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Abstract

Although many lung disease diagnostic procedures can benefit from computer-aided detection (CAD), current CAD
systems are mainly designed for lung nodule detection. In this article, we focus on tuberculosis (TB) cavity
detection because of its highly infectious nature. Infectious TB, such as adult-type pulmonary TB (APTB) and
HIV-related TB, continues to be a public health problem of global proportion, especially in the developing countries.
Cavities in the upper lung zone provide a useful cue to radiologists for potential infectious TB. However, the
superimposed anatomical structures in the lung field hinder effective identification of these cavities. In order to
address the deficiency of existing computer-aided TB cavity detection methods, we propose an efficient
coarse-to-fine dual scale technique for cavity detection in chest radiographs. Gaussian-based matching, local binary
pattern, and gradient orientation features are applied at the coarse scale, while circularity, gradient inverse
coefficient of variation and Kullback–Leibler divergence measures are applied at the fine scale. Experimental results
demonstrate that the proposed technique outperforms other existing techniques with respect to true cavity
detection rate and segmentation accuracy.
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1. Introduction
Chest radiographs or chest X-ray (CXR) images are
widely used to diagnose lung diseases such as lung can-
cer, tuberculosis (TB), and pneumonia. Due to the super-
imposed anatomical structures in the human chest, the
CXR images are generally noisy and the diagnosis
requires careful examination by experienced radiologists.
Computer-aided detection (CAD) systems in chest radi-
ography have therefore been developed to reduce the
workload of radiologists. Ginneken et al. reviewed the
CAD technological development in 2001 [1] and 2009
[2]. Developing a single system that looks into all abnor-
malities on a chest radiograph is practically impossible
due to the widely different characteristics of abnormal-
ities, and specific focus of the image processing algo-
rithms. Therefore, the current CAD systems often aim
at a single aspect, e.g., detection of lung cancer nodules.
This strategy has been proved to be successful, and
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many effective algorithms have been developed for rou-
tine diagnostic procedures [2].
A general CAD system framework is shown in Figure 1.

There are four modules in the system. First, a CXR
image undergoes the preprocessing step, which gener-
ally includes image enhancement, noise removal, and
lung field segmentation. In the next step, candidates
that may contain abnormalities are coarsely detected
using pattern recognition techniques. In the third
step, features that can be used to identify abnormal-
ities are identified from the candidates. Depending on
the radiographic manifestation of the abnormalities,
these features could be geometric, photometric, or
textural. Finally, a classifier is applied to perform a
high-level screening to reduce the false positive rate.
An efficient CAD system relies on robust image pro-
cessing, pattern recognition, and artificial intelligence
techniques. For instance, a recent CAD system [3]
designed for identifying lung nodules uses an active
shape model for lung field segmentation, followed by
a weighted multi-scale convergence-index filter for
nodule candidates detection. To identify the nodules
successfully, an adaptive distance-based threshold
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Figure 1 The processing steps of a CAD system in chest
radiology.
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technique is applied to segment the contour of each
candidate. The geometric, intensity, and gradient fea-
tures are then extracted from the segmentation results.
After the first level screening, a Fisher linear discrimin-
ant classifier is used on a subset of these features to
perform the final detection.
Nodule detection has been the main focus in current

CXR CAD systems. However, as Ginneken et al. pointed
out [2], there are other diseases, e.g. TB, that rely heavily
on chest radiograph examination can benefit from the
CAD systems. Infectious TB is still a public health prob-
lem in many countries [4]. Therefore, our research focus
is on developing a CAD system for the diagnosis of in-
fectious TB. The TB can be identified based on different
radiographic patterns, such as cavity, airspace consolida-
tion, and interstitial opacities [5]. A few existing CAD
systems use texture analysis to detect interstitial changes
[2]. However, the interstitial pattern is not a reliable
radiographic cue for infectious TB. According to a re-
cent research article on TB [6], cavitation in the upper
lung zone (ULZ) is a typical radiographic feature of
APTB. So far, insufficient research has been done for ef-
ficient detection of TB cavities. Shen et al. [7] recently
proposed a hybrid knowledge-guided (HKG) framework
for TB cavity detection, which contains three major
steps. In Step 1, the cavity candidates are detected using
adaptive thresholding on the mean-shift clustered CXRs.
In Step 2, a segmentation technique is applied to the
candidates to generate contours of important objects
(b)(a)

Figure 2 Occlusion of cavities in chest radiographs (in the red rectang
present in the CXR image. In Step 3, the contour-based
circularity and gradient inverse coefficient of variation
(GICOV) features are extracted for the final cavity clas-
sification using a Bayesian classifier. Although, this tech-
nique provides a good performance, it has several
limitations. First, due to cavity size variation and the oc-
clusion from neighboring superimposed anatomical
structures, the mean shift cluster result is sensitive to
the parameter values used. Second, the adaptive thresh-
old, which is a quadratic polynomial of GICOV score,
does not perform well when the cavity boundary is weak.
These two limitations lead to a high missing rate (MR)
of true cavities. To overcome these problems, we
propose a dual scale feature classification strategy for TB
cavity detection in chest radiographs. First, a coarse fea-
ture classification step is performed to detect the cavity
candidates by capturing the geometric, textural, and gra-
dient features in the lung field. Second, a Hessian
matrix-based technique is applied to enhance the cavity
candidates, which leads to a more accurate contour seg-
mentation. Finally, fine features based on the shape,
edge, and region are extracted from the segmented con-
tours for the final cavity classification. Experimental
results show that the performance of the proposed can-
didates detection, segmentation, and cavity classification
modules is superior compared to the results obtained
using other related CAD systems.
The rest of this article is organized as follows. Section 2

explains the cavity pattern in CXRs. Section 3 describes
our proposed method in detail. Section 4 reports and
analyzes the performance of the proposed technique.
Conclusion and future work are presented in Section 5.

2. Manifestation of cavity in chest radiographs
In chest radiography, a cavity is typically defined as a
parenchymal cyst greater than 1 cm in diameter, con-
taining either air or fluid or both [5]. Since the cavities
are created by tissue necrosis within nodules or masses,
their radiographic features are usually demonstrated as
annular rings with variable wall thickness. Figure 2a
shows a CXR image with a typical cavity (inside the
(c)

le).



Xu et al. EURASIP Journal on Image and Video Processing 2013, 2013:3 Page 3 of 18
http://jivp.eurasipjournals.com/content/2013/1/3
rectangle region), which manifests as a focal lucent area
on the image and appears as a “hole” in the patient’s left
upper lung zone. However, these holes might be blurred
due to the overlapping projection of anatomical struc-
tures or some other abnormalities in the neighborhood,
which makes the identification of cavities a difficult task
for radiologists. Figure 2b is another example of a TB
cavity obscured by the left clavicle. Figure 2c shows an
example where the cavity is overlapped with interstitial
opacities.

3. Proposed technique
Computer-aided feature identification in CXR images
is comparatively more challenging than feature identi-
fication in medical images of other body parts because
of the rib cage and other superimposed anatomical
structures in the lung field as illustrated in Figure 2.
After examining the geometric, textural, and photo-
metric characteristics of TB cavities, we propose a
coarse-to-fine feature classification technique for cav-
ity detection. Figure 3 shows a schematic of the pro-
posed technique. It is observed that there are three
major steps: (i) coarse feature classification, (ii) con-
tour segmentation, and (iii) fine feature classification.
A CXR image is first divided into patches. In the first
step, a coarse feature classification is performed on
each image patch to identify candidates which are
suspected to contain cavities. Two modules are used
to capture the coarse features: Gaussian-model-based
template matching (GTM), and local binary pattern
(LBP) and histogram of oriented gradient (HOG)based
feature classification (LHFC). In the second step, con-
tours of the chosen candidates are segmented using
two modules: Hessian-matrix-based image enhance-
ment (HIE) and active contour-based segmentation
(ACS). The HIE is used to boost the cavity edges. The
edge-based ACS is then applied to segment the
enhanced images. In the third step, a contour-based
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Figure 3 Schematic of the proposed CAD framework. It contains
three major steps, which are built upon five modules: GTM, LHFC,
HIE, ACS, and the CFC.
feature classification (CFC) module is applied. Fine fea-
tures including shape, edge, and region are extracted
from the contours. Cavity classification is then per-
formed based on these features. A detailed description
of these five modules is presented in the following
sections.

3.1. GTM
The template matching (TM) is a widely used tech-
nique in pattern recognition, where the presence of a
pattern in an image is detected by comparing different
parts of an image with a reference pattern known as
template. In many TM techniques, instead of compar-
ing a given template directly, a transformation of the
template is matched with similar transformation of a
candidate region using a similarity measure. Normalized
cross correlation is often used to measure similarity be-
cause of its fast implementation using the fast Fourier
transform. Since traditional TM is sensitive to rotation
and scale, rotation and scale invariant transform such
as Fourier–Mellin transform [8], or ring-projection
transform [9] can be incorporated into TM. However,
these transforms provide good results only when a cav-
ity shape/size deviates very little from the template
shape/size. To avoid missing true cavities, a solution is
to use a large set of templates covering different cavity
sizes and rotation angles.
Using a large set of templates can be computationally

expensive but still cannot guarantee to detect all cavities.
Therefore, the proposed technique makes use of prior
knowledge given by TB experts to generate a customized
template database specific for TB cavities. Observe that
in the “hole” like cavity shown in Figure 2a, line-cut in-
tensity profiles in various directions of the cavity region
appear similar. Figure 4a shows the magnified region of
a cavity, and Figure 4b–e shows plots of the four inten-
sity lines passing through the image center at 0°, 45°,
90°, 135°. Each line’s intensity profile appears as a bi-
modal Gaussian function. Based on the similarity of
these intensity profiles, it is reasonable to mimic the cav-
ity pattern using rotationally symmetric pattern such as
2D circular or elliptical Gaussian ring distribution (as
shown in Figure 4f ). Note that if a line-cut intensity pro-
file of Figure 4f is calculated, a bimodal Gaussian distri-
bution is obtained where the two major peaks
correspond to the two sides of the ring.
A generic 2D Gaussian ring is defined as follows

I x; yð Þ ¼ e�
1�wð Þ2 x2þy2ð Þ

2ξ2 ð1Þ

where w ¼ abffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2y2þb2x2

p , a and b are the two radii (distance

between the origin and the peaks on x,y axes), I(x,y) is
the image intensity function in the 2D domain, and ξ is
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Figure 4 Line-cut intensity profile analysis of ‘hole’ like cavity region. (a) A cavity region; (b–d) line-cut intensity profile in four directions;
(e) customized template for mimicking the cavity pattern.
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the standard deviation of the Gaussian distribution
which determines the wall thickness of the ring. Noting
that when a = b = r, Equation (1) represents a 2D circu-
lar Gaussian ring, where r is the inner radius. Rotated
patterns can be generated by incorporating a rotation
angle θ into the following coordinate transformation:

x ¼ x0 cosθ þ y0 sinθ
y ¼ y0 cosθ � x0 sinθ

�
ð2Þ

where x’, y’ are the pixel’s location before rotation. Using
Equations (1) and (2), the template database can be built
with various sizes, wall thicknesses, and rotation angles
by changing the value of parameters a, b, ξ, and θ. For
example, given a 512 × 512 CXR image with a pixel spa-
cing [0.8 mm, 0.8 mm], the physical size represented by
the image is 40.96 × 40.96 cm2. Since the diameter of
the largest cavity is usually less than 6 cm, we define the
template size as 75 × 75. While the wall thickness is
Figure 5 An example of cavity templates. a/b < 1.6, wall thickness σ wi
within the range of [4 mm, 16 mm], parameter ξ is var-
ied from 5 to 20 pixels. Figure 5 shows a set of tem-
plates, with various radii, rotation angle, and wall
thickness, used in this article.

3.2. LHFC
Although the proposed GTM module works well for
cavities of typical shape and intensity, it is difficult to de-
tect cavities obscured by anatomical structures or some
other abnormalities in the lung field. To address this
issue, we combine the LBP and HOG features, which
have been shown to be useful in human detection in
handling partial occlusion [10]. The LBP [11] is a hybrid
texture feature widely used in image processing. It com-
bines the traditionally divergent statistical and structural
models of texture analysis. The LBP feature has some
key advantages, such as its invariance to monotonic gray
level changes and computational efficiency. The HOG
feature [12], similar to Lowe’s scale-invariant feature
thin [6,20], and θ = 0°, 45°, 90°, 135°.
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transform feature, is regarded as an excellent descriptor
to capture the edge or local shape information. It has a
great advantage of being robust to changes in illumin-
ation or shadowing. These two features are expected to
complement well the GTM technique, especially in
blurred regions containing cavities, to detect TB cavity
candidates.
In the LHFC module, a feature vector, which combines

the LBP and HOG features, is calculated for each candi-
date window. The feature vector is then fed to a classi-
fier, which is trained offline using ground-truth (cavity
and non-cavity) training data. The classifier will assess
the windows as cavity candidates (positive samples) or
not (negative samples). The candidate windows are gen-
erated using a sliding-window paradigm where an image
is scanned from the top left to the bottom right with
overlapping rectangular sliding windows. The windows
are scanned row wise. The window size is consistent
with the template size in GTM, i.e., each window has a
size of 75 × 75. The overlap between two consecutive
windows is 2/3 of the window size.
The computation of these two features and the classifi-

cation using support vector machine (SVM) [13] are
explained in the following sections.

3.2.1. Computation of the LBP feature
In this article, the LBP feature vector for a window is
calculated in three steps. In Step 1, explained in Figure 6,
the LBP values are calculated by applying the LBP label-
ing on each pixel. Here, each pixel in the window is
compared to each of its eight neighbors. The LBP value
for the pixel is then calculated as follows

LBPP;R ¼
XP�1

p¼0

u gp � gc
� �

2p Note : u xð Þ ¼ 1 if x≥0
0 otherwise

� ��

ð3Þ
where gp, gc are gray levels of the neighborhood pixels
and center pixel, respectively, and u(·) is the unit-step
function. For a window of 75 × 75, there will be 5,625
LBP values, with dynamic range between 0 and 255. In
Step 2, an LBP-histogram, with 256 bins, is generated
for the window from the 5,625 computed LBP values.
Figure 6 An example of calculating LBP values in an eight-neighbor c
Finally, in Step 3, to reduce the dimensional numbers of
features, we adopt a popular approach used in texture
analysis, e.g., [14], by calculating the six statistical fea-
tures (mean, standard deviation, smoothness, skewness,
uniformity, and entropy) based on the LBP histogram.
Figure 7b shows the six LBP features calculated from the
image window shown in Figure 7a.

3.2.2. Computation of HOG feature
For computational convenience, we first resize each 75 ×
75 image window into a 64 × 64 window using bicubic
interpolation. The HOG feature for each resized window
is then calculated as follows.

Step 1.Gradient computation: The gradient of each
pixel in the window is calculated using two fil-
ter kernels: [−1, 0, 1] and [−1, 0, 1]T. Let the
magnitude and orientation of the gradient of
the ith pixel (1 ≤ i ≤ 4096) be denoted by mi

and ϕi, respectively.
Step 2.Orientation histogram: Each window is first

divided into non-overlapping cells of equal di-
mension, e.g., a rectangular cell of 8 × 8. The
orientation histogram is then generated by
quantizing ϕi into one of the nine major orien-
tations: 2k�1ð Þπ

9 � π
9 , 1 ≤ k ≤ 9. The vote of the

pixel is weighted by its gradient magnitude mi.
Thus, a cell orientation histogram Hc is a vec-
tor with dimension of 1 × 9.

Step 3. Block normalization: In order to account for
changes in illumination and contrast, the cell
histogram must locally be normalized, which
requires grouping the cells together into larger,
spatially connected blocks. The block size we
use is 2 × 2 cells (i.e., 16 × 16 pixels), and the
overlap between two neighboring blocks is 1/2
of the block size. Therefore, a whole window
contains 49 blocks. The block divisions for a
window image are shown in Figure 8. The fea-
ture vector of one block Hb is concatenated by
four cell histograms: Hb = [Hc1 Hc2 Hc3 Hc4].
Note that the orientation histogram of a block
Hb is a vector with a dimension of 1 × 36. The
ell.



Figure 7 An example of the LBP and HOG features. (a) An image window containing a cavity; (b) six LBP features corresponding to (a); (c) the
HOG feature vector (1 × 1764) corresponding to (a).
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normalized HOG vector is then calculated as
follows [12].

Ĥ b ¼ Hb

Hbk k ð4Þ

where ‖.‖ represents the L2 norm.

The HOG feature vector of an image window (with 49
blocks) is a concatenated vector of all 49 normalized
block orientation histogram (Ĥ b), and will have a dimen-
sion of 1 × 1764 in our case. Figure 7c shows the plot of
the HOG feature vector of the image window shown in
Figure 7a.
Combining the LBP and HOG features, a feature vector

of size 1 × 1770 is obtained for each image window. These
features vectors are fed to the SVM classifier, explained in
the following section, for cavity candidates detection.
Figure 8 The block and cell divisions in a window image.
Letters b and c stand for a block and a cell, respectively.
3.2.3. Classification using SVM
Although SVM can perform both linear and nonlinear
classifications, the basic SVM is a non-probabilistic binary
linear classifier [13]. It is commonly used in machine
learning as a supervised learning technique for recogniz-
ing patterns. Our goal is to use a pattern’s feature vectors
to identify which class it belongs to. The classification de-
cision is based on the value of a linear combination of
these feature vectors. Researchers use SVM classifiers in
applications because of its efficiency in handling both lin-
ear and nonlinear classification problems. Once the separ-
ating hyperplane is obtained after the training step and
the classification accuracy is satisfied, the given task (data)
could linearly be separated in a high-dimensional feature
space using this hyperplane.
For two-class classification, the optimal separating

hyperplane in SVM to separate two sets of data in a
feature vector space is defined by w→:x→ þ b ¼ 0, where
x→ is the feature vector space, w→ is the normal vector to
the hyperplane, and b is the offset of the hyperplane
from the origin. Given M training feature vectors
x→k ; 1≤k≤Mgf , and the corresponding ground-truth

classification result {yk ∈ [1, −1], 1 ≤ k ≤ M}, the opti-
mal hyperplane coefficients vector w→ is generated as
follows

min
1
2

→w
�� ��2; s:t:yk Γ →w;→x

k

	 

þ b

h i
≥1; 1≤k≤M ð5Þ

where Γ(·) denotes a kernel function [13]. Linear, polyno-
mial, radial basis function (RBF), and sigmoid are widely
used as SVM kernels. In our tasks, we use the RBF kernel
function which performs better than other kernels.
The SVM training builds a model that is able to distin-

guish the belonging class of any future data based on the



Xu et al. EURASIP Journal on Image and Video Processing 2013, 2013:3 Page 7 of 18
http://jivp.eurasipjournals.com/content/2013/1/3
support vectors obtained by the training dataset. Any
new feature vector x→i is classified according to the out-
put of the decision function:

f →xi
� � ¼ XM

k¼1

αkykΓ
→xk ;

→xi
� �þ b ð6Þ

where αk is the Lagrange multiplier. If f →xi
� �

≥0 , it

means →xi belongs to class y = 1, and if f →xi
� �

< 0, it

means →xi belongs to class y = −1.
An example of cavity candidate detection using GTM +

LHFC (note: LHFC includes the LBP and HOG features) is
shown in Figure 9. Figure 9a shows the original CXR
(a)

(c)

(d)

(e)

Figure 9 An example of cavity candidates detection using the propos
in ULZ obtained using GTM + LHFC where the green rectangular windows
the true cavity annotated by radiologists; (c) magnified candidate windows
vector flow (IFVF) results of C1–C3 with the help of HIE; (f) final cavity dete
detected cavity, while the cyan ones are the non-cavity contours.
image, and Figure 9b shows three detected TB cavity can-
didates, C1, C2, C3. The magnified images of these candi-
dates are also shown in Figure 9c. To eliminate the false
positive candidates (C1 and C3), further contour segmenta-
tion and fine feature classification are necessary.
3.3. HIE
As shown in Figure 9b, the GTM + LHFC detects a large
number of cavity candidates some of which may be false
positives (e.g., C1 and C3 shown in Figure 9b). In this
section, we present a technique to enhance the cavity
feature in a candidate, which will help in reducing the
number of false positives. In order to reduce the effect
(b)

(f)

ed technique. (a) Original CXR image; (b) candidate detection results
(C1, C2, C3) represent the candidates, and the blue dotted contour is
: C1–C3 (left to right); (d) HIE results of C1–C3; (e) improved fluid
ction results using fine feature classification. Red contour is the
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of noise and irrelevant anatomical structures or abnor-
malities, we apply the HIE to enhance the candidates.
Note that the Hessian matrix has been applied in the lit-
erature to enhance local patterns such as plate-like, line-
like, or blob-like structures [15]. The proposed HIE has
three steps, which are described below.

Step 1. Laplacian of Gaussian smoothed image: In this
step, three Laplacians (in three directions) of a
Gaussian smoothed image, at scale σ, are
obtained by convolving a cavity candidate with
the second derivative of Gaussians as follows.
Figure 1
probes i

example,
where I(x, y) is the candidate and G is the Gaussian
kernel. Note that for a candidate of size 75 × 75,
each of the three L matrices in Equation (7) will
have a size of 75 × 75. Figure 10 shows the second
derivative of a 1D Gaussian kernel. The intrinsic
characteristic of this analysis is that the second
derivative of the Gaussian kernel at scale σ generates
a probe kernel that measures the contrast between
the regions inside and outside the range (−σ, σ) in
the direction of the derivative.

Lxx x; y; σð Þ ¼ σ2I x; yð Þ∗Gxx x; y; σð Þ
Lxy x; y; σð Þ ¼ σ2I x; yð Þ∗Gxy x; y; σð Þ
Lyy x; y; σð Þ ¼ σ2I x; yð Þ∗Gyy x; y; σð Þ

8<
: ð7Þ

Hessian matrix calculation: For a given σ value,
Step 2.
the Hessian matrix corresponding to pixel
(xi, yi) in the candidate is calculated as
follows

Hσ xi; yið Þ ¼ Lxx xi; yi; σð Þ Lxy xi; yi; σð Þ
Lyx xi; yi; σð Þ Lyy xi; yi; σð Þ

� �

ð8Þ
0 The second derivative of a 1D Gaussian kernel
nside/outside contrast of the range (−σ, σ). In this

Gxx xð Þ ¼ x2
σ4 � 1

σ2

	 

e�

x2

2σ2 , σ = 1.
where Lxy(xi, yi, σ) = Lyx(xi, yi, σ). A known
problem of multi-scale analysis using Hessian
matrix is that over-blurring can occur during
the multi-scale smoothing, which may in-
crease false detections [16]. Therefore, in this
article, we set the σ value equal to the object
scale calculated using the method described in
[17]. The object scale at every pixel is defined
as the radius of the largest hyperball centered
at the pixel such that all pixels within the ball
satisfied a predefined image intensity homo-
geneity criterion. Object scale represents the
geometric information (size) of the local struc-
ture. Object scale at the center of a blob-like
structure is approximately equal to the radius
of the blob in pixel size.

Step 3. Image enhancement using eigenvalues of Hessian
matrix: The pixel (xi, yi) in the candidate with
intensity I(xi, yi) is enhanced using the following
equation:

IE xi; yið Þ ¼ λ1j jI xi; yið Þ ð9Þ
where λ1 and λ2 are eigenvalues of Hσ(xi, yi),
and |λ1| ≥ |λ2|. The intuition in Equation (9) of
using only the largest eigenvalue for cavity en-
hancement is based on the fact that the Hessian
matrix has a strong edge effect (for those strong
edge points, |λ1| >> |λ2| ≈ 0) [18]. Although
cavities are usually embedded in noisy sur-
roundings due to the neighboring necrosis
caused by cavitation, the inside of a cavity (filled
with air or fluid or both) still has lower intensity
than the background. Thus, the strong edge be-
tween the inside and outside of a cavity gives a
good clue to indentify the contour of cavity. Dif-
ferent techniques of edge enhancement were
evaluated in this study, such as contrast-limited
adaptive histogram equalization [19], fuzzy C
means [20], and speckle reducing anisotropic
diffusion technique [21], and the proposed HIE
technique achieves the best performance.

The enhanced window candidates C1–C3 are
shown in Figure 9d. It is observed that the
annular ring-like structure is greatly enhanced.
3.4. ACS
Active contours or deformable models are generally
divided into two types: parametric active contours (typ-
ically known as snakes) and geometric active contours
(level set). The snake-based techniques are often faster
than level sets in virtue of efficient numerical methods.
In addition, the level sets produce more false detections
due to its multiple objects capturing ability. Therefore,
in this article, we use a snake-based technique known as
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IFVF [22]. In this technique, a snake contour repre-
sented by v evolves through the candidate window to
reach a force balance equation Fint(v) + Fext(v) = 0,
where Fint(v) is the internal force constraining contour’s
smoothness, and Fext(v) is the external force attracting
the contour toward image features.
The IFVF is a fast and accurate edge-based snake tech-

nique, because of the introduction of both static and dy-
namic terms in the external force.

Fext vð Þ ¼ Fstatic vð Þ þ Fdynamic vð Þ ð10Þ
The Fstatic could be a static external force which over-

comes the edge leakage problem, e.g., we use boundary
vector flow (BVF) proposed in [23] as the Fstatic. The BVF
extends the capture range further to the entire image based
on simpler interpolation. Four potential functions Ψx, Ψy,
Ψxy, and Ψyx are computed using line-by-line interpola-
tions in the horizontal, vertical, and two diagonal direc-
tions. The Fstatic is calculated as follows

Fstatic ¼ Φ1 ¼ ∇Ψ x;∇Ψ y
� �

or

Fstatic ¼ Φ2 ¼
ffiffiffi
2

p

2
∇Ψ xy þ ∇Ψ yx
� �

;

ffiffiffi
2

p

2
∇Ψ xy � ∇Ψ yx
� �� �

ð11Þ

The Fdynamic is achieved in three steps.

1. Given an HIE-enhanced candidate image, a binary
edge map B is generated using smoothing technique
speckle reducing anisotropic diffusion [21] and the
Canny edge detector [24].

2. By comparing the edge map points to the current
snake contour points (snaxels), a new control point
(xc,yc) is selected by considering the point which con-
tributes more to the distance between snake contour
and object boundary [22]. We use the Hausdorff dis-
tance to find such a point. Assuming two sets of
points S and O, the Hausdorff distance is then
defined as h S;Oð Þ ¼ maxo∈O mins∈S d s; oð Þf gf g
where d(s,o) is the Euclidean distance between a
snaxel s and a object boundary point o. So, the con-
trol point is chosen as the point on the object bound-
ary which has the Hausdorff distance value.

3. For any pixel (x,y) on the contour v, its Fdynamic(x,y)
is then calculated as follows

Fdynamic x; yð Þ ¼ 1� Bð Þδ ∇d0 x; yð Þ
∇d0 x; yð Þk k ð12Þ

where δ = ±1 controls the outward or inward direc-
tion. In this article, we use δ = 1, as the initial con-
tour is automatically set as a small circle in the
center of the window image with radius of 3 pixels.
d’(x,y) is the Euclidean distance between points (x,y)
and (xc,yc). Note that the term (1 − B) makes the Fdy-
namic zero for those points which already reach edges.
Based on the edge map generated from the enhanced
candidates images using HIE, the IFVF segmentation
result of these candidates C1–C3 are shown in
Figure 9e. The stopping criterion of the evolution is
determined by computing the difference in locations
(defined by the x and y coordinates) of the corre-
sponding contour points between two consecutive
iterations. If it is less than a convergence threshold t,
the active contour evolution will be stopped. In our
experiments, t is empirically set to 0.05. Based on our
tests, there is no significant improvement even if t is
smaller than 0.05.

3.5 CFC
The last module in our proposed technique is the CFC,
which performs the fine scale feature classification.
Three types of contour-based features, shape, edge and
region, are extracted for the final cavity detection. These
features include circularity measure [25], GICOV [26],
and Kullback–Leibler divergence (KLD) [27] between
the pixel intensity distributions inside and outside the
contour. The computations of these three features are
explained below.

1. Assuming a contour has one centroid, L points are
selected from the contour in L cardinal directions.
The circularity of the contour is then calculated as
scaled variance as follows

C ¼ var d xi; yið Þð Þ
max d xi; yið Þð Þ ; i ¼ 1; 2; . . . ; L ð13Þ

where d(xi,yi) is the distance from the centroid to
the contour point (xi,yi) in the ith direction. In this
article, we use L = 16. The circularity feature is a
feature which could effectively reduce the false
positives.

2. Based on the observation that the inner boundary of
a cavity often has dark-to-bright transition, the
GICOV value of L points on the contour is calculated
as follows
(a) For the contour point (xi,yi) in the ith direction, its
gradient in normal direction gn(xi,yi) is calculated as
gn xi; yið Þ ¼ ∇I xi; yið Þ:n→ xi; yið Þ , where n

→
xi; yið Þ is

the unit outward normal vector at this point.
(b)The mean and standard deviation of gn, denoted by

m and s, are then calculated as m ¼ 1
L

XL
gn xi; yið Þ

L

i¼1

and s2 ¼ 1
X

gn xi; yið Þ �mð Þ2



Table 1 Fine feature values of three contours in Figure 9e

Circularity GICOV KLD

Contour-1 0.11 15.33 1.49

Contour-2 0.15 13.68 2.28

Contour-3 0.69 15.26 0.28
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(c) The GICOV value of the contour is finally
achieved using following equation:

GICOV ¼ m

s=
ffiffiffi
L

p ð14Þ

3. Given the probability distributions, P and Q, of the
pixel intensity values inside and outside the cavity,
respectively, the KLD for a candidate window is cal-
culated as follows

KLD ¼
XB
i¼1

P ið Þ ln P ið Þ
Q ið Þ ð15Þ
Figure 11 Sample histograms of cavity properties. (a) Histogram of dia
four categories: “Thick” (≥16 mm), “Intermediate” (4–15 mm), “Thin” (<4 mm
where B is the number of bins in the histogram span
by P and Q. The KLD compares the difference in
gray level distribution between the pixels inside and
outside the contour.

Table 1 shows the above feature values corresponding to
three contours shown in Figure 9e. As in the coarse feature
classification step, we select the SVM as the fine feature
classifier in this step. Based on the feature values (Table 1),
the trained SVM classifier identifies the Contour-2 as a
positive and Contour-1 and Contour-3 as negatives. The
final detected cavity (corresponding to Contour-2) in the
CXR image is shown in Figure 9f as the red contour. The
result matches with the ground truth.

4. Performance evaluation
In this section, we evaluate our proposed coarse-to-fine
dual scale technique with respect to three aspects: the ef-
fectiveness of candidate selection, the accuracy of contour
segmentation, and the accuracy of final cavity detection.
meter; (b) histogram of circularity; (c) histogram of wall thickness of
), and “Uncertain” (wall not discernible).



Table 2 Parameters configuration in the proposed
technique

Modules Parameters names Parameters values

GTM Template size 75 × 75 pixels

Wall thickness σ [6,20]

Aspect ratio a/b [1, 1.6]

Rotation angle θ {0°,45°,90°,135°}

LHFC Window size 75 × 75 pixels

Cell size 8 × 8 pixels

Block size 2 × 2 cells

Block overlap 0.5

SVM parameters Default values in LIBSVM
software [28]

ACS Snake evolution direction δ 1

Convergence threshold t 0.05

CFC SVM parameters Default values in LIBSVM
software [28]
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4.1. Experimental dataset and parameters configuration
A cavity dataset of 35 CXR images containing 50 cavities
is obtained from the University of Alberta Hospital. All
the images were independently read by three experi-
enced chest radiologists who are specialized in TB diag-
nosis. The presence of TB cavities was confirmed by the
agreement of at least two radiologists. The sample histo-
grams of cavity properties such as diameter, circularity,
and wall thickness are shown in Figure 11. From the his-
tograms, it can be seen that the cavities vary in dia-
meters while their circularities range mainly from 0.15
to 0.2 and most of them have intermediate thickness.
For computational efficiency, the original CXR images
are resized as 512 × 512 (or close to this size) with a
fixed pixel spacing [0.8 mm, 0.8 mm]. Since all the cav-
ities are located in the ULZ, a similar preprocessing pro-
cedure as described in [7] was applied to segment the
target lung region, which reduces the processing area to
a smaller rectangular bounding box. Figure 12 shows an
example of the target area.
The proposed cavity detection technique is implemen-

ted in MATLAB 2007b on an Intel Pentium 4 CPU 2.8
GHz with 2 GB RAM computer. All the parameters in
the proposed technique are listed in Table 2. The SVM
classifiers in both coarse and fine feature classification
are built using LIBSVM software [28]. To train the SVM
classifiers, we applied the ‘leave-one-out’ method [29]
since the size of samples with cavities is small. For ex-
ample in LHFC, to detect the candidate regions in one
of the 30 CXR images, we use the remaining 29 CXR
images for the training. The training set contains the
Figure 12 An example of the target area. The enhanced
subimage inside the green rectangle is the result of the
preprocessing procedure.
LBP and HOG feature vectors extracted from windows
with and without cavities (positive and negative samples)
in these 29 CXR images. Note that the negative samples
for training were selected from the contralateral position
of the positive samples based on the approximate sym-
metry of the lung field. The SVM classifier in CFC is
trained in a similar way.

4.2. Effectiveness of candidate selection
The proposed coarse feature classification technique for
candidate detection is evaluated by the MR, which is cal-
culated as follows

MR ¼ of Cavities Excluded from Candidates
Totalof True Cavities

� 100%

ð16Þ

A preliminary experiment using only GTM for candi-
date detection has already been reported in [30]. We an-
ticipate that by integrating with other novel techniques,
a better result can be obtained. Thus, we used different
combinations of LBP and/or HOG features together with
GTM, and checked whether the MR could be reduced.
Table 3 shows our test results.
From the results, we observe that the HKG frame-

work for TB cavity detection [7] missed more cavities
than our proposed approach. HKG is based on an
adaptive thresholding on the mean-shifted clustered
image for candidate detection. Its high MR is due to
two reasons. First, the mean-shift clustering approxi-
mates nearest neighbors intensities and space infor-
mation but neglects the texture. Second, the adaptive
threshold, which is a quadratic polynomial of the
GICOV feature, is not suitable for modeling all



Table 3 Candidates detection results

HKG [7] GTM [30] GTM + LBP GTM + HOG GTM + LBP + HOG

Number of cavities 50 50 50 50 50

Number of candidates 170 164 315 229 160

Number of missing cavities 22 18 10 17 7

MR (%) 44 36 20 34 14
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shapes, especially when the boundary of a cavity is
weak. Figure 13 compares the detection results of
HKG and our technique. The green boxes represent
cavity regions reported by the classifier. In Figure 13a,
HKG cannot identify both cavities due to the failure
of mean-shift clustering in the noisy ULZ. Our tech-
nique is able to identify the two cavities (Figure 13b).
Figure 13c is yet another example showing the adap-
tive threshold value used in HKG unable to identify
the cavity. However, our technique is able to detect
all cavities correctly (Figure 13d).
Using the same parameter values for LBP and HOG

as in the literature, we found that a combination of
LBP and HOG together with GTM achieved better
(a)

(c)

Figure 13 Comparison of candidates detection between HKG [7] and th
from the proposed technique. Green regions in the images are cavity cand
the true cavities annotated by radiologists.
performance. Our finding is consistent with the results
in human detection using LBP and HOG features [10].
HOG performs poorly when the background is clut-
tered with noises. LBP is able to alleviate this defi-
ciency. It can filter out noises following the uniform
pattern estimation. However, if LBP is used alone with-
out HOG, the entire ULZ will be extracted if some
other abnormalities are also present in the area. In that
case, the HOG helps to reduce the false positives based
on the available edge information. Figure 14 illustrates
the complementary effect of LBP and HOG. The win-
dow reported by the classifier should contain a
complete cavity in order to be qualified as a positive
candidate. Note that in the first row second column
(b)

(d)

e proposed technique; (a, c) the results of HKG, (b, d) generated
idates regions reported by the classifier, and blue dotted contours are



GTM+LBP GTM+HOG GTM+LBP+HOG

(a) (b) (c)

(d) (e) (f)

Figure 14 Comparison of candidate detection in the coarse feature classification step using (a, d) GTM + LBP, (b, e) GTM + HOG, (c, f)
GTM + LBP + HOG. Note that in the first row HOG misses the cavity but LBP is able to detect it. In the second row, LBP misses the small cavity
but HOG can detect it. In both rows our technique is able to detect all the cavities.
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when using only HOG, no reported window contains a
complete cavity. The HOG performs poorly when the
background is cluttered with noises, and the edge infor-
mation is no longer reliable. Similarly, in the second
row first column, when using only the LBP, the small
cavity is missing because no reported window contains
the complete small cavity, and only the larger cavity is
fully contained in a reported window.
The above test results show that combining the

LBP and HOG features for capturing the texture and
gradient information around the cavity region, and
using the GTM for shape recognition, contributes to
the low MR of the proposed coarse feature classifica-
tion technique.

4.3. Accurate contour segmentation
We evaluate segmentation accuracy using the following
Tanimoto measure (TMM) [7]:

TMM ¼ Rc \ Rg

�� ��
Rc [ Rg

�� �� ð17Þ

where Rc denotes the region enclosed by the contour
generated by the segmentation techniques, such as
DBC-GVF [7] and our IFVF [22]; Rg denotes the region
of a TB cavity that is enclosed by the ground-truth con-
tour manually drawn by radiologists; and ‖.‖ denotes the
cardinality (number of pixels). TMM = 0 indicates that
the segmented contour has no intersection with the
ground truth, while TMM = 1 indicates that the segmen-
ted contour is identical to the exact cavity. To improve
the segmentation accuracy, we apply the HIE on the
candidates before segmentation.
The performance of the DBC-GVF and the IFVF tech-

niques with and without the HIE is shown in Table 4.
Note that around 10% accuracy improvement is achieved
for both DBC-GVF and IFVF when HIE is incorporated.
The results are also more robust as demonstrated by the
lower standard deviations of the TMM. Figure 15 pre-
sents subjective comparison of different segmentation
techniques. With the HIE, the segmented contours are
closer to the ground truth compared to the same techni-
ques without the HIE.
Note that image patterns, even without cavities, may

generate close to ring-like shape after the HIE step.
Figure 16 shows some of these cases. For example, the
image in the bottom row contains a pattern similar to
a cavity. To eliminate this type of candidates, the fine
scale feature classification step in our approach is ne-
cessary. The accuracy of our final cavity detection is
evaluated in the next section.



Table 4 Segmentation accuracy evaluation

DBC-GVF without HIE (%) DBC-GVF with HIE (%) IFVF without HIE (%) IFVF with HIE (%)

Average of TMM 55.1 64.6 56.8 67.1

Standard division of TMM 15.8 12.6 12.2 9.3

Mean of TMM 58.2 64.9 59.3 66.1
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4.4. Accuracy of final cavity detection
Before performing the final cavity detection, 160 can-
didate contours are divided into cavity and non-cavity
contours. Candidate region reported by the classifier
as highlighted by the green windows in Figure 12 may
not contain true cavities. Also, even if a reported win-
dow contains the entire cavity, its segmented contour
may not be the same as the ground truth. To evaluate
Ground 
Truth

HIE 
Result

DBF-GVF 
without HIE

Figure 15 Cavity segmentation result comparison using different edg
cavity is more and more difficult to identify. Blue contours are the true cav
segmentation results.
the accuracy of the final contour classification, we
need to impose a value TMM > 0.7 (based on the seg-
mentation accuracy of 67.1% reported in Table 4), in
order to qualify a candidate to be a true cavity; other-
wise it is considered as non-cavity. Three contour-
based features (circularity, GICOV, and KLD) are
extracted from the candidate contours for the final
cavity classification. To evaluate the performance of
DBF-GVF with 
HIE

IFVF 
without HIE

IFVF 
with HIE

e-based snakes with and without HIE. From top to bottom, the
ities annotated by radiologists. Green contours are the computer



Candidates
without Cavity

HIE 
Result

IFVF
with HIE

Figure 16 Segmentation results of candidates without cavity.
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classification, sensitivity, specificity, and accuracy are
calculated as follows.
Sensitivity ¼ Number of Correctly�Detected Cavity Cont
Total Number of Cavity Contours

Specificity ¼ Number of Correctly�Detected Non�Cavity
Total Number of Non�Cavity Conto

Accuracy ¼ Number of Correctly�Detected Contours
Total Number of Candidates Contours

�

ours� 100% ð18Þ

Contours
urs

� 100% ð19Þ

100% ð20Þ



Table 5 Cavity detection evaluation

Sensitivity (%) Specificity (%) Accuracy (%)

Circularity + GICOV [7] 62 46 54

Circularity + GICOV + KLD 70 60 65
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For our sample size, we use cross-validation method
[29] for the SVM classification. The classification result
for the 160 candidate contours is shown in Table 5. It
can be observed that the detection accuracy is increased
by more than 8% in our approach after adding KLD
feature. Figure 17 shows cavity detection results of
HKG [7] and the proposed technique, which demon-
strate that our technique can detect more true cav-
ities and detect fewer false cavities. As illustrated in
Original CXR with Ground Truth HKG [6] Cavity D

Figure 17 Cavity detection comparison between HKG [7] and the pro
annotated by radiologists. Red contours are the detected cavities, while the
Figure 17, the proposed cavity detection system iden-
tifies all cavities annotated by the radiologists and
there is only one false alarm. The presence of cavities
in the upper half of the lungs, especially when there
are multiple or bilateral cavities, should raise suspi-
cion of TB in the appropriate epidemiologic and/or
clinical context. Unfortunately, in practice, a lot of
these findings are not mentioned in the radiologist’s report,
because the epidemiologic or clinical information, neces-
sary to raise suspicion, is not provided by the ordering
physician on the requisition. This is often the case in geo-
graphic regions where TB rate is low. Based on the clini-
cian’s perspective, a relatively higher false positive rate is
better than false negatives because the latter can cause an
infectious TB to spread. Even with false positives, clinicians
find automatic cavity detection system helpful in reducing
etection Result Proposed Cavity Detection Result

posed technique. Blue dotted contours are the true cavities
cyan ones are the non-cavity contours.



Table 6 Cavity detection evaluation of E-Group

Sensitivity (%) Specificity (%) Accuracy (%)

Circularity + GICOV [7] 65 78.2 71.6

Circularity + GICOV + KLD 78.8 86.8 82.8
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a large number of true negatives and radiograph examina-
tions. This is beneficial given the limited radiologists avail-
able particularly in remote communities and developing
countries.
The radiologists also classified the true cavity contours

into two categories: E-Group and D-Group, containing
cavities which are ‘easy’ or ‘difficult’ to identify, respect-
ively. The D-Group contains cavities even radiologists
found them difficult to identify without other demo-
graphic or additional information. False cavity contours
were then combined with each of these two groups. The
cross-validation SVM classification results of these
groups are shown in Tables 6 and 7. Observe that on
average the classification accuracy in each group is
higher than the result reported in Table 5. The perform-
ance of the E-Group is significantly improved by adding
the KLD feature. In the D-Group, although the intensity
variation inside and outside a cavity changes only slightly
making it very difficult to identify the contour even for
radiologists, there is still improvement in the detection
result. This shows that the classifier can perform better
if trained using more specific knowledge.
5. Conclusions
In this article, we proposed an efficient coarse-to-fine
dual scale feature classification technique for TB cavity
detection in chest radiographs. Experimental results
demonstrate that the proposed technique outperforms
existing methods in three aspects. First, a lower MR is
achieved because in the proposed method local cavity
region-related coarse features, such as geometric, tex-
tural, and gradient features, are taken into consideration.
Second, edge-based segmentation becomes more accur-
ate by incorporating HIE to enhance the contours.
Third, the final cavity detection accuracy is greatly
increased by introducing the fine scale feature classifica-
tion using three types of contour-related features, which
includes shape, edge, and region. This study contributes
in the development of CAD systems for infectious TB
diagnosis, because of the higher detection rate and lower
MR compared to other techniques. Future work will
Table 7 Cavity detection evaluation of D-Group

Sensitivity (%) Specificity (%) Accuracy (%)

Circularity + GICOV [7] 57.6 88 72.8

Circularity + GICOV + KLD 69.4 81.6 755
focus on exploring novel algorithms to model other
characteristics of infectious TB.
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