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Abstract

In this paper, we propose a variational segmentation model to deal with intensity inhomogeneity and Poisson
noise. An energy functional is first proposed, which uses a data-fidelity term deduced from Poisson distribution
instead of the usual L2 norm as a measure of fidelity. Due to the new data-fidelity measure, this energy functional
can fit the image intensity more accurately while it can diminish the influence of Poisson noise on segmentation
results. We then reformulate the energy function as globally convex formulation, which allows for more flexible
initialization. The final convex energy functional is minimized via the dual formulation instead of the usually used
gradient descent method. Experimental results show that the proposed model can efficiently segment images with
intensity inhomogeneity and Poisson noise.
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1 Introduction
Image segmentation is one of the fundamental and im-
portant tasks in image analysis and computer vision. The
segmentation problem can be formulated as follows: given
an image I ∈ L2(Ω) on a two-dimensional domain Ω
(assumed to be bounded, smooth, and open), one seeks
out a closed ‘edge set’ C and all the connected compo-
nents Ω1,…,Ωk of Ω\C, so that by certain suitable visual
measure, the image I is discontinuous along C while
smooth or homogeneous on each segment Ωi (i = 1, …, k).
Until now, a wide variety of techniques including vari-
ational methods [1] has been proposed to solve the image
segmentation problem.
The variational segmentation methods are characterized

by deriving an energy functional from some a priori math-
ematical model and minimizing this energy functional
over all possible partitions. The Mumford-Shah model [2]
is a classical variational segmentation method, which con-
tains a data-fidelity term, regularization on the model, and
regularization on the partitioning. Based on this frame-
work, Chan and Vese [3] developed the frequently used
variational segmentation model, which simplifies the
Mumford-Shah model to the case of piecewise constant
approximations of the image intensity. However, the
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Chan-Vese model tends to rely on global information to
guide contour evolution, and thus fails to segment the im-
ages with intensity inhomogeneity [4,5]. Besides, each re-
gion (foreground or background) in Chan-Vese model is
also considered as a Gaussian distribution with different
mean and same deviation [6]; therefore, they are not suit-
able for images with Poisson noise.
Intensity inhomogeneity often occurs in real images,

especially in medical images, such as X-ray radiography/
tomography and magnetic resonance (MR) images
[4,5,7]. The intensity inhomogeneity usually refers to the
slow, non-anatomic intensity variations of the same tis-
sue over the image domain. For example, in MR images,
it often appears as an intensity variation across the
image, which arises from radio frequency coils as well as
variations in object susceptibility. Although the presence
of intensity inhomogeneity is usually hardly noticeable
to a human observer, variational segmentation models
such as the Chan-Vese model [3] are highly sensitive to
the spurious. Thus, segmentation of such medical im-
ages usually requires intensity inhomogeneity correction
as a preprocessing step [8].
Poisson noise also appears in a wide class of real-

world applications, e.g., positron emission tomography
in medical imaging [9], fluorescence microscopy [10]
and radiography images [11,12]. It is signal-dependent
and obeys a Poisson distribution, which describes a
an Open Access article distributed under the terms of the Creative Commons
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signal-dependent perturbation of an image. In particular,
the radiograph images are typical images with Poisson
noise, which are determined by photon counting statis-
tics and are described as particle-limited, emphasizing
the quantized; furthermore, due to technical limitations
or artifacts introduced by the object being imaged, the
radiograph images such as X-ray is often created with
intensity inhomogeneity. In [13], Lee et al. studied the
segmentation problem of images with Poisson noise.
However, this model was based on intensity homoge-
neous (roughly constant) statistics and, thus, it was not
able to deal with intensity inhomogeneity.
In order to handle intensity inhomogeneity, Li et al.

[5] proposed the region-scalable fitting (RSF) model (ori-
ginally termed as local binary fitting (LBF) model [4]) in
a variational level set formulation. In the RSF model, the
RSF energy is defined over the neighborhood of each
image pixel, and the active contour is deformed to
minimize the integration of the RSF energy over the
whole image domain. With two extra regularization
terms, this final energy minimization problem is
converted to solve a level set evolution equation by
using the gradient descent method. The RSF model can
deal with intensity inhomogeneity accurately, but it is
quite sensitive to contour initialization. Because the gra-
dient descent is a very slow numerical method, the RSF
model generally converges slowly when implemented
numerically. Besides, the RSF model is derived from the
Mumford-Shah model [2] that implicitly assumes the
given image to be biased by additive Gaussian noise;
thus it is not suitable for images with signal-dependent
noise (e.g., Poisson noise).
Following the RSF variational model, various exten-

sions and analysis have been studied [7,14-16], among
others. In [7], Wang et al. proposed a local and global
intensity fitting model in a variational level set formula-
tion. Zhang et al. [14] proposed a local image fitting
(LIF) model by minimizing the difference between an
original image and the fitted image. He et al. [15]
presented a scheme of improvement on the RSF model
in terms of robustness to initialization and noise. Wang
et al. [16] proposed a novel algorithm by using a piece-
wise smooth approximation to image. However, these
models have some common drawbacks; in particular,
they are not suitable to segment images with Poisson
noise because these models are also formulated in view
of the Mumford-Shah energy functional [2].
In this study, we propose a variational model to seg-

ment images with intensity inhomogeneity and Poisson
noise. Based on the RSF model [5] and inspired from
variational Poisson denoising model [17], we first
propose a new energy functional with the data-fidelity
term deduced from Poisson distribution, which is
more suitable for images corrupted by Poisson noise.
We then reformulate this energy functional into a
convex formulation to guarantee the global minima.
We also use the weighted total variation (TV) norm
as the regularization term to detect the boundaries
more easily. Finally, in order to implement the pro-
posed model, we adopt the dual formulation which is
introduced by Chan et al. [18] and Chambolle [19]
for denoising and is later adapted by Bresson et al.
in [20] for segmentation.
The remainder of this paper is organized as follows. In

Section 2, we briefly review the level set method, two
denoising models [17,21] and the RSF model [5]. The
proposed model is introduced in Section 3. The numer-
ical results are given in Section 4. This paper is con-
cluded in Section 5.

2 Related works
2.1 Level set method
According to the level set method [22], a closed curve C(t)
is represented implicitly by the zero level set of a Lipschitz
function ϕ (x, t), called a level set function, with the
following properties:

ϕ x; tð Þ > 0; x ∈ inside Cð Þ
ϕ x; tð Þ ¼ 0; x ∈C
ϕ x; tð Þ < 0; x ∈ outside Cð Þ

8<
: ð1Þ

Evolving the curve C in normal direction with speed F
amounts to solving the following level set evolution
equation:

∂ϕ
∂t

¼ F ∇ϕj j; ð2Þ

with the initial condition ϕ (x, 0) = ϕ 0(x).
Alternatively, the evolution equation for the level-set

function also can be directly derived from the
minimization problem for the energy functional over the
level set functions via the gradient descent [3-7]:

∂ϕ
∂t

¼ Fδε ϕð Þ; ð3Þ

where δε(ϕ) is the smooth Dirac function, which is the
derivative of the smooth Heaviside function. A segmenta-
tion of the image is given by the two regions {x|ϕ(x, t) > 0}
and {x|ϕ(x, t) < 0}. The steady state solution of the
Equation 3 hopefully gives a useful edge contour extrac-
tion or segmentation of the image.

2.2 Two related denoising models
A very successful image denoising model is that of
Rudin, Osher, and Fatemi (ROF) model [21] which
uses TV regularization with data-fidelity term. Let
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I : Ω⊂R2→R be a given gray image defined on image
domain Ω, the ROF model minimizes the energy
functional as

min
u∈BV Ωð Þ

∫Ω ∇uj jdxþ μ∫Ω I−uj j2dx� �
; ð4Þ

where BV(Ω) is the space of functions of bounded
variation defined on Ω, and μ > 0 is a parameter to
be chosen.
In (4), ∫Ω|∇ u|dx is the TV regularization term to

remove the noise, and ∫ Ω|I − u|2dx is the L2 norm data-
fidelity term that measures the dissimilarity between ori-
ginal image I and the reconstructed image u. It is shown
in [23] using probability arguments that the L2 norm
data-fidelity term is most appropriate for removing addi-
tive Gaussian noise. However, many important data con-
tain noise that is signal dependent and obeys a Poisson
distribution; thus removing this noise without losing
image features requires a data-fidelity term reflecting the
noise characteristics.
In [17], Le et al. proposed a variational model for

denoising images with Poisson noise:

min
u∈BV Ωð Þ

∫Ω ∇uj jdxþ μ∫Ω u−I log uð Þð Þdxf g: ð5Þ

The energy in (5) differs from the energy functional
of ROF model only in the data-fidelity term; the L2
norm data-fidelity of the original model is replaced by
F(u) = ∫Ω(u − I log(u))dx as a measure of fidelity. We
refer the reader to [17] for the derivation of this data-
fidelity term using Bayesian statistics. As pointed out in
[17], F(u) is more suitable for Poisson noise. Recently,
Chartrand and Staneva [24] have shown that the data-
fidelity term reflecting the noise characteristics of the
image can provide a better image reconstruction.

2.3 Region scalable fitting model
Let I : Ω⊂R2→R be a given gray image defined on image
domain Ω. Let C be a closed contour in Ω, which sepa-
rates Ω into two regions: Ω1 = inside(C) and Ω2 = out-
side(C). For a given point x ∈Ω, the RSF energy is
defined as [4,5]

εRSFx C; f 1 xð Þ; f 2 xð Þð Þ ¼
X2
i¼1

∫y∈Ωi K σ x−yð Þ I yð Þ−f i xð Þj j2dy

ð6Þ

where Kσ(z) is a kernel function.
To obtain the entire object boundary, it is required to

find a contour C that minimizes the energy εRSFx for all
x ∈Ω. This can be achieved by minimizing the integral
of εRSFx over Ω:

εRSF C; f 1; f 2ð Þ ¼ ∫ΩεRSFx C; f 1 xð Þ; f 2 xð Þð Þdx ð7Þ
In addition, it is necessary to smooth the contour by

penalizing its length. Therefore, the following energy
functional is defined in [5]:

ε C; f1; f2ð Þ ¼ εRSF C; f1; f2ð Þ þ ν Cj j ð8Þ

To handle topological changes, the energy ε(C, f1, f2) is
incorporated into a variational level set formulation with
two extra internal energy functionals. They then use the
gradient descent method to solve the variational level set
formulation.
The RSF model can deal with intensity inhomogeneity

accurately and efficiently; however, it easily gets stuck in
local minima for most of the contour initializations. This
makes the RSF model sensitive to the selection of initial
contours. Besides, the RSF model uses L2 norm to meas-
ure the difference between the fitted image and the ori-
ginal image; thus, it is not suitable for images with
Poisson noise.

3 The proposed model
3.1 Intensity fitting energy and its level set formulation
In this section, we first define an intensity fitting energy
for a given contour C and then change it into the energy
directly defined on level set functions.
Let I : Ω⊂R2→R be a gray image and C be a closed

contour in Ω with inside(C) =Ω1 and outside(C) =Ω2.
For any x ∈Ω, the local fitting energy (LFE) of the con-
tour C at x is defined as

ELFE
x C; h1 xð Þ; h2 xð Þð Þ ¼

X2
i¼1

∫y∈ΩiK σ x−yð Þ hi xð Þ−I yð Þ log hi xð Þð Þ½ �dy;

ð9Þ
where hi(x)(i = 1, 2) are two values that approximate lo-
cally image intensities in Ω1 and Ω2, respectively.
In order to extract the entire boundary of object, we

compute the integral of the energy ELFE
x C; h1 xð Þ; h2 xð Þð Þ

over Ω:

E C; h1; h2ð Þ
¼ ∫ΩELFE

x C; h1 xð Þ; h2 xð Þð Þdx;

¼ ∫x∈Ω
X2
i¼1

∫y∈Ωi Kσ x−yð Þ hi xð Þ−I yð Þ log hi xð Þð Þ½ �dy
" #

dx

ð10Þ
which is called the intensity fitting energy (IFE) of the
contour C in this paper.
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To allow contour splitting and merging naturally (i.e.,
a change of topology), we use a level set function to rep-
resent a contour C. The IFE functional of the contour C
is thus changed into the energy functional which is dir-
ectly defined on the level set functions.
Let ϕ be a level set function, and then the IFE func-

tional in (10) can be expressed as

E ϕ; h1; h2ð Þ

¼ ∫x∈Ω
X2
i¼1

∫y∈ΩKσ x−yð Þ hi xð Þ−I yð Þ log hi xð Þð Þ½ �Mi ϕ yð Þð Þdy
" #

dx

ð11Þ

where H(z) is the Heaviside function, M1(ϕ) =H(ϕ),
M2(ϕ) = 1 −H(ϕ).
In practice, the Heaviside function H(z) is approxi-

mated by a smooth function Hε(z), which is typically de-
fined by [3,5]

Hε zð Þ ¼ 1
2

1þ 2
π
arc tan

z
ε

� �� �
; ð12Þ

where ε is a positive constant. Therefore, the IFE func-
tional in (11) is rewritten as

E ϕ; h1; h2ð Þ

¼ ∫x∈Ω
X2
i¼1

∫y∈ΩK σ x−yð Þ hi xð Þ−I yð Þ log hi xð Þð Þ½ �Mε
i ϕ yð Þð Þdy

" #
dx

ð13Þ

where Mε
1 ϕð Þ ¼ Hε ϕð Þ, Mε

2 ϕð Þ ¼ 1−Hε ϕð Þ.

3.2 Description of the model
The IFE functional in (13) is not convex with respect to
ϕ ; hence, the corresponding optimization problem can
sometimes get stuck in undesirable local minima. In this
section, we propose to solve this problem by determin-
ing a globally convex formulation. Our idea comes from
[25], which reformulated the piecewise constant Chan-
Vese model [3] into a convex model.
In the following, we first derive the gradient descent

flow equation of (13) and then find a simplified flow
which has the coincident steady state solution with the
original gradient descent flow equation and finally define
a new and convex energy in view of the simplified flow.
Fixing ϕ , we minimize the functional E(ϕ, h1, h2) with

respect to the functions h1(x) and h2(x). By the calculus
of variations, it can be shown that the functions h1(x)
and h2(x) that minimize E(ϕ, h1, h2) satisfy the following
Euler-Lagrange equations:

∫ΩK σ x−yð Þ 1−
I yð Þ
hi xð Þ

� �
Mε

i ϕ yð Þð Þdy ¼ 0; i ¼ 1; 2 ð14Þ

From (14), we obtain

hi xð Þ ¼ ∫Kσ x−yð ÞI yð ÞMε
i ϕ yð Þð Þdy

∫Kσ x−yð ÞMε
i ϕ yð Þð Þdy ; i ¼ 1; 2 ð15Þ

We derive the gradient descent flow equation of (13)
with respect to ϕ. Making the interchange of variables x
and y (i.e., x = y, y = x) for (13), we have

E ϕ; h1; h2ð Þ

¼ ∫y∈Ω
X2
i¼1

∫x∈ΩKσ y−xð Þ hi yð Þ−I xð Þ log hi yð Þð Þ½ �Mε
i ϕ xð Þð Þdx

" #
dy:

ð16Þ
Interchanging the order of integration and noting that

Kσ(−z) = Kσ(z), we obtain

E ϕ; h1; h2ð Þ

¼ ∫x∈Ω
X2
i¼1

∫y∈ΩKσ x−yð Þ hi yð Þ−I xð Þ log hi yð Þð Þ½ �Mε
i ϕ xð Þð Þdy

" #
dx:

ð17Þ
Fixing h1(y) and h2(y) by minimizing (17) with respect

to ϕ using the gradient descent method, we can obtain
the gradient descent flow equation of (13) as

∂ϕ
∂t

¼ δε ϕð ÞF xð Þ ð18Þ

with

F xð Þ ¼ −∫ΩKσ x−yð Þ h1 yð Þ−I xð Þ log h1 yð Þð Þ½ �dy
þ ∫ΩKσ x−yð Þ h2 yð Þ−I xð Þ log h2 yð Þð Þ½ �dy; ð19Þ

where δε(z) =H′ε(z) = ε/π(ε2 + z2) is a smooth Dirac
function.
Since δε(z) is a non-compactly supported function, the

gradient flow Equation 18 and the following equation
have the same stationary solutions:

∂ϕ
∂t

¼ F xð Þ ð20Þ

Based on (20), we define a convex energy functional as

E ϕð Þ ¼ ∫Ωϕ xð ÞF xð Þdx; ð21Þ
which is clearly the energy functional associated with
the gradient descent flow (20).
It is necessary to smooth the level set function ϕ to

avoid the occurrence of small, isolated regions (e.g., noise
points) in the final segmentation results. Most of models
focus on the regularizations as length regularization [3],
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mean curvature regularization [22], and H1 regularization
[26]. In this study, we employ the weighted TV norm [20]
as the regularization term:

TVg ϕð Þ ¼ ∫Ωg xð Þ ∇ϕ xð Þj jdx ð22Þ
where g(x) = 1/(1 + β|∇I|2) is the edge detector function,
and β is a non-negative parameter. The weighted TV
norm can better smooth the level set function and makes
the model detect boundaries more easily. Thus, we obtain
the following energy functional

E ϕð Þ ¼ ∫Ωg xð Þ ∇ϕ xð Þj jdxþ λ∫Ωϕ xð ÞF xð Þdx ð23Þ
where λ > 0 is a parameter. The energy E(ϕ) is a convex
functional (not strictly), but it does not have a stationary
solution because of homogeneous of degree one in ϕ;
therefore, we need to restrict the solution to lie in a finite
interval such as [0, 1].
With the constraints in ϕ, we arrive at the entire

model as follows:

min
0≤ϕ≤1

E ϕð Þ ¼ min
0≤ϕ≤1

∫Ωg xð Þ ∇ϕ xð Þj jdxþ λ∫Ωϕ xð ÞF xð Þdxg:f

ð24Þ

3.3 Minimizing the proposed model by dual formulation
We solve the constrained minimization problem (24) by
the dual formulation presented in [18,19] instead of the
usually used gradient descent method. The dual formu-
lation is proposed by Chan et al. [18] and Chambolle
[19] to solve the ROF minimization problem (4) for
image denoising and is later adopted in [20] for image
segmentation.
By claim 1 in [25], we first change the constrained

problem (24) into the following unconstrained problem:

min
ϕ

∫Ωg xð Þ ∇ϕ xð Þj jdxþ ∫Ω λϕ xð ÞF xð Þ þ αψ ϕ xð Þð Þ½ �dxf g

ð25Þ
with ψ zð Þ ¼ max 0; 2 z−1

2

�� ��−1� �
.

Then we introduce one auxiliary variable φ and propose
to minimize the following approximation to (25):

min
ϕ;φ

f∫Ωg xð Þ ∇ϕ xð Þj jdxþ 1
2θ

∫Ω ϕ xð Þ−φ xð Þ½ �2dx
þ ∫Ω λφ xð ÞF xð Þ þ αψ φ xð Þð Þ½ �dxg ð26Þ

with θ > 0. One can note that if θ → 0, the functional (26)
is exactly the minimization problem (25). Moreover, the
functional in (26) is still convex, which means that we can
compute its global minimizer. However, (26) is a
minimization problem in two variables, thus, we have to
perform an alternating minimization respect to ϕ and φ.
The solving process of minimization is described in the
following two steps:
In the first step, with φ being fixed, the solution of
(26) is

ϕ ¼ φ−θdivp; ð27Þ
in which the dual variable p = (p1, p2) satisfies the fol-
lowing equation:

g xð Þ∇ θdivp−φð Þ− ∇ θdivp−φð Þj jp ¼ 0: ð28Þ
The above Equation 28 is solved by a fixed point

method: setting the step τ ∈ [0, 1/8] and p0 = 0,

pnþ1 ¼
�
pn þ τ∇ div pnð Þ− φ

θ

h i�
1þ τ

g xð Þ ∇ div pnð Þ− φ
θ

� ���� ���� �−1
;

ð29Þ
where div and ∇ are the discrete divergence and gradi-
ent operators [19], respectively:

divpð Þi;j ¼
p1i;j−p

1
i−1;j; if 1 < i < M

p1i;j; if i ¼ 1
−p1i−1;j; if i ¼ M

þ
p2i;j−p

2
i;j−1; if 1 < j < N

p2i;j; if j ¼ 1
−p2i;j−1; if j ¼ N

8><
>:

8><
>:

ð30Þ

∇uð Þi;j ¼ δþx ui;j; δþy ui;j
� �

ð31Þ

with

δþx ui;j ¼ f uiþ1;j−ui;j; if 1 ≤i < M
0; if i ¼ M

;

δþy ui;j ¼
ui;jþ1−ui;j; if 1 ≤j < N
0; if j ¼ N

:

	
ð32Þ

In the second step: with ϕ being fixed, the solution of
(26) is

φ ¼ min max ϕ xð Þ−θλF xð Þ; 0f g; 1f g ð33Þ

4 Numerical results
The proposed model has been tested with synthetic and
real images from different modalities. The level set
function ϕ is simply initialized as a binary step func-
tion taking 1 inside a region and 0 outside. The set M =
{x|ϕ(x) > 0.5} is used to extract the objects. Besides, unless
otherwise specified, we use the following default param-
eter setting: the time step Δt = 1/8, the space step Δx =
Δy = 1, σ = 5, β = 50/2552, θ = 0.1, λ = 1. We record the
iteration number and the CPU time from our experi-
ments with Matlab codes run on an PC, with AMD
Athlon (tm) 2.70GHz CPU, 2.00 GB memory, and
Matlab 7.4 on Windows 7.
First, we show the segmentation process of our model for

five typical images with intensity inhomogeneity. The five
images, which are plotted in Figure 1a,f,k,p,u, are a synthe-
tic image, a real image with T-shaped object, two blood
vessel images, and a real potatoes’ image, respectively. The



(a)         (b)          (c)          (d)          (e)

(f)         (g)          (h)          (i)          (j)

(k)         (l)          (m)          (n)          (o)

(p)         (q)          (r)          (s)          (t)

(u)         (v)          (w)          (x)          (y)
Figure 1 Segmentation results of the proposed model for five synthetic and real images with intensity inhomogeneity. First column
(a,f,k,p,u) are the original images with the initial contours. (a-y) The curve evolution process from the initial contours (in the first column) to the
final contours (in the fifth column) is shown in every row for the corresponding image.
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synthetic image is a well-known image with intensity in-
homogeneity. The T-shaped image is a real image with in-
tensity inhomogeneity due to non-uniform illumination. For
the two blood vessel images, some vessel boundaries are also
quite weak. The potatoes’ image is a multiple objects image
corrupted by intensity inhomogeneity. The first three images
(Figure 1a,f,k) have been used in the RSF model. Due to the
intensity inhomogeneity, the piecewise constant models
such as the modes [3,13] cannot segment these images. As
shown in Figure 1, our model successfully extracts the ob-
ject boundaries for these challenging images. The results
shown in Figure 1 using our model are very similar to those
of the RSF model [5]; however, our model has less iteration
numbers and computation (CPU) times than the RSF model
for the five images (see Table 1). It is clear that our model is
more efficient than the RSF model. It is guaranteed by the
following reasons: first, our proposed energy functional is
convex, which can result in the fast convergence; second, we
apply the dual formulation to the optimization problem,
which enables convergence faster.
Second, we demonstrate the robustness of the proposed

model to the Poisson noise in Figure 2. Figure 2a is the ori-
ginal image (115 × 115) that contains only two distinct gray
levels, Figure 2e was generated by adding intensity
inhomogeneity to the original image, and Figure 2i
was created by adding Poisson noise to the second image
(Figure 2e). From the second column, we can clearly see
that our model can handle these three images very well
even for the image with intensity inhomogeneity (Figure 2f)
or intensity inhomogeneity and Poisson noise (Figure 2j).



Table 1 Iterations and CPU time (in seconds) by proposed and RSF models for Figure 1

First image Second image Third image Fourth image Fifth image

Image size 125 × 121 161 × 122 111 × 110 200 × 210 156 × 155

RSF model Iterations 240 250 150 300 150

Time (s) 9.39 12.57 9.86 59.76 11.63

Our model Iterations 70 30 80 90 30

Time (s) 3.56 2.12 7.06 12.86 3.76
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To clearly see the profile of the proposed model, we plot
the 1-D cross sections at the middle column of h1(x), h2(x),
u xð Þ ¼ ∑2

i¼1Mi ϕ xð Þð Þhi xð Þ; and the original image I(x).
Column 3 shows that the fitting functions h1(x) and h2(x)
are smooth enough for the three images without or with
Poisson noise. In addition, the final fitting image u(x) can
better fit the original image I(x) (see Figure 2d,h); in par-
ticular, the fitting image u(x) shown in Figure 2l is similar
to the one given in Figure 2h, which shows that our model
can more fit the original image while it can diminish the
influence of Poisson noise. The segmentation results, the
fitting functions (h1(x), h2(x)), and the final fitting image
u(x) demonstrate the robustness of the proposed model to
the Poisson noise.
Third, we apply the proposed and RSF models to two

synthetic images with Poisson noise (see Figures 3 and 4)
(a)              (b)       

(e)              (f)        

(i)              (j)        
Figure 2 Segmentation results of the proposed model for three synth
contours. Second column (b,f,j), the final segmentation results. Third colum
dashed line) associated with the original image (black solid line). Fourth co
with the original image (black solid line).
and four real radiograph images (see Figure 5). It should
be pointed out, the results of RSF model depends on the
regularization parameter v; we choose the optimal values
of the parameter v by using a ‘coarse-to-fine’ scheme on
the test images.
Figure 3 shows the segmentation results using both

models for a synthetic palm image (108 × 130) by adding
Poisson noise. Figure 3a is the original image and
Figure 3b shows the initial contour. The results of the
RSF model and our model are shown in Figure 3c,d.
Clearly, our model achieves better segmentation accuracy
for this image with Poisson noise; it separates excellently
the two middle fingers that stuck almost together. The
final contour obtained by our model reflects accurately
the true palm shape. It is shown from Figure 3 that our
model can get accurate segmentation results for image
        (c)              (d)

       (g)              (h)

       (k)              (l)
etic images. First column (a,e,i), the original images with the initial
n (c,g,k), 1-D cross sections of h1(x) (blue dashed line), h2(x)(green
lumn (d,h,l), 1-D cross sections of u(x) (red dashed line) associated



(a)            (b)             (c)             (d)

(e)                         (f)
Figure 3 Segmentation results of the proposed and RSF models to a synthetic image with Poisson noise. (a) The original image, (b) the
initial contour, (c) the result of the RSF model with regularization parameter v = 0.004 × 2552, (d) the result of the proposed model, (e) final level
set function of the RSF model (270 iterations), and (f) final level set function of the proposed model (100 iterations).

(a)            (b)             (c)             (d)

(e)                        (f)
Figure 4 Segmentation results of the proposed and RSF models to a synthetic image with intensity inhomogeneity and Poisson noise.
(a) The original image, (b) the initial contour, (c) the result of the RSF model with regularization parameter v = 0.003 × 2552, (d) the result of the
proposed model, (e) final level set function of the RSF model (300 iterations), and (f) final level set function of the proposed model (200 iterations).

Chen and He EURASIP Journal on Image and Video Processing 2013, 2013:28 Page 8 of 11
http://jivp.eurasipjournals.com/content/2013/1/28



(a)            (b)             (c)             (d)

(e)            (f)      (g)      (h)

(i)            (j)      (k)      (l)

(m)            (n)      (o)      (p)

Figure 5 Segmentation results of the proposed and RSF models on four real radiograph images. First row (a-d), the original images with
the initial contours. Second row (e-h), results of the RSF model (from left to right, the regularization parameters are v = 0.003 × 2552, v = 0.0045
× 2552, v = 0.004 × 2552, and v = 0.004 × 2552, respectively). Third row (i-l), results of the proposed model. Fourth row (m-p), final level set
functions of the proposed model for the corresponding image.
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with Poisson noise, while the RSF model is sensitive to
Poisson noise.
Figure 4 shows the segmentation results for a synthetic

image with intensity inhomogeneity which contains
seven distinct gray levels and with added Poisson noise.
Figure 4a is the original image and Figure 4b shows the
initial contour. The results of RSF model and our model
are shown in Figure 4c,d. Although the RSF model can
extract part of the objects accurately, it fails to segment
the white disc and is sensitive to noise (see Figure 4c). In
contrast, the proposed model produces satisfactory seg-
mentation result for all discs (see Figure 4d). The final
level set functions corresponding to both models are
shown in Figure 4e,f. From Figure 4f, we can see that
the level set function of our model is almost close to a
two-valued function (the object is 1 and the background
is 0). Experiments in Figure 4 show that the proposed
model can achieve better segmentation results for the
images with intensity inhomogeneity and Poisson noise
compared to the RSF model.
In Figure 5, we give four examples on real radiograph
images. Four test images, which are shown in row 1, are a
foot image (177 × 116), a cervical vertebra image (123 ×
117), a hip joint image (124 × 118.), and a pastern joint
image (140 × 125), respectively. In our model, we use θ =
0.03 for the third image and θ = 0.2 for the fourth image.
The foot image in Figure 5a is corrupted by Poisson noise
and has severe intensity inhomogeneity. The cervical ver-
tebra image (Figure 5b) has complex object shapes and
the object is also corrupted by Poisson noise. The last two
images are inhomogeneous and the boundary is very weak.
Figure 5a,b,c,d shows the original images along with initial
contours. It can be seen from Figure 5e,f,g,h that the RSF
model cannot segment correctly these images. Figure 5i,j,k,l
shows the corresponding segmentation results of our
model; as can be seen, our model accurately detects the
objects in these images. These four examples illustrate the
abilities of the proposed model to deal with intensity in-
homogeneity, weak boundaries, complex object shapes, and
immunity to Poisson noise.
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Fourth, we elaborate the robustness of the proposed
model to contour initialization. In Figure 6, the initial and
final contours are green lines and red contours, respect-
ively. Figure 6a,b,c,d shows the segmentation results of
our model for the synthetic image (Poisson noise-free)
with four different initial contour locations (squares with
the same size but different positions). From Figure 6a,b,c,
d, we observe that our model successfully extracts all ob-
jects of the complicated image for each of the four initial
contours. Furthermore, with the same initialization shown
in Figure 6a,b,c,d, we show the segmentation results for the
synthetic image added Poisson noise (see Figure 6e,f,g,h).
It can be seen from Figure 6e,f,g,h that our model segments
correct the synthetic image with Poisson noise for these
initial contours.
Figure 6i,j,k,l displays the segmentation results of our

model for the T-shaped image with different initial
(a)            (b)       

(e)            (f)       

(i)            (j)       

(m)            (n)       
Figure 6 Segmentation results of the proposed model for a synthetic
by the green lines and red contours, respectively. The first and third rows (
(Poisson noise-free). The second and fourth rows (e-h, m-p), final results of
contour sizes. The initial contours are chosen as circles
at the center of image but with different radius. In
Figure 6m,n,o,p, we also show the segmentation results of
the T-shaped image with added Poisson noise for the same
initialization shown in Figure 6i,j,k,l. The segmentation re-
sults in the second and third rows of Figure 6 show that
our model can obtain accurate segmentation for all of the
four initial contour sizes (images without or with Poisson
noise). Experiments in Figure 6 show that our model really
allows for more flexible initialization even if the images
were added Poisson noise.

5 Conclusion
Inspired from the RSF model [5] and the variational
Poisson denoising model [17], we propose a new vari-
ational model to segment images with intensity inhomo-
geneity and Poisson noise. We first propose an energy
      (c)             (d)

      (g)             (h)

      (k)             (l)

      (o)             (p)
image and a real image. The initial and final contours are displayed
a-d, i-l), final results of the proposed model for the original images
the proposed model for the images added Poisson noise.
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functional based on the data-fidelity measure deduced
from Poisson distribution. We then reformulate the en-
ergy functional as globally convex formulation to guaran-
tee the global minima (not the local minima), which
makes our model less sensitive to initialization. The dual
method is employed to minimize the convex energy func-
tional with an extra regularization term (weighted TV
norm). The proposed model is tested on many synthetic
and real images; the results demonstrate that it can effi-
ciently cope with intensity inhomogeneity and Poisson
noise.
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