigate the relationship
between the metrics and observers by using non-linear
regression [46]. In this work, we apply the same mapping
function as that of Sheikh et al. [47]:

f (x) = θ1

(
1
2

− 1
1 + eθ2(x−θ3)

)
+ θ4X + θ5, (18)

where θi, i = 1, 2, 3, 4, 5, are parameters to be be fitted.
The 95% confidence intervals for the correlation values are
calculated using Fisher’s Z transformation as described by
the Video Quality Expert Group [48].
In order to have a complete analysis the following coef-

ficients are also presented:

• Root-mean-square error (RMSE) [48]. It is a measure
of the differences between the values predicted by the
metric and the scores actually given by the observers.

• Significance of the difference between the Pearson
correlation coefficients (t-value) [48]. This measure
assumes that a good fit for observers’ quality score is
given by the normal distribution. It uses the H0
hypothesis that assumes that there is no significant
difference between correlation coefficients and the
H1 hypothesis, which considers that the difference is
significant, although not specifying better or worse.

Figure 7 Ajagamelle database [42]. Nine images were captured and provided by an independent photographer, and one image was selected
from a standard natural image set provided by the CIE [44].
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Table 2 Pearson correlation for WLF-DEE and the selected state-of-the-artmetrics on all databases

Metric TID (masked noise) TID (quantization noise) TID (image denoising) TID (contrast change) Ajagamelle Pedersen

Linear Logistic Linear Logistic Linear Logistic Linear Logistic Linear Logistic Linear Logistic

PSNR 0.57 0.59 0.50 0.51 0.55 0.55 0.47 0.49 0.73a 0.80a 0.66 0.66

PSNR-HVS-M 0.57 0.58 0.52 0.53 0.56 0.57 0.49 0.49 0.72 0.78 0.66 0.66

S-CIELAB 0.62 0.68 0.63 0.66 0.66 0.71 0.60 0.64 0.67 0.79 0.80a 0.85a

SSIM 0.71a 0.75a 0.83a 0.85a 0.79a 0.81a 0.73 0.76 0.64 0.64 0.22 0.22

VSNR 0.52 0.53 0.45 0.50 0.53 0.54 0.47 0.47 0.16 0.28 0.02 0.02

WLF-DEE-C I 0.60 0.64 0.72 0.75 0.62 0.62 0.65b 0.69b 0.39b 0.65b 0.27b 0.49b

WLF-DEE-C J 0.61b 0.64 0.74 0.76 0.64 0.64 0.62 0.66 0.39 0.62 0.27b 0.44

WLF-DEE-C K 0.61b 0.68b 0.75b 0.77b 0.66b 0.71b 0.63 0.67 0.38 0.60 0.27b 0.44

WLF-DEE-C L 0.57 0.62 0.68 0.71 0.58 0.66 0.59 0.67 0.40 0.64 0.27b 0.45

WLF-DEE-C M 0.35 0.38 0.25 0.55 0.22 0.22 0.25 0.53 0.21 0.26 0.16 0.17

WLF-DEE-C N 0.38 0.53 0.33 0.58 0.23 0.60 0.29 0.55 0.20 0.20 0.16 0.19

WLF-DEE-C O 0.39 0.56 0.38 0.62 0.24 0.62 0.34 0.57 0.20 0.34 0.17 0.40

WLF-DEE-C P 0.32 0.53 0.26 0.57 0.19 0.60 0.24 0.54 0.21 0.31 0.17 0.47

aThe most performant metric. bThe highest performance of WLF-DEE.
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Table 3 Spearman correlation forWLF-DEE and the selected state-of-the-artmetrics on all databases

Metric TID (masked noise) TID (quantization noise) TID (image denoising) TID (contrast change) Ajagamelle Pedersen

Linear Linear Linear Linear Linear Linear

PSNR 0.55 0.47 0.53 0.45 0.71 0.72

PSNR-HVS-M 0.53 0.46 0.53 0.45 0.70 0.72

S-CIELAB 0.66 0.63 0.69 0.62 0.72 0.77a

SSIM 0.74a 0.83a 0.78a 0.74a 0.72a 0.49

VSNR 0.48 0.39 0.49 0.43 0.14 0.02

WLF-DEE-C I 0.60b 0.71b 0.66b 0.63b 0.61b 0.43

WLF-DEE-C J 0.59 0.69 0.65 0.59 0.59 0.42

WLF-DEE-C K 0.59 0.70 0.66b 0.60 0.57 0.44b

WLF-DEE-C L 0.57 0.65 0.62 0.59 0.60 0.43

WLF-DEE-C M 0.43 0.48 0.50 0.46 0.56 0.37

WLF-DEE-C N 0.50 0.56 0.56 0.48 0.55 0.38

WLF-DEE-C O 0.53 0.59 0.58 0.48 0.53 0.38

WLF-DEE-C P 0.48 0.51 0.53 0.47 0.56 0.37

aThe most performant metric. bThe highest performance of WLF-DEE.
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Table 4 RMSE for WLF-DEE and the selected state-of-the-artmetrics on all databases

Metric TID (masked noise) TID (quantization noise) TID (image denoising) TID (contrast change) Ajagamelle Pedersen

PSNR 14.73 15.38 15.72 15.91 1.49 0.40

PSNR-HVS-M 14.84 15.15 15.54 15.85 1.54 0.40

S-CIELAB 13.35 13.41 13.29 13.94 0.88 0.28a

SSIM 11.99a 9.45a 10.99a 11.80a 1.75 0.53

VSNR 15.42 15.41 15.92 16.07 1.03 0.53

WLF-DEE-C I 13.99 11.88 14.79 13.11b 1.01 0.46

WLF-DEE-C J 13.98 11.54 14.51 13.73 1.01 0.47

WLF-DEE-C K 13.33b 11.36b 13.33b 13.53 1.01 0.48

WLF-DEE-C L 14.36 12.54 14.22 13.56 1.02 0.47

WLF-DEE-C M 16.88 14.93 18.39 15.49 0.94 0.52

WLF-DEE-C N 15.48 14.55 15.12 15.19 0.78a,b 0.52

WLF-DEE-C O 15.12 14.03 14.74 14.98 1.06 0.49

WLF-DEE-C P 15.48 14.64 15.15 15.29 1.43 0.47

aThe most performant metric. bThe highest performance of WLF-DEE.
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Table 5 Significance of the differencebetween Pearson correlation coefficients on TID-masked noise database

Metric PSNR PSNR-HVS-M S-CIELAB SSIM VSNR WLF-DEE-C I WLF-DEE-C J WLF-DEE-C K WLF-DEE-C L WLF-DEE-C M WLF-DEE-C N WLF-DEE-C O WLF-DEE-C P

PSNR -

PSNR-HVS-M 0.08 -

S-CIELAB −1.08 −1.16 -

SSIM −2.13a −2.21a −1.04 -

VSNR 0.57 0.49 1.65 2.69a -

WLF-DEE-C I −0.59 −0.67 0.50 1.54 −1.16 -

WLF-DEE-C J −0.60 −0.68 0.48 1.53 −1.17 −0.01 -

WLF-DEE-C K −1.10 −1.19 −0.02 1.02 −1.67 −0.52 −0.50 -

WLF-DEE-C L −0.30 −0.38 0.78 1.82 −0.87 0.28 0.30 0.80 -

WLF-DEE-C M 1.94 1.86 3.02a 4.07a 1.37 2.53a 2.54a 3.05a 2.24a -

WLF-DEE-C N 0.62 0.54 1.70 2.75a 0.05 1.21 1.22 1.72 0.92 −1.32 -

WLF-DEE-C O 0.32 0.23 1.40 2.44a −0.25 0.90 0.92 1.42 0.62 −1.63 −0.30 -

WLF-DEE-C P 0.62 0.53 1.70 2.74a 0.05 1.20 1.21 1.72 0.92 −1.33 0.00 0.30 -

aSignificantly different at 5% significance level (1.96).
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Table 6 Significance of the difference between Pearson correlation coefficients on TID-quantization noise database

Metric PSNR PSNR-HVS-M S-CIELAB SSIM VSNR WLF-DEE-C I WLF-DEE-C J WLF-DEE-C K WLF-DEE-C L WLF-DEE-C M WLF-DEE-C N WLF-DEE-C O WLF-DEE-C P

PSNR -

PSNR-HVS-M −0.20 -

S-CIELAB −1.63 −1.43 -

SSIM −4.81a −4.62a −3.19a -

VSNR 0.03 0.22 1.66 4.84a -

WLF-DEE-C I −2.82a −2.63a −1.19 1.99a −2.85a -

WLF-DEE-C J −3.10a −2.90a −1.47 1.72 −3.12a −0.27 -

WLF-DEE-C K −3.23a −3.04a −1.61 1.58 −3.26a −0.41 −0.14 -

WLF-DEE-C L −2.30a −2.11a −0.67 2.51a −2.33a 0.52 0.79 0.93 -

WLF-DEE-C M −0.39 −0.19 1.24 4.43a −0.42 2.43a 2.71a 2.85a 1.91 -

WLF-DEE-C N −0.71 −0.51 0.92 4.11a −0.73 2.12a 2.39a 2.53a 1.60 −0.32 -

WLF-DEE-C O −1.13 −0.94 0.49 3.68a −1.16 1.69 1.96 2.10a 1.17 −0.75 −0.43 -

WLF-DEE-C P −0.64 −0.44 0.99 4.18a −0.66 2.19a 2.46a 2.60a 1.67 −0.25 0.07 0.50 -

aSignificantly different at 5% significance level (1.96).
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Table 7 Significance of the differencebetween Pearson correlation coefficients on TID-image denoising database

Metric PSNR PSNR-HVS-M S-CIELAB SSIM VSNR WLF-DEE-C I WLF-DEE-C J WLF-DEE-C K WLF-DEE-C L WLF-DEE-CM WLF-DEE-C N WLF-DEE-C O WLF-DEE-C P

PSNR -

PSNR-HVS-M −0.14 -

S-CIELAB −1.84 −1.70 -

SSIM −3.57a −3.43a −1.73 -

VSNR 0.16 0.30 2.00a 3.73a -

WLF-DEE-C I −0.73 −0.58 1.12 2.85a −0.89 -

WLF-DEE-C J −0.94 −0.79 0.91 2.64a −1.10 −0.21 -

WLF-DEE-C K −1.81 −1.66 0.04 1.76 −1.97 −1.08 −0.87 -

WLF-DEE-C L −1.15 −1.01 0.69 2.42a −1.31 −0.43 −0.22 0.66 -

WLF-DEE-C M 2.77a 2.91a 4.61a 6.34a 2.61a 3.49a 3.70a 4.57a 3.92a -

WLF-DEE-C N −0.47 −0.33 1.37 3.10a −0.63 0.25 0.46 1.34 0.68 −3.24a -

WLF-DEE-C O −0.76 −0.62 1.08 2.81a −0.92 −0.04 0.17 1.05 0.39 −3.53a −0.29 -

WLF-DEE-C P −0.45 −0.30 1.39 3.12a −0.61 0.28 0.49 1.36 0.70 −3.21a 0.02 0.31 -

aSignificantly different at 5% significance level (1.96).
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Table 8 Significance of the difference between Pearson correlation coefficients on TID-contrast change database

Metric PSNR PSNR-HVS-M S-CIELAB SSIM VSNR WLF-DEE-C I WLF-DEE-C J WLF-DEE-C K WLF-DEE-C L WLF-DEE-C M WLF-DEE-C N WLF-DEE-C O WLF-DEE-C P

PSNR -

PSNR-HVS-M −0.06 -

S-CIELAB −1.62 −1.56 -

SSIM −3.27a −3.21a −1.65 -

VSNR 0.15 0.20 1.77 3.41a -

WLF-DEE-C I −2.26a −2.21a −0.64 1.01 −2.41a -

WLF-DEE-C J −1.78 −1.73 −0.16 1.49 −1.93 0.48 -

WLF-DEE-C K −1.94 −1.88 −0.32 1.33 −2.08a 0.32 −0.16 -

WLF-DEE-C L −1.92 −1.86 −0.30 1.35 −2.06a 0.34 −0.14 0.02 -

WLF-DEE-C M −0.37 −0.31 1.25 2.90a −0.51 1.89 1.41 1.57 1.55 -

WLF-DEE-C N −0.62 −0.57 1.00 2.65a −0.77 1.64 1.16 1.32 1.30 −0.25 -

WLF-DEE-C O −0.79 −0.74 0.83 2.48a −0.94 1.47 0.99 1.15 1.13 −0.42 −0.17 -

WLF-DEE-C P −0.54 −0.48 1.08 2.73a −0.68 1.72 1.24 1.40 1.38 −0.17 0.08 0.25 -

aSignificantly different at 5% significance level (1.96).
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Table 9 Significance of the differencebetween Pearson correlation coefficients on Ajagamelle database

Metric PSNR PSNR-HVS-M S-CIELAB SSIM VSNR WLF-DEE-C I WLF-DEE-C J WLF-DEE-C K WLF-DEE-C L WLF-DEE-CM WLF-DEE-C N WLF-DEE-C O WLF-DEE-C P

PSNR -

PSNR-HVS-M 0.29 -

S-CIELAB 0.09 −0.20 -

SSIM 2.08a 1.79 1.99a -

VSNR 4.96a 4.67a 4.87a 2.88a -

WLF-DEE-C I 1.96 1.67 1.87 −0.12 −3.00a -

WLF-DEE-C J 2.28a 1.99a 2.19a 0.20 −2.68a 0.32 -

WLF-DEE-C K 2.47a 2.18a 2.38a 0.39 −2.49a 0.51 0.20 -

WLF-DEE-C L 2.01a 1.73 1.93 −0.07 −2.95a 0.06 −0.26 −0.46 -

WLF-DEE-C M 5.11a 4.83a 5.02a 3.03a 0.15 3.16a 2.84a 2.64a 3.10a -

WLF-DEE-C N 5.46a 5.17a 5.37a 3.38a 0.50 3.50a 3.18a 2.99a 3.44a 0.35 -

WLF-DEE-C O 4.51a 4.23a 4.42a 2.43a −0.45 2.56a 2.24a 2.04a 2.50a −0.60 −0.95 -

WLF-DEE-C P 4.76a 4.48a 4.67a 2.68a −0.20 2.81a 2.49a 2.29a 2.75a −0.35 −0.70 0.25 -

aSignificantly different at 5% significance level (1.96).



Sim
one

etal.EU
RA

SIP
Journalon

Im
age

and
Video

Processing
2013,2013:39

Page
17

of26
http

://jivp
.eurasip

journals.com
/content/2013/1/39

Table 10 Significance of the differencebetween Pearson correlation coefficients on Pedersen database

Metric PSNR PSNR-HVS-M S-CIELAB SSIM VSNR WLF-DEE-C I WLF-DEE-C J WLF-DEE-C K WLF-DEE-C L WLF-DEE-C M WLF-DEE-C N WLF-DEE-C O WLF-DEE-C P

PSNR -

PSNR-HVS-M −0.03 -

S-CIELAB −1.83 −1.80 -

SSIM 2.15a 2.18a 3.98a -

VSNR 2.90a 2.93a 4.73a 0.75 -

WLF-DEE-C I 0.93 0.96 2.76a −1.22 −1.97a -

WLF-DEE-C J 1.17 1.20 3.00a −0.98 −1.73 0.24 -

WLF-DEE-C K 1.18 1.21 3.01a −0.97 −1.72 0.25 0.01 -

WLF-DEE-C L 1.16 1.19 2.99a −0.99 −1.74 0.23 −0.01 −0.02 -

WLF-DEE-C M 2.33a 2.35a 4.15a 0.18 −0.58 1.39 1.16 1.14 1.17 -

WLF-DEE-C N 2.27a 2.30a 4.10a 0.12 −0.63 1.34 1.10 1.09 1.11 −0.06 -

WLF-DEE-C O 1.39 1.42 3.22a −0.76 −1.51 0.46 0.22 0.21 0.23 −0.93 −0.87 -

WLF-DEE-C P 1.06 1.09 2.89a −1.09 −1.84 0.13 −0.11 −0.12 −0.10 −1.26 −1.21 −0.33 -

aSignificantly different at 5% significance level (1.96).
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5.3 Results
As mentioned in Section 4.1.1, WLF-DEE has been tested
for a total of 48 configurations, but in order to give a
more readable and understandable presentation of the
results, we will present only a selection of them. As
WLF-DEE using the two DOG schemes in Equations
15a and 15b have lower performance in correlation
with respect to WLF-DEE using the DOG scheme in
Equation 15(c), these results will be excluded. This con-
firms also the statement of Tadmor and Tolhurst that
the DOG model in analogy with the Michelson for-
mula has better performance for contrast assessment [4].
On the same way, all configurations with ρ = 0.85 in
Equation 13 will be excluded, as they show lower per-
formance in correlation with respect to those configu-
rations with ρ = 1.00. This will end in a presentation
of a total of only eight results of WLF-DEE shown in
Table 2 for Pearson correlation, Table 3 for Spearman
correlation and Table 4 for RMSE. Significance of the
difference between the Pearson correlation coefficients
are presented for each database in Tables 5, 6, 7, 8, 9
and 10.
Considering the TID database, SSIM has the higher

Pearson correlation in all four categories. In the masked
noise category, SSIM is followed by WLF-DEE K, while
in the quantization noise, it is followed by S-CIELAB
and then WLF-DEE K. In the category denoising and
contrast change, SSIM instead is followed by WLF-
DEE I and then WLF-DEE K. For all the four cat-
egories, it is possible to notice that all the metrics
give higher correlation with perceived observer differ-
ence using the logistic fitting. Furthermore, as the con-
fidence intervals (Figures 8, 9, 10 and 11) of WLF-DEE
K overlap with the confidence intervals of SSIM, we
can claim to have the same performance. Overall, for
the four categories of the TID database, WLF-DEE K
shows to be significantly better than PSNR and VSNR
and to have the same performance with SSIM and S-
CIELAB.
For the Ajagamelle database, PSNR shows the higher

Pearson correlation, followed by PSNR-HVS-M, SCI-
ELAB, SSIM and then four configurations (I, J, K, L)
of WLF-DEE, which have very close results. Since in
this case, the confidence intervals (Figure 12) of WLF-
DEE K overlaps with the confidence interval of those
metrics with slightly higher correlation, we can claim to
have the same performance. For the Pedersen database,
S-CIELAB shows the higher Pearson correlation, fol-
lowed by PSNR-HVS-M, PSNR, four configurations
(I, J, K, L) of WLF-DEE with very close results and
then SSIM. In this database instead, confidence inter-
vals (Figure 13) show that WLF-DEE-K has a slightly
lower performance than S-CIELAB, but not with respect
to SSIM. Also for these two databases, it holds true

that all the metrics give higher correlation using logistic
fitting.
Considering all the six database sets examined, WLF-

DEE gives higher correlation using configurations I, J, K,
L with respect to configurations M, N, O, P, and in par-
ticular, WLF-DEE K most agrees with observer perceived
difference, indicating that large radiuses of the Gaussians
and uniform weighting of the levels should be used for the
estimation of perceived difference. Furthermore, it is pos-
sible to notice thatWLF-DEE K with logistic fitting shows
a stable trend among the six datasets having an average
performance in correlation of 0.65. This holds true also
for other tested metrics such as S-CIELAB and PSNR-
HVS-M, but not for SSIM and VSNR which show very
high correlation in one dataset and very low in an another
one.
Analysis with the Spearman correlation follows the

same discussion with the Pearson correlation except for
the Ajagamelle database, where the highest correlation is
shown by S-CIELAB, but not outperforming most of the
other metrics. The results are presented only with linear
fitting as no improvements can be found in any metric
using the logistic fitting. Also with the Spearman corre-
lation, WLF-DEE K shows its stability with an average
performance of 0.59.
Analysis with root-mean-square error shows that for all

the four categories of the TID database, SSIM has the low-
est RMSE. As the confidence intervals of SSIM overlap
with two configurations of WLF-DEE-C (J, K) (Figures 14,
15, 16 and 17), it cannot be claimed that the two metrics
are significantly different in performance.
For Ajagamelle database instead, WLF-DEE-C N shows

the lowest RMSE, followed by S-CIELAB and then by
other several configurations of WLF-DEE-C (M, I, J,
K, L) and VSNR. Confidence intervals (Figure 18) shows
that these three metrics are not significantly different
among each other but they outperform other tested met-
rics such as SSIM, PSNR and PSNR-HVS-M. For Pedersen
database, S-CIELAB shows the lowest RMSE followed
by PSNR, PSNR-HVS-M and then all the configura-
tions of WLF-DEE-C. SSIM and VSNR have the highest
RMSE. Confidence intervals (Figure 19) show that WLF-
DEE-C (I, J, K, L, P) has no difference in performance with
the other tested metrics but the overlap with S-CIELAB
confidence interval is minimal.
Analysis with significance of the difference are pre-

sented with 5% significance level for Pearson correla-
tion with logistic fitting only. Based on the definition
in [48], two metrics can be significantly different if
−1.96 < t − value < 1.96. This analysis confirms
that WLF-DEE-C K is not significantly different in per-
formance with respect to the other tested metrics for
TID-masked noise and TID-image denoising databases.
For TID-quantization noise instead, WLF-DEE-C K is
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Figure 8 Pearson correlation for WLF-DEE and the selected state-of-the-art metrics on TID-masked noise database. Results using linear
fitting on the left and logistic fitting on the right.

not significantly difference in performance with respect
to SSIM and S-CIELAB. For TID-contrast change WLF-
DEE-C K is significantly difference in performance only
with respect to VSNR. For Ajagamelle database, WLF-
DEE-C K is not significantly different in performance only

from SSIMwhile for Pedersen database is not significantly
different in performance from the other tested metrics
except S-CIELAB.
Overall, WLF-DEE-C K shows its particular strength on

those databases where a change in contrast between the

Figure 9 Pearson correlation for WLF-DEE and the selected state-of-the-art metrics on TID-quantization noise database. Results using
linear fitting on the left and logistic fitting on the right.
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Figure 10 Pearson correlation for WLF-DEE and the selected state-of-the-art metrics on TID-image denoising database. Results using linear
fitting on the left and logistic fitting on the right.

original and its reproduction is triggered by a change of
color attributes and not particular distortions. In conclu-
sion, WLF-DEE-C K promotes itself as a new metric for
predicting the perceived magnitude of contrast between
an original and a reproduction, fulfilling the purpose for
which it was developed.

6 Conclusions
Recent studies have shown that contrast is an important
image attribute that falls under the umbrella of image
quality [3]. In this paper, we have developed a new met-
ric based on recent work on contrast filtering. This metric
called WLF-DEE consists of two key features: a multi-

Figure 11 Pearson correlation for WLF-DEE and the selected state-of-the-art metrics on TID-contrast change database. Results using linear
fitting on the left and logistic fitting on the right.
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Figure 12 Pearson correlation for WLF-DEE and the selected state-of-the-art metrics on Ajagamelle database. Results using linear fitting on
the left and logistic fitting on the right.

level filtering based on the work on contrast from Tadmor
and Tolhurst [4] and the new Euclidean color difference
formula in log-compressed OSA-UCS space proposed by
Oleari et al. [5].
Extensive tests and analysis are carried out on four dif-

ferent categories of the well-known TID database and

on two databases providing different distortions directly
related to color and contrast. Comparisons with other
state-of-the-art metrics are also presented. Results pro-
mote WLF-DEE as a new efficient metric for estimating
the perceived magnitude of contrast between an original
and a reproduction.

Figure 13 Pearson correlation for WLF-DEE and the selected state-of-the-art metrics on Pedersen database. Results using linear fitting on
the left and logistic fitting on the right.
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Figure 14 RMSE for WLF-DEE and the selected state-of-the-art metrics on TID-masked noise database.

Figure 15 RMSE for WLF-DEE and the selected state-of-the-art metrics on TID-quantization noise database.
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Figure 16 RMSE for WLF-DEE and the selected state-of-the-art metrics on TID-image denoising database.

Figure 17 RMSE for WLF-DEE and the selected state-of-the-art metrics on TID-contrast change database.
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Figure 18 RMSE for WLF-DEE and the selected state-of-the-art metrics on Ajagamelle database.

Figure 19 RMSE for WLF-DEE and the selected state-of-the-art metrics on Pedersen database.
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