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Abstract

In this research, a transition effect detection scheme for identifying possible highlight segments in baseball videos will
be presented. The effects that are inserted manually by the broadcasters for signaling the slow-motion segments will
be extracted and the frames containing such effects can serve as anchor positions for further processing. A set of
video segments will first be chosen to construct the ‘transition effect template’ for the archived video. The candidate
frames will be compared with this template for searching the slow-motion video segments. In baseball videos, we
further construct the ‘pitching view template’ so that the starting positions of the video segments of interest can be
located. By processing these segments only, we may further employ such method as hidden Markov model to classify
their content. The major contribution of this research is the usage of compressed-domain features to achieve the
efficiency. The experimental results show the feasibility of the proposed scheme.

Introduction

Watching sportscast has been a popular past-time activ-
ity worldwide and many viewers may choose to record
their favorite games for archiving or time-shifting pur-
poses. Thanks to the superior perceptual quality, the
convenience of storing, transmitting, and even processing
of digital visual content, digital recording facilities with
lower cost and more computational power are becoming
widely available nowadays. When the users set to enjoy
their archived digital videos, they may be more interested
in watching only the game highlights, which will save them
substantial amount of time without sacrificing too much
excitement. Therefore, efficient and effective sports video
highlight extraction from digital content raises a lot of
research activities [1-10] in recent years.

The approaches to extracting highlights from sports
videos may be roughly classified into four categories. The
first approach is to identify the unique visual and/or audio
characteristics that may exist in game highlights. When
an impressive performance occurs in the sportscast, a
typical scene or sound may appear. By combining the
audio-visual features with the domain-specific knowledge,
we may obtain a better understanding of the content.
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Such visual features as the color histogram, types of cam-
era shots, motion information, and such audio features
as zero-crossing rate, frequency spectrum, and signal
energy level help to identify the special events [11]. Wang
et al. [12] presented a soccer goal extraction algorithm
by analyzing the correlations among scenes to extract the
ones that contain the goal shot attempts. A graphic rep-
resentation is proposed by Ren et al. [13] to facilitate the
analysis of temporal saliency in soccer videos. In base-
ball videos, the combination of certain court views may
be useful in determining the play of home runs or base
hits [8]. The higher-level understanding of the baseball
game for highlight detection can also be achieved by the
delicate scene analysis [14]. The sound processing is also
applied quite often in video highlight extraction [15-19].
In sports videos, the sound from the crowds at the stadium
or the speaking tone of the anchorman/commentators will
reflect the exciting moments of the games. The identifi-
cation of such sounds as the whistles from the referees
or ball hitting will be beneficial. The major drawback of
sound processing may be the higher false identification
rate. For example, the crowds in the stadium may not
cheer for the visiting team. Additional processing may be
needed to increase the accuracy. The second approach
is to analyze the text data shown in the sports videos.
The caption sent along with the transmitted video surely
provides more accurate information. If the caption is not
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available, the so-called video optical character recognition
can be applied to identify the content of score boxes super-
imposed on the sides of the screen [20-24]. The moment
when the score changes in a game will be what the audi-
ences care so the message conveyed in the score boxes will
assist the browsing of sports videos. The major challenge
of this approach may be the inconsistent forms of score
boxes in different sports games as their sizes/types may
be different. The third approach is to determine the slow
motion replays in sports videos [25-27]. After a special
event happens in a ball game and the broadcasters iden-
tify that the audience may be interested in viewing it again,
the video segment will be replayed in a slower pace. It
has been observed that the replayed video segments may
demonstrate certain visual representations, such as the
repeated fields in TV broadcasting [28], the unique statis-
tics of motion vectors in MPEG video [29], and the scene
transitions [30]. These characteristics may be used to dif-
ferentiate the slow-motion segments from normal scenes.
Some slow-motion replays are shown after fading in/out
[31] or dissolving effects [32], so the successful detec-
tions of them may help to identify the replays. Giusto
et al. [33] viewed slow-motion replays as special effects
and employed the fractal/wavelet decomposition to detect
them. However, the accuracy of slow-motion detection
may be affected by the way that the replays are processed
since they are broadcaster dependent. In addition, some
slow-motion scenes are quite difficult to be differentiated
from the normal ones, even by the human eye. Certain
replays may even be displayed with varying speeds to
attract the viewers’ attention, and this inconsistent struc-
ture of slow-motion replays may complicate the process of
extraction.

The fourth approach is to employ the methodology
of multimodal fusion [34-40] to build highlight extrac-
tion/classification systems, which may bridge the gap
between the extracted low-level features and the seman-
tics of the data. Bertini et al. [41] employed the camera
motion, play-field zone and players’ positions to fuse for
highlight annotation. Shih et al. [42] employed the maps
of spatial/temporal features and face information to con-
struct the attention model for identifying the highlights.
Zhu et al. [43] proposed a multimodal approach to orga-
nize the highlights extracted from racket sports videos by
using a nonlinear ranking model. They also proposed to
fuse text, time, and view types to extract attack events
for tactics classification in soccer videos [44]. Niu et al.
[45] further proposed a real-world trajectory extraction
method based on field line detection to recognize six typ-
ical soccer attack patterns for tactic analysis. The hidden
Markov model (HMM) is utilized quite often in extracting
highlights from sports videos. Cheng et al. [9] developed
a baseball highlight extraction scheme based on HMM by
fusing video and audio features. Papadopoulos et al. [46]
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utilized the motion vectors, and Kijak et al. [47,48] made
use of the structure of video shots in the training phase of
their HMM-based schemes. Nguyen et al. [49] employed
principal component analysis and the frame features for
data fusion. Wang et al. [50] proposed to convert the low-
level features into a keyword sequence for their HMM
classifier by using Viterbi algorithm. Delakis et al. [51]
employed HMM and segment models for audio-visual
integration in video indexing. Chang et al. [8] applied
HMM by using scene shots and visual features in base-
ball games. Chen et al. [52] further employed HMM to
analyze the details of ball hitting events. Ouazzani et al.
[53] combined Bayesian inferences and HMM in soccer
games. Instead of using the general HMM, Ding et al. [54]
employed the multi-channel segmental HMM for video
mining in football videos. Tang et al. [55] made use of
MPEG?2 features and HMM to detect highlights in cricket
games.

In this research, we will present a transition effect detec-
tion scheme for locating the replay segments in baseball
videos. In our opinions, the replays are selected manu-
ally so the associated content should be more related to
the game highlights. Besides, the insertion of such tran-
sition effects by broadcasters is becoming a trend due to
its dual effects of advertisement and informing the audi-
ences of replays. We may classify it as a replay-related
approach or as a ‘logo-based” approach since a transition
effect usually demonstrates a team, business, or merchan-
dize logo. Pan et al. [56] first proposed to detect the logos
for replay detection. Their previous method of detecting
slow-motion segments [28] was applied to locate possible
replays and then the frames before and after the segment
are compared to see whether the similar contents or logos
exist. Tong et al. [57] proposed to detect certain logo tran-
sitions via frame-by-frame differences. The logo template
was then formed from some detected candidates for the
further matching. Su et al. [58] made use of the unique
characteristics of transition effects in MPEG2 bit streams
for detecting replays. Zhao et al. [59], Dang et al. [60],
and Li et al. [61] extracted the superimposed logos from
video frames by employing rule-based methods. Song
et al. [35] proposed to detect the logos and apply the
audio-visual multimodal analysis for verification. Xu et al.
[62] detected the logos by calculating the accumulated dif-
ferences in frames to form the logo template from the
candidate set in soccer videos. Zhao et al. [63] employed
speeded-up robust features to find repeated logo patterns
in video frames and then search those patterns to handle
various transition types. Although quite a few methods
utilizing transition effects for locating replays have been
proposed, most of them rely on expanding video frames
to extract either spatial or temporal features and are thus
time-consuming. In our opinions, the highlight extrac-
tion is an auxiliary function of a video recorder, which
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should not be computationally expensive. As videos are
often archived in MPEG format these days, the schemes
directly working in the compressed domain will be pre-
ferred in manufacturing electronic products. Therefore,
we further simplify and extend our early work [58] to
develop a compressed domain transition effect detection
scheme for highlight extraction. We make use of both the
characteristics of effects and their repeated appearances
to construct the associated templates in the investigated
video so that we may reduce the challenges of using a
set of fixed parameters or rules to identify all kinds of
effects correctly. The classification of highlights, which
can also be operated in the compressed domain, will then
be facilitated by analyzing the video segments of interest
only. We will describe the details of the proposed scheme,
including the feature extraction, the construction of tem-
plates, and the classification of highlights in the following
sections. Experimental results will show the feasibility of
our method.

The proposed scheme

Figure 1 shows the block diagram of the proposed scheme.
The input of the system is a compressed video in either
MPEG-1 or MPEG-2 format, from which the representa-
tive features are extracted for the subsequent processing.
We will use a longer video segment, which can cover a
few transition effects, to train the ‘templates’ of transi-
tion effects and pitching views in baseball videos for more
accurately locating these segments. The so-called process-
ing units that may include the transition effects are formed
from this training video segment for constructing the
transition effect template by the methodology of majority
voting. Then we start to construct the pitching view tem-
plate. Since the transition effects always come with scene
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changes, the compressed-domain scene-change detection
is applied and the frames around the scene changes will
be compared with the effect template. Once the frames
with transition effects are identified, the pitching views
associated with the plays will be extracted by using the
pitching view template. The contents of the plays can then
be classified by such method as HMM, which is trained
off-line. In the following subsections, we will examine the
procedures of each step in details.

Data preparation

In this subsection, we describe the procedures of gen-
erating the data for effective processing, including the
extraction of features from the MPEG stream and the
detection of scene changes.

Features from the MPEG bit stream

The features for the subsequent processing are extracted
from the MPEG-compressed bit stream. The coding
modes and motion vectors, which can be acquired con-
veniently, are employed to determine the variation of
content in adjacent frames. The mean values of blocks,
which are derived from the lowest frequency coefficients,
i.e., ‘DC’ coefficients in DCT (discrete cosine transform)
blocks, will provide the color information in the frames.
The ‘DC frames, which are the coarse down-sampled
frames with size equal to 1/8 x 1/8 of the original frame
resolution, will be constructed as follows: In I frames, we
can retrieve the DC coefficients without any problem as
they are only differentially Huffman-coded. For P frames,
Figure 2 shows the four 8 x 8 blocks, including B,, By,
Bc, and By in the reference frame and the block B, in
the currently processed frame. The best match of B, in
the reference frame, By, has been found by the motion

|
Recorded 10~20-minute Transition Effect
Baseball Video Segment N Processing Unit N Template
MPEG Video for Training Generation Construction
Scene Change N Transition Effect Transilion‘Et'fecl Template Frame
Detection Detection Template Determination
Pitching View Pitching View " Pll;hrl::-'wa
Detection Template emplate
L __— Construction
C:?ndi.dalc Highlight
Highlight > Classification > Highlight Type
Segments by HMM
Bas'eball Training for
Video Classification
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Figure 1 The block diagram of the proposed scheme.
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Figure 2 Constructing the DC frames for inter-coded frames.

estimation and marked by the dashed line in Figure 2.
Given that By covers parts of By, By, B, and By with areas
Aa, Ay, A, and Ay, respectively, the DC coefficient opr/,
ie,DCp, is estimated by

1
DCs, = > (DCp, xA,). (1)
nefa,b,c,d}

The DC coefficient of the residual blocks in B, is
then decoded from the MPEG-compressed bit stream and
added onto DCBP/ to form the estimated DC coeflicient
of By, i.e., DCBP, whose value is limited in [0, 255]. The
similar procedure can be applied on B frames and we can
acquire the estimated DC frames of the video segment
of interest. Special care has to be paid on boundaries of
a frame. After applying this process to all the blocks in
inter-coded frames, we can obtain every DC frame of the
video.

Scene changes

The procedure of our scene-change detection by using
the MPEG features is as follows. We first extract the
DC frames of I frames, /; and I;, from the two adjacent
GOP’s, GOP;, and GOPj, respectively. We compute the
histograms of /; and J; to form two vectors, hj, and h;,. The
distance of hy, and hy, is calculated by

X 28 /hy,(©hy ()

JEE (0 T2 by (o)

D(hy;, hy) = 2)

If D(hy, h1/.) is larger than a threshold Ty, a scene change
is identified as occurring between /; and ;. Next, we cal-
culate the percentage of macroblocks that are intra-coded,

denoted by Prg), in all the P frames in GOP;. The P frame

with the largest Prg), denoted by P,,, is chosen and Prg,i

is compared to the other threshold Tp. If Prl(frl > Tp, we
calculate D(hy,, hp,,) to ensure that I; and P, are not sim-
ilar frames. If D(hy,,hp, ) is larger than a threshold Tp,
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P,, will be chosen as the frame with scene change, F..
Otherwise, I; will be chosen as F.. We do not process B
frames at this stage because the accuracy is already good
enough and the complexity can thus be reduced. In other
words, the percentage of intra-coding in P frames serves
as a pretty good indication of content fluctuations with
smaller computational cost.

Template construction

Two templates will be constructed for each baseball game
video, i.e., the transition effect template and pitching view
template.

Transition effect template

We first have to collect video segments that probably con-
tain the effects. Therefore, our objective here is to ensure
that a transition effect, if exists, should be completely
covered in the selected segments, i.e., processing units.
Since an effect usually causes large variations in the con-
tents of frames, scene changes can always be found in the
duration of an effect. Figure 3 shows the percentage of
intra-coding in P frames in a typical video segment con-
taining transition effects and the associated slow-motion
replay. There are seven scenes in the video with scenes
(1), (6), and (7) showing the normal plays and scenes (3)
and (4) demonstrating two different views in the slow-
motion replay. The large numbers of intra-coding between
(3) and (4) and between (6)and (7) clearly indicate the
scene changes. The scenes (2) and (5) in Figure 3 illus-
trate the transition effects. We can find that the surges
of intra-coding percentage occur during the appearance
of transition effects. This may be explained by Figure 4,
which shows consecutive frames of an effect. When this
effect just appears, it usually covers a smaller portion of
a frame as shown in Figure 4b, so the number of intra-
coded macroblock is also small. This number will increase
along with the emerging effect and hit the maximum value
when the complete logo is shown. The other observa-
tion is that there are more P frames with a large number
of intra-coding macroblocks in the duration of the effect
than in simple scene changes since the effects usually
continue for a short while and their fast-moving char-
acteristics will affect the coding of several macroblocks.
The two-peak structure in Figure 3 comes from the fact
that the effects emerge and then disappear quickly and
both actions result in a lot of intra-coding macroblocks.
It should be noted that this phenomenon is not a spe-
cific case but exists in many transition effects that we
have observed. Furthermore, Figure 5 shows the curves
of intra-coding percentages in P frames from five varying
transition effects. The data of four different video seg-
ments of the same effect are plotted together. We can find
that, in addition to the existence of multiple peaks in each
case, the shapes of the curves of the same effect tend to be



Su et al. EURASIP Journal on Image and Video Processing 2013, 2013:27
http://jivp.eurasipjournals.com/content/2013/1/27

Page 5of 16

(€) ‘

(1): @

IS o =N
S = =)
T T T

Percentage of intracoding(%)
=
T

@ " ©

The circles indicate the recorded percentages of intra-coding.

80
P-frame number

100 120 140 160

Figure 3 The percentage of intra-coding in P frames in one typical video segment containing transition effects and a slow-motion replay.

similar because the effects usually dominate in the frames
and affect the coding in a similar manner.

After the compressed-domain shot boundary detection
helps to determine the frame of shot change, the for-
ward/backward extensions will then be made to establish
the processing unit with several frames by the following
procedures. From the scene-change frame, F., we search
backward and forward to find the temporary starting
frame, F;, and ending frame, F., of the processing unit.
We have to include more frames than necessary to expect
that the entire transition effect is covered. Since the tran-
sition effect is usually inserted when a play stops and that
the scenes before and after the transition effect seldom
contain large content variations, we select the frame as
F; (F.) after we meet consecutive N = 5 P frames with
Prg) smaller than a threshold, T), = %, in the backward
(forward) search. A refinement process is then applied on

the constructed DC frames as follows: A transition effect
is visually different from the scenes before and after it so
we can remove a frame at the beginning (end) of the cur-
rent processing unit if it is similar to the frame right before
(after) it. To be more specific, in order to determine a suit-
able starting frame of a processing unit, we check the color
difference of the first two frames F; and F> by

M
D(Fi,Fy) = ) IDCyy — DCypy| 3)

m=1

where BI,ZI (B%) is the mth 8 x 8 block of F;(F;) and

M is the number of blocks in a frame. If the difference
is not large, we delete F; from the processing unit and
make F, become the starting frame to repeat the pro-
cess. The same procedure is applied at the end of the
processing unit in the reverse order. We can thus ensure

Figure 4 Consecutive frames of a transition effect (a-l).
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that the resulting first frame and last frame of the pro-
cessing unit can be quite different from the preceding
and following frames respectively after the refinement. In
addition, we will remove/ignore the unit once the number
of frames in the unit becomes less than a threshold value,
T} = 60, to remove some normal scene changes and even
zoom-in/out shots. Finally, we will check the current and
previous processing units and may merge the two units if
they are overlapping.

Most transition effects are usually superimposed
objects/logos on the video frames so when the artificial
effect appears in a frame, certain parts of the scene in the
ball game will also be revealed. The revealed ‘background’
pixels will complicate the identification of the ‘foreground’
transition effect so the pixels associated with the effect
should be identified. In most of the cases, the background
scenes before or after the effect may look quite different
from the frames of the replay. Therefore, given that the
starting and ending frames of the processing unit are F
and F. respectively, we will pick the frame preceding F;
and the frame following F. as the background frames. We
then compare the luminance DC values of all frames in the
processing unit with those in the two background frames.
If the DC difference at the same location in a frame and
either one of the background frames is large, we mark
this location as being covered by the transition effect. We
can thus form a binary mask called ‘effect mask’ which
indicates the pixel associated with the effect.

Next we will employ the refined processing units that
are assumed to include transition effects for training
the template. The cross-correlation and majority-voting
approaches will be adopted to obtain the template, which

will be used to track all the slow-motion replays in the
video. To be more specific, after marking the spatial loca-
tions of an effect in each frame in the candidate processing
units, we calculate the cross-similarity of mask positions
and colors among these units for grouping. This process
may be time-consuming since we need to not only calcu-
late the similarity of masks/colors between each pair of
the units but also temporally synchronize each pair. We
choose to simplify this process by exploiting the probabil-
ity of intra-coding, as shown in Figure 5, in which the same
effects tend to have similar curves of intra-coding rates
in P frames. In other words, the peaks in the curves will
appear at the same frames in the processing units cover-
ing the effects. We thus apply a one-dimensional matching
on these curves of intra-coding rates first. For each pair
of processing units, (PU;,PUj), after recording the intra-
coding rates in P frames as vectors, sj and sj, we zero-pad
the vectors so that their lengths are the same and equal to
a power of 2. Their (circular) cross-correlation [64] can be
calculated efficiently via fast Fourier transform (FFT) by

Cintra(PU;, PUj) = IFFT(FFT(si) © FFT(s))), (4)

where © indicates the point-by-point multiplication, and
§j is the flipping of s;. IFFT indicates the inverse fast
Fourier transform. If Cintra(PU; PUj) is larger than a
threshold, PU; and PU; are viewed as a candidate pair
and the index of the largest Cinya will help to roughly
synchronize PU; and PU;.

For a selected and roughly synchronized pair, PU; and
PUj, their masks and colors will be further compared



Su et al. EURASIP Journal on Image and Video Processing 2013, 2013:27
http://jivp.eurasipjournals.com/content/2013/1/27

3. Find the frame with
the largest mask, F g,
from [F¢ .Fe -

1. Find the center frame
of the processing unit, F ;.

kY
LS

K

o

2. Locate the central
(2K+1) frames of
the processing unit,
[FC KYFC:K]'

4. Include the other two frames,
F_qand F|_q, which are Q
frames from F ,, to form
the three anchor frames
for matching.

PEPPT Q-

5. Shift the processing
unit to be matched one ————>
frame at a time to find
the exact matching by
comparing the mask
pixels with those in
Fia FLoand F o

Figure 6 The procedure of matching processing units.

to achieve a more accurate matching. The procedure is
shown in Figure 6. We first extract the frame at the center
of PUj, Fc, and its adjacent frames, from Fcx to Fc,_k.
From these 2K + 1 frames, the frame with the largest fore-
ground, Fr, will be picked as the anchor frame, which
will be compared or matched with the frames in PU;. This
strategy comes from the fact that a transition effect usu-
ally looks more clearly and occupies a larger portion in the
middle of its appearance. K is empirically set as 8 to select
one frame from the span of around half a second. One may
think that a larger K should provide us the better chance
of obtaining a larger logo. Nevertheless, in many transition
effects designed these days, the logo may occupy larger
areas in frames at the end of its appearance but, at this
moment, the logo is usually semi-transparent and can-
not help to construct a good template. Therefore, we still
prefer to find the logo in the middle of its appearance. Fur-
thermore, since the contents of consecutive frames may
be similar, in order to increase the accuracy of synchro-
nization, we also include the other two frames, F7,g and
Fi,—q, to form the three anchor frames for matching. Q is
set as 8 so that the three anchor frames can be slightly dif-
ferent from each other and contain the logo as well. Then,
we shift PU; £8 frames, one frame at a time, and count
the matched foreground pixels in the corresponding three
anchor frames. The mask/color matching is applied on the
DC frames. The pixels are viewed as being matched if they
are both in the foreground area and the difference of their
colors is within 8. The largest number of matched pixels
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will determine whether PU; and PUj are a synchronized
pair.

In the sportscast nowadays, slow-motion replays are
usually sandwiched by two transition effects, which may
be different. Therefore, one group (if a single logo is used)
or two groups (if two different logos exist) of matched pro-
cessing units will have obviously more processing units.
Then, we choose one unit from the largest group and
check the corresponding pixels of other units in the group.
If the pixels in DC frames are both in the foreground areas
and their luminance values are close, the location is ruled
as being matched. The frame with the largest number of
matched pixels is selected as the template frame, and the
luminance mean at these matched positions in the units
will be calculated to form the template. In fact, we adopt
a more efficient way by iteratively forming the groups
during the process of making processing units. In other
words, a new processing unit will be compared with the
existing ones to see if a synchronized pair can be found.
We keep track of the numbers of matched units in groups
and when this value in a certain group is larger than the
threshold T, = 4, we stop the collection of processing
units and then simply construct the template by using
the matched units. Two examples are shown in Figure 7,
including the constructed template frames and the associ-
ated video frames. The green pixels indicate the locations
of background, which are not supposed to be related to
the effect.

After the template frame is constructed, detecting all
the transition effects for locating slow-motion replays
can be done effectively. One possible way is to gener-
ate the processing units by the similar procedures in the
template training phase, that is, some refined process-
ing units are extracted, and their DC frames are com-
pared with the template frame based on the similarity of

Figure 7 Two examples of template frames from the videos. (a)
Chinese Professional Baseball League (CPBL) and (b) Major League
Baseball (MLB).
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colors and masks. Nevertheless, the misses of detecting
the effects may occur. In order to find all the transition
effects related to the slow-motion replays, we choose a
rather conservative way by matching the frames near the
detected scene-change frames with the template. Because
the number of scene changes is large in a video, we employ
the intra-coding rate of P frames to reduce such cases of
matching. According to Figure 5, the intra-coding rate in
a P frame is usually quite high. Therefore, when we con-
struct the template of the transition effect in this video, we
also calculate the average of the largest intra-coding rate
in the effect and scale this value by a factor (0.7) as the
threshold. Given a scene-change frame, we check the intra
coding rates of P frames in around 2 seconds’ span. If the
intra-coding rate of P frame is higher than this threshold,
the matching of these DC frames with the template frame
will be done to determine whether a transition effect hap-
pens here. This method can effectively avoid skipping the
possible transition effects and an efficient implementa-
tion can also be achieved. Again, the matching is basically
executed by comparing the luminance values of pixels
covering the effect in the template frame.

Pitching view template

When the viewers browse the video, they may prefer to
watch the plays displayed with a normal speed, instead
of slow motion. Therefore, an appropriate starting posi-
tion of real/normal plays of a game highlight should be
located. Since a play in a baseball game always starts with
the pitching view consisting of the pitcher, catcher, bat-
ter, and umpire, we will try to locate the pitching view
right before the detected transition effect, that is, after the
transition effect is identified, we will trace back to find
the pitching view by matching the data with a pitching
view template, which will be again established for this spe-
cific ball game. The other motivation of finding pitching
views is related to the content analysis. It should be noted
that designing a common model for the content identifi-
cation/classification directly from slow-motion segments
is challenging since the camera angles or the ways of dis-
playing replays may vary considerably in ball games. In
contrast, the video segments of real/normal plays exhibit
more unified structures so the their analysis may lead to
better results.

By observing that a pitching view shot usually appears
within a few shots before a transition effect, we will collect
a few scene-change frames before the transition effects.
Because of the facts that the scenes of pitching views are
almost the same in one game and that other views are
essentially different from each other, we can apply the
majority-voting strategy again to construct the pitching
view template. We make use of the same training video
segment in the construction of the effect template. To be
more specific, after the transition effects are located, we
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search backward from each transition effect to find several
scene-change frames with the associated scene being rea-
sonably long (longer than 1 s). The closest I frame within
the scene will be selected, and the spatial feature will be
extracted for the comparison. For an M x N DC frame of
an I frame, the singular value decomposition is applied on
the mean-removed block, X« n, as

X =UAVT = =N au!, (5)

where u;, v; are the columns of U, V, representing eigen-
vectors of XXT and XT'X, respectively, and A is a diagonal
matrix with A; > Ay > ... > An on the diagonal line. We
choose the first eigenvectors, u; and vj, as the extracted
feature of the block. As mentioned before, the pitching
views of the same game tend to have a similar struc-
ture. Therefore, we will group the features of selected shot
change frames to build the template of pitching view. For
each pair of candidate scene-change frames, F, and FC].,
we calculate the correlation of w; and u; (v; and v;) to
obtain corll;; (corV). F¢; and F; will be in the same group
if the following conditions are satisfied:

[corljj| = T
[corVi;| > Ts (6)
|corllj; + corVy| > 2 x Ty,

where T is empirically set as 0.9. The group with the
largest number of pairs will be employed to calculate the
representative feature, u,, and v,,, which are the median
values of the features in this group. In addition, the mean
of these frames in the group, DCpean, will be calculated as
the threshold for rough screening.

The determination of the pitching view can then be
applied in a straightforward manner. Our scheme simply
searches the pitching view frame before a detected transi-
tion effect as the starting position of a possible highlight.
If a given scene-change I frame has the mean color close
to DCpean, its spatial features, u;/v;, will be extracted.
The correlation between w;/v; and wu,,/v,, is calculated
to determine whether the frame shows a pitching view
according to the conditions of Equation 6. Since the pitch-
ing view usually lasts for a while, to improve the accuracy,
our scheme will identify the pitching view frame if at least
three consecutive I frames are recognized as such frames.
Figure 8 shows an example of detected pitching views
from a one-inning video. We can see from this example
that the template has to be resilient to the movements
and uniforms of players, and such varying information as
texts/numbers on the captions/score boxes.

Highlight classification

Although the extracted slow-motion replays certainly pro-
vide us good references of retrieving the highlights, the
content analysis is still necessary for identifying and/or



Su et al. EURASIP Journal on Image and Video Processing 2013, 2013:27
http://jivp.eurasipjournals.com/content/2013/1/27

Page90of 16

Figure 8 Example of detected pitching views (a-o).

classifying the data so that more accurate game high-
lights can be extracted. Our content analysis is based
on HMM and the compressed-domain features will be
employed for training our high-level semantic models,
which help us to analyze the content more precisely. We
collect several baseball videos and train the models off-
line for the content classification in the investigated video.
In our viewpoint, the content analysis here mainly serves
as an illustration to show that if the transition effects
can be retrieved reliably and the slow-motion replays are
located, we should be able to analyze the contents more
easily to determine the parts that the viewers really care.
Many existing algorithms may also be employed and our
method can help to further improve their performances
since more suitable data are selected for processing.

After locating the transition effect and the associated
pitching view, we will first examine the number of scene
changes in the replay segment. If only one or two scenes
exist, the event will be ruled as the non-highlight event.
Four types of highlight events are considered in our
scheme, including base hit, score, out and special. The
base hit events include base hits without scoring while
the score events may contain hits with scoring, home
runs and sacrifice hits, etc. The out events may repre-
sent good defensive plays. Other plays such as double
plays and errors are categorized in the special events. We
adopt the supervised training by HMM to classify the
content, that is, we extract the video segments, each of
which starting from the shot next to the pitching view
to the shot right before the transition effect, from some

baseball videos for training. We will build an HMM for
each of the four highlight events. First, we have to define
the following elements of HMM: the state S, observation
O, observation probability in the state Pr(OlS), transi-
tion probability A, and initial state distribution IT. In our
scheme, the video segment of interest will be divided into
shots to form the states S in HMM. In other words, the
states are the various video shot types. According to the
selected video segments based on the transition effects,
we consider eight shot types or states as follows: (a) infield,
(b) outfield, (c) home-base, (d) defense-infield, (e) player
close-up, (f) player walking, (g) player running, and (h)
others, as shown in Figure 9. The low-level features will
be extracted from the state to form the observations, O,
which include (1) the shot length, (2) the intra-coded mac-
roblock percentage in the P frame, (3) the existence of
dominant color, and (4) the camera motion. Basically, we
record the information in frames of a shot and then deter-
mine the state observations accordingly. To examine the
dominant color, we quantize the 256 colors in DC frames
into 16 levels and the largest number in a level will show
the dominant color, which helps us to identify whether the
scene covers a large area of field. For the camera motion,
the motion vectors of each inter-coded frame are exam-
ined in our work to see whether the zooming of the view
happens, that is, a frame is divided into four quadrants
and the directions of motion vectors in each quadrant are
identified. There are basically six types, including intra,
skip and four directions. Then each frame will be rec-
ognized as containing inward motion directions or not,
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and (h) others.

Figure 9 Eight types of shots. (a) infield, (b) outfield, (c) home-base, (d) defense-infield, (e) player close-up, (f) player walking, (g) player running,

and several such frames indicate that the shot has zoom-
ing operations. Again, the features we use are extracted
from the data of MPEG bit stream to avoid the complex
operations, such as object detection or complicated image
processing procedures.

In the training phase of HMM, we have to evaluate the
initial state probability, 7r;, the priori probability of each
view type, Pr(S;), and the conditional observation proba-
bility, Pr(Ok|S;), where 1 < i < 8and 1 < k < 16. These
items can be estimated from the training data via the his-
togram analysis. There are 16 observations since the shot
will be classified into a long or short shot, a fast or slow
shot, a shot containing the dominant color or not, and a
shot with zooming or without. The thresholds are care-
fully set according to the training videos. Given Pr(S;) and
Pr(Ok|S;), we can determine Pr(S;|Ox) by

Pr(O|S;) x Pr(S;)
>, Pr(OklSi) x Pr(S)’

Pr(Si|Ox) = 7)
The transition matrix A is an 8 x8 matrix since eight states
are defined. Each element, a;; indicates the probability for
the model evolution from the state S; to S}, i.e.,

aij=Pr[S@) =§ISC-1) =S],1=<ij=<8 (8

where ¢ is the state or shot index and Z?:l a;j = 1. Due
to the fact that the shot types of training videos have been
manually set, A can also be computed in a rather auto-
matic manner. A HMM model can thus be depicted by
A = (A, B, II), in which the element of B (the matrix of
conditional observation probability) is b;x = Pr(Okl|S:),
1 <i<8and1l < k < 16. We will construct four HMM
models for the four highlight types. Given an observation
sequence, O = O(1)O(2)...0O(T), where T is the num-
ber of states in the investigated video segment, we employ
Viterbi algorithm to compute Pr(O|A). To be more spe-
cific, Viterbi algorithm considers the probability of the
partial observation sequence O(1)O(2) ... O(¢) (until the

time t), the state at the time ¢, S(£) = S;, and the given
model, A, to compute a function §;(¢) as

8;(t) = Pr(0O(1)O(2) ... 0(t),S(t) = S;|A). 9)
We can then solve §;(¢) inductively as follows:

o [Initialization

8i(1) = x Pr(S(1) = §;|0(1)), 1 <i < 8. (10)

pi(1)=0,1<i<8.
e Induction

(11)

§j(t)=max [§;(t=D)a;j] Pr(S()=5j10(1)), 2<t =T, 1 <ij <8.
<i<
(12)

@j(t) = arg max [ §;(t — l)ai,-], 2<t<T,1<i<8.
1<i<8
(13)
o Termination

Pr(O[A) = 111<1?1<X8[5i(T)]. (14)

S*(T) = S, where m = arg 1m;;u%[(S,'(T)] . (15)
<i<
e Track back

S*(t) = Sy, (t+1), given S*(t+1) =Sy, t =T—-1,T—-2,.., 1.
(16)

Equation 10 initializes the function § as the joint prob-
ability of state S; and the initial observation O(1). The
induction step is illustrated in Figure 10, which shows the
most probable path to state S; that is passed at the time
t from the 8 possible states, S;, 1 < i < 8, at the time
t — 1. Since §;(¢ — 1) is the probability of the joint event
that O(1)O(2) ... O(¢) are observed, and the state at the
time t —1is S, 8;(t — 1) x a;; is the probability of the joint
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Figure 10 Viterbi algorithm for HMM.

event that O(1)O(2) ... O(¢) are observed, and state §; is
reached at ¢. Finding the maximal product over all the pos-
sible states S;, 1 < i < 8 at ¢ — 1 results in the probability
of S; at the time ¢ with all the previous partial observa-
tions. §;(2) is then obtained by examining the observation
O(t) in state S}, i.e., by multiplying the maximal quantity
with the probability Pr(S(¢) = S;|O(¢)). The computation
of Equation 12 is performed for all the states j, 1 < j < 8§,
and is iterated for ¢ = 2,3, ..., T Finally, Equation 14 shows
that Pr(O|A) is the maximal of the terminal probabilities,
8;(T). It is straightforward to determine which HMM can
best describe the observation sequence for the four As,
that is, Viterbi algorithm is evaluated for each HMM and
the one achieving the highest probability will be selected.

Experimental results

We collect ten baseball games recorded from the TV
broadcasts of Chinese Professional Baseball League
(CPBL) and Major League Baseball (MLB). The test videos
have varying effects such as fading in/out, moving logos,
deforming objects and full-frame transitions. We use
these various forms of effects from different sources to
verify the generality of the proposed method. The videos
are compressed into MPEG-2 video streams with the res-
olution of either 352 x 240 (videos 1 to 5) or 720 x 480
(videos 6 to 10). The frame rate is set as 30 fps (frames per
second). In each video, we use the first inning of ball game
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Table 1 The results of the scene-change detection

Video Recall (%) Precision (%)
T 94 83
2 93 85
3 92 87
4 95 88
5 96 83
6 94 84
7 91 83
8 92 84
9 93 80

10 95 89

to train the templates. Commercials are removed from the
training segment to avoid building the templates based on
repeatedly displayed advertisements. It should be noted
that this issue may be settled by applying the automatic
detection of commercials beforehand [65]. Then, we test
our scheme in the first 60 min of the ball games, in which
commercials are also removed to facilitate the analysis of
data.

Scene-change detection

We first show the performances of our compressed-
domain scene-change detection, which is important to the
accuracy of template and pitching view extraction. To save
time of examining scene changes by eyes, we use the first
innings of videos for testing and the results are shown in
Table 1. The precision rate is defined as the number of
correct detections divided by the sum of correct and false
detections. The recall rate is defined as the number of cor-
rect detections divided by the sum of correct detections
and misses. We can find that the recall probability of each

Table 2 The processing of transition effect detection

Video Number of Trainingtime  Numberof Detection
number  processing (second) candidates time
unit (second)
1 47 29 770 129
2 48 29 740 131
3 16 8 798 138
4 66 53 636 104
5 39 16 600 130
6 27 25 672 249
7 59 81 645 224
8 19 27 510 261
9 38 26 640 260
10 38 34 556 226
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Figure 11 Template frames. (a) Video 1 (CPBL, single logo), (b) video 2 (CPBL, single logo), (c) video 3 (MLB, single logo), (d) video 4 (MLB, single
logo), (e) video 5 (MLB, logo 1), (f) video 5 (MLB, logo 2), (g) video 6 (CPBL, single logo), (h) video 7 (CPBL, single logo), (i) video 8 (MLB, logo 1),
(j) video 8 (MLB, logo 2), (k) video 9 (MLB, logo 1), (I) video 9 (MLB, logo 2), (m) video 10 (MLB, logo 1), and (n) video 10 (MLB, logo 2).

video is higher than the precision probability. The high
recall rates indicate that the misses of scene-change detec-
tions are rare in this scheme. Although we may detect
some wrong scene changes, it does not affect our scheme
much, since the features of the additional shots will be
further analyzed.

Transition effect detection
Table 2 shows some information of applying transition
effect detection. The second column lists the numbers

of processing units formed in the template training pro-
cess. As mentioned before, we proceed to construct the
template as soon as enough processing units are collected
to form a group so that the training time can be reduced.
The processing time in the training phase is shown in the
third column. The fourth column lists the numbers of can-
didates considered for the transition effect detection, and
the fifth column shows the time of matching or logo detec-
tion in each one-hour test video. The tests are performed
on a computer with Intel Core-2 Quad 2.4 GHz CPU and



Su et al. EURASIP Journal on Image and Video Processing 2013, 2013:27
http://jivp.eurasipjournals.com/content/2013/1/27

Table 3 The results of the transition effect detection

Video Number Correct False Precision (%) Recall (%)
of effect
1 50 48 0 100 96
2 90 86 0 100 96
3 84 80 2 98 95
4 42 41 2 95 98
5 80 76 3 96 95
6 84 79 0 100 94
7 42 40 0 100 95
8 60 56 T 98 93
9 64 60 2 97 94
10 32 29 1 97 91

2 GB RAM (Intel, Sta. Clara, CA, USA). Although it is not
easy to compare the efficiency of our scheme with other
existing ones since the information of execution time was
seldom reported, we think our scheme is pretty efficient as
both the training and detection processes can be finished
in a reasonably long period of time. The extracted tem-
plate frames, along with the corresponding video frames,
are demonstrated in Figure 11. The detection results of
transition effect are then shown in Table 3. The second
column shows the number of transition effects that appear
in the test data, which are determined by the human eye.
The third and fourth columns demonstrate the numbers
of correct and false detections of transition effects, respec-
tively. The average precision rate is as high as 98%, since
the template is accurately determined, and the recall rate
is 95%. Given that there are so many kinds of materials
in baseball videos, the performance is quite good to ful-
fill the requirements of our targeted application. The cases
of misses come from the fact that the associated process-
ing units are not included for the subsequent examination

Table 4 The results of the pitching view detection
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because their scene changes are not detected. More flex-
ible thresholds may reduce the number of misses at the
expense of spending more time investigating the video
data. The cases of false detections are usually the tran-
sition effects that do not relate directly to slow-motion
replays but to certain statistical information about the
ball game. These effects may have a similar outlook with
the targeted ones so the removal of these effects needs
further content analysis. Furthermore, the uses of semi-
transparent logos in the sportscast these days may make
the constructed template less reliable, so the resulting
errors may be increased a bit.

Pitching view detection

The experimental results of the pitching view detection
are shown in Table 4. We tested the ten baseball games,
in which the colors of the players’ jerseys, positions of the
players, and textures of fields are different. The second
column in Table 4 lists the numbers of traceable pitch-
ing views in the test data, which are extracted according
to the detected transition effects. The third and fourth
columns show the numbers of correct and false detections
of pitching views, respectively. The misses happen when
the targeted pitching view frames are not detected in the
reverse search from the transition effects. The false detec-
tions indicate that certain scenes are wrongly identified
as the pitching view frames so the reverse search stops
before reaching the targeted ones. We can see that the
precision and recall rates are both high since the trained
pitching view template effectively represents such scenes
in the video. It is worth noting that the detection of pitch-
ing views can also be done efficiently. The execution time
is listed in the last column of Table 4 as the reference and
it is around 36 s in average.

Highlight detection
The results of the highlight classification are shown in
Table 5. The average precision and recall rates are 83%

Video Number of pitching view Correct False Precision (%) Recall (%) Time (second)
1 22 20 100 80 19
2 42 40 98 89 46
3 39 37 97 88 68
4 19 18 100 86 19
5 37 36 97 90 42
6 38 36 97 86 67
7 19 18 100 86 24
8 27 26 96 87 24
9 29 28 100 88 41
10 14 13 93 81 13
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Table 5 The results of the highlight detection

Highlight Total Correct False Precision(%) Recall(%)
type
Base hit 40 35 8 81 89
Score 25 20 8 71 83
Out 57 43 9 83 80
Special 20 10 9 53 66
Non-
highlight 130 118 12 91 91

and 85% respectively, which demonstrate that the HMM-
based method can achieve reasonably good results. About
90% of the non-highlight events are correctly determined
by checking the number of scenes in the replay segment.
A brief comparison is shown in Table 6. Compared with
the performances of existing HMM-based schemes [8,52],
although our results may not be much superior, most of
the other methods exploit the pixel-domain information
or such high-level features as extracted objects/faces so
that their computational complexity will be higher. We do
believe that a more delicate training process in our scheme
should help to improve the performance. In our opinion,
HMM here serves as one potential approach for effec-
tive highlight classification. The major contribution of this

Table 6 The comparison with other HMM-based highlight
extraction schemes

Type Precision(%) Recall(%)
Our scheme Base hit 81 89
Score 74 83
Out 83 80
Special 50 66
Non-highlight 91 91
Chang et al. [8] Home run 71 83
Catch 68 75
Base hit 66 83
Infield play 40 67
Chen et al. [52] Single 83 80
Double 67 25
Pop-up 78 100
Fly-out 75 82
Foul-out 100 50
Ground-out 87 93
Two-base out 100 50
Foul ball 86 100
Double play 67 100
Home run 83 83
Home-base out 100 75
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research is to extract the more meaningful video segments
for analysis so that a practical implementation of high-
light extraction is possible. More advanced methods for
content classification can surely be coupled well with our
scheme based on the transition effect detection.

Discussions

Some comments about our experiments are as follows:
The detections of transition effects can provide us the
video segments of interest, which have more unified struc-
tures, so we can use low-level or MPEG-domain features
for the effective content classification. Our research objec-
tive is to design a practical highlight extraction scheme
for digital video recorders so we still prefer to adopt the
compressed-domain approach and employ the transition
effect detection to exclude less possible data from process-
ing. If the restrictions of complexity/cost are a bit relaxed,
we may choose to expand/decode some frames and make
use of high-level features to improve the performance of
our content classification. The other concern is the several
empirically set thresholds, which may be affected by such
factors as bit rates and resolutions of videos. The prob-
lem may become less serious if the manufacturer can test
many videos, probably with different levels of compres-
sion, recorded by this specific video recorder to decide
suitable thresholds. In addition, since the same transi-
tion effect will appear repeatedly in the recorded video,
the methodology of majority voting is quite effective. We
may also adjust the thresholds during the training pro-
cess to ensure that a template can be successfully made.
Nevertheless, commercials have to be excluded from the
training process because the same commercial may also
appear several times. These commercials may not cause
problems in the detection phase though. Finally, there
exists a trade-off between execution speed and accuracy.
To avoid missing the detections of effects, we may select
more candidate frames for testing with the cost of more
computation. The same issue exists in the template con-
struction. The more processing units are considered when
constructing the template, the better quality the tem-
plate frame will be and the more execution time will be
expected. The major drawback of this work is that our
scheme only works on the sports videos with transition
effects, although we think that the usage of transition
effects is a trend in sportscast nowadays.

Conclusions

We propose to make use of the transition effects inserted
by broadcasters for sports videos highlight extraction. The
MPEG-compressed domain features, including motion
vectors, coding modes, and color information, are used
to differentiate the shots containing the transition effects
from others. The template of transition effects in the
investigated video is obtained after training and can be
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used to detect the effects in the entire game. After the
transition effects are identified, the positions of slow-
motion replays can be located and the suitable starting
positions of possible video highlights before the replay will
be detected by our pitching view model. The video seg-
ments of interest can be further analyzed by the trained
HMMs to determine which type of highlights the seg-
ments belong to. Experimental results demonstrate this
promising research direction. We believe that the pro-
posed scheme can be coupled with many existing content
analysis algorithms in sports videos to either speed up or
improve the performance. The feasibility of the research
is illustrated by using baseball videos, and the idea should
be applicable to other sports. Since the proposed scheme
only utilizes the features extracted/calculated from the
MPEG bit stream, we believe that a cost-effective imple-
mentation in consumers’ digital video recorders could be
achievable.
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