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Abstract

Compression of encrypted data draws much attention in recent years due to the security concerns in a
service-oriented environment such as cloud computing. We propose a scalable lossy compression scheme for
images having their pixel value encrypted with a standard stream cipher. The encrypted data are simply
compressed by transmitting a uniformly subsampled portion of the encrypted data and some bitplanes of another
uniformly subsampled portion of the encrypted data. At the receiver side, a decoder performs content-adaptive
interpolation based on the decrypted partial information, where the received bit plane information serves as the
side information that reflects the image edge information, making the image reconstruction more precise. When
more bit planes are transmitted, higher quality of the decompressed image can be achieved. The experimental
results show that our proposed scheme achieves much better performance than the existing lossy compression
scheme for pixel-value encrypted images and also similar performance as the state-of-the-art lossy compression for
pixel permutation-based encrypted images. In addition, our proposed scheme has the following advantages: at the
decoder side, no computationally intensive iteration and no additional public orthogonal matrix are needed. It
works well for both smooth and texture-rich images.
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1. Introduction
Compression of encrypted data draws much attention
in recent years due to the security concerns in a
service-oriented environment such as cloud computing
[1,2]. The traditional way of securely and efficiently
transmitting redundant data is to first compress the
data to reduce the redundancy then encrypt the com-
pressed data. At the receiver side, decryption is
performed prior to decompression. However, in some
application scenarios (e.g., sensor networking), a
sender may first perform encryption with a simple ci-
pher and then send it to a network provider. The net-
work provider always has the interest to reduce the
rate. It is desirable to be able to compress the
encrypted data without the key to reduce the security
concerns. At the receiver side, joint decryption and
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decompression will be used to reconstruct the original
data.
It has been proved in [1] that the overall system

performance of such approach can be as good as the
conventional approach, that is, neither the security
nor the compression efficiency will be sacrificed by
performing compression in the encrypted domain.
Two practical approaches to lossless compression of
encrypted binary images and to lossy compression of
encrypted Gaussian sequence are also presented in [1].
In the first approach, the original binary image is
encrypted by adding a pseudorandom string; the
encrypted data are compressed by finding the syn-
dromes with respect to a low-density parity-check
(LDPC) code [3]. In the second approach, the original
data are encrypted by adding an iid Gaussian se-
quence, and the encrypted data are quantized and
compressed as the syndromes of a trellis code. In [4],
compression of encrypted data for both memoryless
sources and sources with hidden Markov correlation
using LDPC codes is also studied. A study [5] intro-
duces a few methods for lossless compression of
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encrypted grayscale and color images by employing
LDPC codes to various bit planes and exploiting the
spatial and cross-plane correlation among pixels. In
[6], Liu et al. proposed to decompose the encrypted
image in a progressive manner, and the most signifi-
cant bits in the higher levels are compressed using
rate-compatible punctured turbo codes. The decoder
can observe a low-resolution version of the image,
study the local statistics based on it, and use the sta-
tistics to estimate the content in the higher levels.
Another study [7] presents some algorithms for
compressing encrypted data and demonstrates blind
compression of encrypted video by developing statis-
tical models for source data and extending these
models to video. All of the works mentioned above
use the distributed source coding (DSC) technique.
However, a frequent backward channel communica-
tion is needed for the joint decryption and decoding
at the receiver, and thus, large delay maybe of
concern. So, DSC-based methods may not be a desir-
able choice in some practical network transmission
scenarios.
There are a few works on lossy compression for

encrypted data. In [8], the authors introduce a com-
pressive sensing technique to achieve lossy compres-
sion of encrypted image data, and a basis pursuit
algorithm is appropriately modified to enable joint de-
compression and decryption. In the state-of-the-art
work [2], a lossy compression and iterative reconstruc-
tion for permutation-based encrypted image is pro-
posed. However, when using the permutation-based
encryption, only the pixel positions are permuted, but the
pixel values are not masked in the encryption phase,
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Figure 1 Illustration of the CAI prediction.
which means that the histogram of the encrypted image
will remain the same as the original image, revealing
some significant information. Iterative reconstruction
may have a hard time to converge for a texture-rich
image. An additional public orthogonal matrix of huge
size is needed for the decompression at the receiver
side. If the size of the to-be-compressed image is
512×512, then the size of the public orthogonal matrix
is about 512×512×512×512. Each target rate requires a
distinct public orthogonal matrix. The huge public or-
thogonal matrix results in huge storage space require-
ment and computational load. Note that such a public
orthogonal matrix cannot be used in the compression
for pixel-value encrypted image. There is another lossy
compression and iterative reconstruction for encrypted
image proposed in the state-of-the-art work [9]. The
encryption method of the image is by making a
modulo-256 addition on the original pixel values with
pseudorandom numbers. The scheme is scalable, and it
performs very well with iteration.
In this paper, we propose a scalable lossy compres-

sion scheme for images having their pixel value
encrypted with a standard stream cipher. At the re-
ceiver side, a decoder performs a content-adaptive
interpolation prediction based on the decrypted partial
information, and the received bit plane information
serves as the side information to facilitate accurate
image reconstruction. The experimental results show
that our proposed scheme achieves much better per-
formance than the existing lossy compression scheme
for pixel-value encrypted image and achieves similar
performance as the state-of-the-art lossy compression
for permutation-based encrypted images.
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The rest of this paper is organized as follows: in ‘The pro-
posed scalable compression scheme’ section, we describe
the proposed compression scheme for encrypted images in
detail. The ‘Experimental results’ section shows the experi-
mental results with comparison to the state-of-the-art
works. The conclusion is made in the ‘Conclusions’ section.
2. The proposed scalable compression scheme
We assume the images have been encrypted by apply-
ing a standard stream cipher to the pixel values in the
spatial domain. Even though the pixel value has been
encrypted, the resulting encrypted data preserve some
of the inherent property of the original image, e.g., the
spatial relationship of pixels and the bit plane struc-
ture and their relative importance. This leads us to
adopt a multi-resolution and bit plane-based scalable
approach for the compression. The basic idea is to
package and transmit a downsampled version of the
encrypted image as the base layer, then selectively
transmit additional bit plane information from another
downsampled version (with a different spatial offset)
of the encrypted image to facilitate the interpolation/
reconstruction of the higher resolution image at the
receiver. This process can be recursively applied in a
multi-layer structure. This results in an embedded,
compressed, and encrypted bitstream, where the bit-
stream can be cut off flexibly to meet a target bit rate
constraint without requiring complex communication/
negotiation between the encoder and decoder as was
the case in some prior work that used DSC, e.g.,
[1,3-7]. In the following, we describe our proposed
scheme in a two-layer scenario.
Suppose the size of an original 8-bit grayscale image

is N1×N2. It is encrypted with a standard stream cipher,
resulting in an encrypted image E.
To compress, we downsample the encrypted image by a

factor of two in both dimensions and generate four sub-
images, denoted as E00, E01, E10, and E11. Here, the first
digit ‘1’(or ‘0’) denotes that the horizontal offset for
downsampling is 1 (or 0), the second digit ‘1’ (or ‘0’) de-
notes that the vertical offset is 1 (or 0). As shown in
Figure 1, each icon is a pixel. We use the four icons to
distinguish the four sub-images after downsampling.
When they are decrypted and decompressed, they are
denoted as 00, 01, 10, and 11 sub-images, respectively.
pred0 ¼
mean tð Þ max tð Þ−min tð Þ≤20ð Þ
t1 þ t2ð Þ=2 t3−t4j j− t1−t2j j > 20ð Þ
ðt3 þ t4Þ=2 t1−t2j j− t3−t4j j > 20ð Þ

median tð Þotherwise

8>><
>>:
The uncompressed E00 sub-image will be transmitted
to the decoder. Some of the E11 sub-image's bit planes
will be transmitted, too, according to the target bit
rate. The target bit rate (R) per information source bit
can be calculated by:

R ¼ 0:25þ 0:25� N=8; ð1Þ

where N is the number of bit planes of sub-image E11
to be transmitted. For example, if N = 2, it means two
bit planes of sub-image E11 are transmitted. Let
b8b7b6…b2b1 denote the eight bit planes, and b7b6 are
transmitted. The compression rate is 0.25 + 0.25 ×
2/8= 0.3125. The decoder reconstructs the 00 sub-
image by decrypting the E00 sub-image and also ob-
tains b7,b6 of the 11 sub-image by decryption. Here,
according to our observation, b8 can be recovered
with little error by decompression, so the b8 bit plane
of sub-image 11 is always transmitted only when all of
b7,b6,…,b1bit planes of sub-image 11 are transmitted,
that is, only when N = 8. N = 8 means that sub-image
11 is transmitted.
For every pixel in the 11 sub-image, there are four

neighboring pixels t = [t1, t2, t3, t4] in the 00 sub-
image as shown in the top left of Figure 1. We predict
the 11 sub-image using the 00 sub-image with the
context-adaptive interpolation (CAI) scheme proposed
in [6]. In this work, we propose to use the received
bit plane values of sub-image 11 as the side informa-
tion to facilitate the estimation of the image edge in-
formation in the context adaptive interpolation thus
improving the prediction. For the 10 sub-image, there
are also four neighboring pixels in the 00 and 11 sub-
images as shown in the bottom right of Figure 1. So,
when the receiver obtains sub-image 00 and sub-
image 11, the 10 sub-image (and 01 sub-image) can
be predicted by the conventional CAI (please refer to
[6] for a detailed description of the conventional CAI).
In the following, we only present the improved CAI
prediction of the 11 sub-image with the received bit
plane information as the side information.
Let 0 be a pixel in the 11 sub-image which is to be pre-

dicted and t = [t1, t2, t3, t4] be the vector of its four neigh-
boring pixels (please refer to the top left of Figure 1). The
preliminary prediction of pixel 0 with CAI [6] is:
ð2Þ



Table 1 The PSNR (dB) of the reconstructed images using
our scheme

N 0 1 2 3 4 5 6 7 8

Rate per info bit 0.25 0.28 0.31 0.34 0.38 0.41 0.44 0.47 0.5

Lena 34.7 35.0 36.0 37.8 38.9 39.4 39.7 39.8 40.2

Baboon 30.2 30.9 31.9 34.4 36.0 36.6 36.7 36.8 36.8

Man 30.4 30.9 31.2 32.6 33.5 33.9 34.0 34.0 34.9

Hill 30.3 30.5 30.8 32.8 33.8 34.2 34.4 34.4 35.1

(a)  (b)

(c)      (d)

Figure 2 The proposed compression scheme is applied on Lena
image. (a) Original Lena image; (b) Encrypted Lena image; (c)
Decompressed Lena image with R = 0.31(PNSR = 36.0 dB); (d)
Decompressed Lena image with R = 0.44 (PNSR = 39.7 dB).
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In Equation 2, the local region is classified into four
types: smooth, horizontally edged, vertically edged, and
other median-related edge. With the received bit plane
values of sub-image 11, we can match the bit plane
values of pred0 with the received bit plane value. If they
match with each other, we accept the preliminary pre-
diction value; otherwise, we find a better-matching pre-
diction using the image edge directions other than the
four local regions considered in Equation 2.
The decoder will receive E00 sub-image and some bit

planes of the E11 sub-image. After decryption, the decoder
will get 00 sub-image and some bit planes of the 11 sub-
image. We denote the decimal value of the bit planes which
are transmitted and decrypted as w. Take N = 2 for example,
b7b6 of the 11 sub-image was considered. If b7b6 = (10)2,
w = 2. w∈[0, 2N - 1] = [0, M-1]. Let Δ be the stepsize corre-
sponding to the most significant bit plane of the side infor-
mation. In this paper, we adopt Δ = 27 when N < 8 in our
scheme. Define the matching distance d as follows:

d ¼ floor mod
pred0

Δ
M

;M

 ! !
−w; ð3Þ

where mod( ) is the modulation operation. As b7b6
was known, we calculate the distance d between w
and the decimal value of the same bit planes of pred0.
The distance can be used to judge whether the pred0
matches well. If the distance is large, such that:

M=4 < dj j < 3�M=4; ð4Þ

we consider that pred0 does not match well. Then, other
r ¼
floor pred=Δð Þ � Δþ w� Δ=M−Δþ Δ=M−1; ifd

floor pred=Δð Þ � Δþ w� Δ=M þ Δ; ifd > M
floor pred=Δð Þ � Δþ w� Δ=M þmod pred;Δ=Mð Þ

8<
:

two prediction values pred1 and pred2, which corres-
pond to other image edge directions, will compete with
the preliminary prediction value pred0 for the best
match with the side information:

pred1 ¼
sum tð Þ−max tð Þ

3
; ð5Þ

pred2 ¼
sum tð Þ−min tð Þ

3
; ð6Þ

where sum( ) denotes the summation operation, and
max( ) and min( ) denote taking maximum and mini-
mum operation, respectively. We find the best match by
seeking the minimum value of min(|d|, M − |d|) among
the three prediction values pred0, pred1 and pred2 and
obtain the final best matching prediction pred. Finally,
with the side information, the corresponding prediction
value r can be further refined to be:
< −M=2
=2
; otherwise

ð7Þ
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Figure 3 PSNR of reconstructed images with respect to bit rates.
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where floor(pred/Δ) × Δ is the value of the b8 of the pre-
diction in the pixel; w × Δ/M is the value of the bit
planes transmitted in the pixel.

3. Experimental results
In this section, we will examine the performance of our
proposed method and also compare it with the existing
state-of-the-art works. The proposed compression scheme
is applied on a variety of images with different sizes. We
will show the test results for four selected standard images
which have varying texture contents. The test images used
here are Lena, Baboon, Man, and Hill. All the test images
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Figure 4 Comparison results on Lena image.
are 8-bit grayscale images of 512×512. Results for a two-
layer decomposition structure are presented.
Table 1 shows the peak signal-to-noise ratio (PSNR)

of the decompressed image with varying bit rates (bit
rate per information source bit). The bit rate is deter-
mined by N, the number of transmitted bit planes of the
E11 sub-image. Higher rate leads to higher PSNR.
Figure 2a is the original image of Lena with a size of

512×512. The encrypted image of Lena is shown in
Figure 2b. Let N = 2, the corresponding bit rate R = 0.31,
the PSNR of the reconstructed Lena is 36.0 dB (Figure 2c);
let N = 6, the bit rate R = 0.44, the PNSR of the
35 0.4 0.45 0.5
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reconstructed Lena is 39.7 dB (Figure 2d). It is observed
that the decompressed images (Figure 2c,d) are very simi-
lar to the original image, and there is no visible compres-
sion artifact. With N increasing from 2 to 6, the PNSR
increases significantly, but with N increasing from 6 to 7,
the PNSR increases slowly because the least significant bit
plane b0 has little effect on the pixel value. Higher rate
leads to better quality of the reconstructed image. Figure 3
illustrates the PSNR of the reconstructed images with the
varying rates when Lena and Baboon are used. It shows
that the proposed scheme works for both smooth and
texture-rich images.
There are few existing works on the lossy compres-

sion of the pixel-value encrypted image. We compare
our proposed method with the method in [8], which ap-
plies compressive sensing technique to compress the
encrypted image. Figure 4 shows that our method
achieves much better performance than the method in
[8] on the same Lena image. With the bit rate changing
from 0.25 to 0.44, the PSNRs of our method are all
higher than 34 dB, while the PSNRs of the method in
[8] are lower than 30 dB.
We also compare our method to the methods in [2]

and [9]. Our proposed method achieves similar per-
formance as the method in [2] for the pixel-value
unencrypted image (Figure 4). A public orthogonal
matrix is used in [2] to disperse the estimation error in
the permutation-based encrypted domain. Note that
such a public orthogonal matrix cannot be used in the
pixel value-encrypted domain. Compared to the most
recent method [9], our method is a little worse than the
method in [9], but our method is not an iterative
method and both methods in [2] and [9] are iterative
ones and thus may have the issue of convergence for a
texture-rich image and possible intensive computation.

4. Conclusions
In this paper, we propose a lossy compression scheme
for pixel-value encrypted images. The main contribu-
tions are as follows:

1. At the receiver side, the received bit plane
information serves as the side information to
facilitate the estimation of image edge information
thus making the image reconstruction more precise.
The more bit planes are transmitted, the higher
quality of the reconstructed image.

2. The experimental results show that our proposed
scheme achieves much better performance than the
existing lossy compression scheme for pixel-value
encrypted images, and also achieves similar
performance as the state-of-the-art lossy
compression on the pixel permutation-based
encrypted images.
3. Compared to the state-of-the-art work, our
proposed scheme also has the following
advantages: at the decoder side, no computationally
intensive iteration and no additional public
orthogonal matrix are needed. The scheme can be
applied to both smooth and texture-rich images.

In the future, we will also extend our work to com-
pression of encrypted video.
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