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Abstract

This paper presents a fast context-based adaptive variable-length decoding (CAVLD) method of H.264/AVC with a
very long instruction word-based bitstream processing unit (BsPU) designed for entropy decoding of multiple video
formats. A new table mapping algorithm for the coeff_token, level, and run_before syntax elements of the
quantized transform coefficients is proposed, and many branch operations are removed by utilizing several
designated instructions in the BsPU. By applying designated instructions and the proposed table mapping
algorithm to CAVLD, we found that the proposed fast CAVLD method achieves an increase of approximately 47% in
the decoding speed and a reduction of approximately 59% in memory requirements for the table mapping.
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1. Introduction
The recent evolution of digital media technologies has
enabled users to use numerous video applications, even
on mobile devices, through diverse network channels.
Along with these communication and hardware imple-
mentation technologies, various video compression tech-
nologies have been developed not only by standard
bodies, but also by private companies. The ISO/IEC
Moving Picture Expert Group (MPEG) and the ITU-T
Video Coding Expert Group (VCEG) have released mul-
tiple video compression standards: MPEG-1/2/4 and
H.261/262/263/264. Among them, H.264/AVC is consi-
dered to be a major video coding standard, owing to its
coding efficiency. It was developed by a Joint Video
Team, which was a temporary group formed by the
MPEG and VCEG bodies [1]. These video coding stan-
dards have been widely used for mass production appli-
cations such as broadcasting, media players, and mobile
video services. Moreover, these video codecs have been
vigorously implemented in hardware circuits for huge
markets. On the other hand, there are many other video
coding technologies, such as the On2 series and VC-1.
Even though these technologies were not developed by
international standards bodies, they have been widely
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used in the market, especially for personal computer
(PC) applications with software implementation. How-
ever, since the advent and widespread use of smartphones,
video codecs are no longer just for the PC platform. As
smartphones proceed in replacing conventional cellular
phones, many video codecs are being considered for mobile
devices. Mobile devices have one major limitation: light bat-
teries. Video codecs for mobile devices are commonly
implemented in hardwired circuits for lower power con-
sumption. However, it is difficult to implement all video
codecs in hardware logic because of development costs, de-
sign time, and lack of flexibility. For new video codecs,
many developers should be prepared for long development
times and high financial costs in developing and debugging
hardware logics.
On the other hand, software-based multi-format video

decoders have been developed on multi-core platforms.
Various parallel implementations are utilized to alleviate
the implementation costs of multi-format decoders with
hardwired circuits. On the multi-core platform, it is pos-
sible to develop multi-format decoders that allow easy
performance evaluation with minimum cost and effort
compared to other hardwire designs. In addition, the
multi-core platform requires less power for fast decod-
ing of multi-format multimedia content due to the low
clock speed. Parallel video decoders with multi-core
platform can be implemented based on both data-level
and functional-level parallelism. However, considering
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resolution, scalability, and performance in parallelism,
the macroblock-level parallelism approach, which is a
form of data-level parallelization, is widely used for
video decoders [2–4]. For macroblock-level parallelism,
the 2D wave-front approach is widely known and used.
This method can perform parallel decoding of multiple
macroblocks without any decoding dependencies. How-
ever, this 2D wave-front approach cannot be used for en-
tropy decoding because of bit-by-bit dependency in a
slice, even though back-end decoding can be parallelized
with the multi-core platform [5]. Because the perform-
ance of parallel video decoders is highly influenced by
sequential parts such as entropy decoding, the high-
performance entropy decoder is an essential prerequisite
for parallel video decoders. In addition, entropy decod-
ing is one form of bottleneck that can decrease decoding
throughput not only in parallel decoders but also in se-
quential decoders, especially for high-bitrate streams.
H.264/AVC supports two entropy coding techniques:

context-based adaptive variable-length coding (CAVLC)
and context-based adaptive binary arithmetic coding
(CABAC). CABAC provides a coding gain of approxi-
mately 10% ~ 15%, compared with CAVLC. However, it
has high computational complexity and requires a large
number of serial operations. With software-based
implementations, it is difficult to achieve real-time de-
coding for CABAC for such high bitrate ranges [6–8].
The CAVLC mode is also widely used, not only for
mobile devices, but also for many other high-quality
applications through baseline and main profiles.
Although context-based adaptive variable-length deco-
ding (CAVLD) has less computational complexity than
context-based adaptive binary arithmetic decoding
(CABAD), the CAVLD is also considered to be one of
the most complex variable-length decoding (VLD)-based
entropy decoders in the market. We can state that a
platform capable of implementing CAVLD in real time
can also decode other VLD-based entropy decoders. In
this paper, a fast CAVLD implementation is presented
with a developed bitstream processing unit (BsPU) based
on a table mapping algorithm. Note that the BsPU has
multiple designated instructions for entropy decoding.
The new table mapping algorithm is applied to seve-
ral syntax elements such as coeff_token, level, and
run_before. In addition, certain designated BsPU instruc-
tions are efficiently used to reduce the number of
branches in arithmetic computations.
The rest of the paper is organized as follows. In sec-

tion 2, the conventional entropy decoding algorithms
and the BsPU are introduced. In section 3, the proposed
fast CAVLD based on a new table mapping algorithm is
presented. In section 4, experimental results are shown
and discussed. Finally, concluding remarks are given in
section 5.
2. H.264/AVC CAVLD and its conventional
acceleration algorithms
CAVLD is considered to be a bottleneck in both parallel
and sequential decoders of H.264/AVC because of its bit-
by-bit dependency. Furthermore, as video resolution is in-
creasing based on market demands, the common bitrate
for high-resolution videos such as full high definition (full
HD) now ranges from 10 to 20 megabits per second
(Mbps) for high-quality applications. For such high-bitrate
applications, a portion of the complexity for the entropy de-
coding would significantly increase. For fast CAVLD of
H.264/AVC, there are several algorithms such as table map-
ping, which can improve the overall latency of entropy de-
coding without parallelism. In order to develop an efficient
table mapping approach for multi-stage pipelined proces-
sors, it is necessary to consider not only the memory re-
quirements and the number of memory accesses, but also
the number of conditional branches.

2.1 CAVLD of H.264/AVC
CAVLC is one of the entropy coding methods of H.264/
AVC to encode quantized transformed coefficients in 4 × 4
(or 2 × 2) blocks. CAVLC employs some characteristics to
improve coding efficiency as follows: (1) Run-level coding
is more effective to encode strings of zero coefficients after
zig-zag scanning. (2) After zig-zag scanning, non-zero coef-
ficients in high frequency are likely to be ±1. CAVLC refers
to the number of ±1 coefficients as TrailingOnes and en-
codes it. (3) The number of non-zero coefficients is highly
correlated with those of neighboring blocks. CAVLC refers
to the number of non-zero coefficients as TotalCoeff and
uses different variable-length coding (VLC) tables depend-
ing on the number of non-zero coefficients of neighboring
blocks. (4) The levels of non-zero coefficients tend to be
higher near low-frequency components. Hence, CAVLC
adaptively selects the VLC table to encode the current level
value depending on the associated previous coded level.
The zig-zag scanned coefficients are represented by five
types of syntax elements. These syntax elements are defined
as follows:

1. coeff_token: This syntax element specifies both
TotalCoeff and TrailingOnes.

2. trailing_ones_sign_flag: This syntax element specifies
the sign of a coefficient in TrailingOnes.

3. level_prefix and level_suffix: These syntax elements
specify the value of a non-zero coefficient level
except for TrailingOnes.

4. total_zeros: This syntax element specifies the
number of zero coefficients preceding the last non-
zero coefficient.

5. run_before: This syntax element specifies the
number of consecutive zero coefficients preceding
each non-zero coefficient including TrailingOnes.
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Figure 1 shows a flowchart of CAVLD and the decod-
ing procedure with an example bitstream of a 4 × 4
block. The process of CAVLD consists of six steps, as
shown in Figure 1. In this example, the average number
of non-zero transform coefficients of the top and left
blocks is assumed to be five. After the decoding proce-
dure for the 4 × 4 block, zig-zag scanned coefficients, {0,
3, 0, 1, −1, −1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0}, are
reconstructed.
2.2 Conventional fast entropy decoding algorithms
Many previous studies on fast implementation of
CAVLD have proposed the use of hardwire logic [9–11].
However, hardware implementations have many draw-
backs such as the long development period, the large sil-
icon area, and the low reusability of multi-format video
decoders, as previously mentioned. This paper focuses
on fast entropy decoding algorithms for processor-based
implementations. The simplest approach is the table
lookup by sequential search (TLSS) as implemented in
the joint model (JM) reference software [12]. TLSS finds
symbols by comparing all possible codewords with part
of the input bitstream. This approach requires a large
number of comparisons and therefore cannot be used
for real-time applications. Table lookup by binary search
(TLBS) has also been proposed to improve the entropy
decoding speed. The codewords are rearranged into a
binary search tree structure, and the symbols can be
extracted from the tree by using binary search. TLBS of-
fers much better performance than TLSS; however, a
more efficient implementation is needed for real-time
applications.
Parse
coeff_token

Parse
trailing_ones_sign_flag

Parse
level_prefix and level_suffix

Parse
total_zeros
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run_before
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Figure 1 CAVLD flowchart and procedure for an example 4 × 4 block
On the other hand, several conventional algorithms
can be used to reduce the number of memory accesses.
Moon et al. [13] proposed a fast decoding method for
coeff_token and run_before in the CAVLD of H.264/
AVC. It is based on arithmetic operations and works by
considering the characteristics of the associated
codewords. This approach does not require memory ac-
cess and repeated comparisons; however, many condi-
tional branches might be involved, depending on the
codewords used. Another memory-efficient CAVLD for
fast entropy decoding [14] was presented to accelerate
coeff_token, run_before, and total_zeros based on arith-
metic operations. In this study, codewords were catego-
rized, and several arithmetic operations were proposed
for each category. This algorithm is known to be more
effective than Moon's algorithm; however, it also re-
quires many conditional branches. Frequently occurring
conditional branches are not suitable for multi-stage
pipelined processors because wrong branch prediction
can significantly reduce performance of the processors.
Although many multi-stage pipelined processors have
their own branch prediction units, the performance of
the modules depends on the applications. In particular,
the performance of instruction-level parallelism can be
further degraded by wrong branch prediction for many
digital signal processors (DSP) based on the very long
instruction word (VLIW) architecture. For multi-stage
pipelined processors, a reduction in the number of con-
ditional branches is also important along with a reduc-
tion in the number of memory accesses and the table
memory requirement [15]. Many table-based algorithms
have been proposed for a number of entropy decoders
based on VLD because these approaches are known to
 : 101001110010111101101

element Codeword Value

ken 1010            TotalCoeff=5,
TrailingOnes=3

ones_sign_flag 0                         +
ones_sign_flag 1                           -
ones_sign_flag 1                           -

                                       1                          +1
                                    0010                       +3

ros 111                          3

ore 10                           1
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.
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be fast and have a large redundant memory allocation
[16–19].
As shown in Figure 2, the table mapping algorithm

tries to find the correct symbol using memory address-
ing with the maximum-length syntax element (in bits).
Note that the length is that of the longest codeword for
the syntax element. However, the table memory require-
ment increases exponentially by 2n, where n is the length
of the longest codeword. In addition, such high memory
requirements can cause frequent cache misses, which
have a significant impact on overall performance. Thus,
the memory requirement needs to be reduced. One fast
entropy decoding algorithm based on table mapping was
proposed for coeff_token in CAVLD [20]. This algorithm
divides the mapping table for coeff_token depending on
the number of leading zeros. Multiple tables are re-
quired, but the total memory requirements can be re-
duced using multiple small tables. However, in practice,
this approach is not suitable for pipelined processors be-
cause conditional branches might be involved in the
choice of one of the four tables before table indexing.
For coeff_token decoding, a multi-level table mapping

algorithm was proposed [21]. The first 8-bit codeword is
decoded using a table mapping algorithm, and the rest
of the bits are then decoded with one branch operation
and an additional table mapping algorithm. This algo-
rithm reduces the amount of table memory; however, it
frequently suffers from pipeline stalls caused by branch
operations.
For the level and run_before syntax elements, the

multi-level table mapping algorithms [22] are also used
for fast decoding. The level syntax element is repre-
sented with the Exp-Golomb code, the codewords of
which have leading zeros which are less than 15. The
first 8-bit codeword is decoded using table mapping, and
the rest of the bits are decoded using arithmetic opera-
tions by employing characteristics of Exp-Golomb.
Symbol Codeword

0 0xxx

1 10xx

2 1100

3 1101

4 1110

5 1111

Index Symbol Codeword length

0000 0 1

0001 0 1

0010 0 1

… … …

1000 1 2

1001 1 2

1010 1 2

1011 1 2

1100 2 4

1101 3 4

1110 4 4

1111 5 4

Figure 2 Original codeword table and new table for
table mapping.
Codewords with more than 15 leading zeros before the
separator require exceptional handling. This algorithm
also requires several conditional branches. For the
run_before syntax, one of multiple tables is selected
based on the number of zeros among the rest of coeffi-
cients to be decoded. When the number of zeros is
greater than six, a larger mapping table is required. In
this case, two-stage table mapping should be employed
to reduce the amount of memory. For the remaining
cases, one table mapping algorithm can perform the en-
tire entropy decoding. This algorithm can significantly
reduce the table memory requirement; however, many
conditional branches should be involved, and these can
reduce overall performance of entropy decoding with a
multi-stage pipelined processor.

2. 3 Bitstream processing unit
Entropy decoding is a process whereby a codeword is
converted into a number or symbol. The codeword is
loaded from external memory into internal memory in
the entropy decoding process. In addition, the opera-
tions in the entropy decoding are mostly bit-level ope-
rations. However, frequent accesses to the external
memory can significantly degrade decoding perform-
ance. To resolve this problem and achieve real-time de-
coding with a flexible design, it is desirable to use a
designated bitstream decoding processor.
The combination of a bitstream decoding processor and

parallel back-end decoding is useful for implementing a
real-time multi-format decoder with low power consump-
tion. This paper uses the BsPU that consists of a reconfig-
urable processor (RP) [23] and multiple instructions for
multi-format bitstream decoding. Note that we also devel-
oped the BsPU by developing new instructions and
hardwire logics on the RP, which is an elaboration of
ADRES [24]; however, in this paper we will focus on the
fast H.264/AVC CAVLD on the BsPU. The BsPU is based
on a VLIW architecture and six additional instructions for
bitstream decoding, as shown in Table 1. The Showbits in-
struction is for outputting as many bits as required. The
Getbits instruction is for outputting as many bits as re-
quired and moving a pointer to the next bit after the
bits used. The Skipbits instruction is for skipping as
many bits as required. These three instructions are
widely used for bitstream access and can be used to re-
duce the number of cycles required. The count leading
zeros (CLZ) instruction is for determining the number
of consecutive zeros in a bitstream and is used in re-
duced instruction set computer processors [25] and
many other DSPs. This instruction would be very useful
for decoding some syntax elements coded with Exp-
Golomb. The BsPU contains an instruction called
I_ONERETURN with two input parameters, A and B.
When A is 1, this operation returns B; otherwise it



Table 1 BsPU instructions for multi-format bitstream
decoding

Instruction Description

Showbits(n) The Showbits instruction reads n bits
from the input value

Getbits(n) The Getbits instruction reads and skips
n bits from the input value

Skipbits(n) The Skipbits instruction skips
n bits from the input value

CLZ The CLZ instruction counts leading zeros

I_ONERETURN(A, B) If input A is 1, return input B; if input A
is any other value, return 0

I_MIN(A, B) I_MIN instruction returns the minimum
value between A and B

Table 2 Four tables for the coeff_token depending on nC

Table number Selection condition Table name

0 0 < = nC < 2 VLC T0

1 2 < = nC < 4 VLC T1

2 4 < = nC < 8 VLC T2

3 8 < = nC FLC
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returns ‘0’ as an output. This operation can be
implemented using multiplication; however, the RP re-
quires 3 cycles for multiplication. The I_ONERETURN
instruction requires only 1 cycle and is therefore more
effective than multiplication for removing conditional
branches.

3. Proposed fast CAVLD for BsPU
In this paper, a new fast CAVLD algorithm which uses
dedicated instructions for table mapping is proposed. To
reduce the number of branch operations, the various in-
structions are carefully organized to improve overall per-
formance. As the three syntax elements, coeff_token,
level, and run_before occupy a large fraction of compu-
tation time, we propose a new table mapping algorithm
for them with several instructions in the BsPU. In con-
trast, the trailing_ones_sign_flag can be easily decoded
because the length is known as the TrailingOnes. For the
total_zeros syntax element, we also employed the table
mapping algorithm. However, the decoding algorithm is
conceptually the same as the simple table mapping
algorithm. It allocates 29 entries for a table for
total_zeros_syntax element since the longest code word
has 9 bits.

3. 1 Proposed fast decoding for the coeff_token syntax
element
Four codeword tables are used for the coeff_token syn-
tax element in H.264/AVC CAVLD. One of these four
tables is selected depending on the average number of
non-zero transform coefficient levels of the top and left
blocks, which is denoted nC, as shown in Table 2. Three
of these ones are variable-length tables, and the last one
is a fixed-length table. For the variable-length tables,
each codeword consists of three parts: a prefix, the num-
ber ‘1’, and a set of remainder bits. The prefix consists of
consecutive zeros, and the remainder bits are an arbi-
trary sub-codeword with a length of less than or equal
to 3. In the proposed algorithm, each of the three VLC
tables is divided into multiple divisions depending on
the number of consecutive zeros in order to achieve fast
table mapping with minimum memory size. After imple-
mentation of a single table mapping for each table, there
will be 216 entries, because the longest codeword bit
length is 16. In the proposed algorithm, the length of di-
vided divisions for VLC T0 is 8 (=23) to avoid any condi-
tional branches regardless of the number of entries. As a
result, the required number of entries is 120 (=15 × 23)
for the VLC T0, because the number of divisions is 15.
On the other hand, the required number of entries for the
fixed-length coding (FLC) case is 26, and the table can be
accessed with a 6-bit address. Figure 3 shows a part of
the reorganized tables for coeff_token. TrailingOnes and
TotalCoeff are assigned by the remainder and quotient
from division of the ‘coeff ’ in the second table by four,
respectively. Figure 4 shows two different methods to
decode the syntax element for the VLC and FLC cases,
depending on the value of nC. A branch operation is
needed to distinguish the two cases. This paper pro-
poses a single consolidated decoding algorithm for
coeff_token without any branch operations. The follow-
ing is the pseudo-code for the consolidated decoding al-
gorithm of coeff_token.

In the first step, the table index is obtained, using nC.
Then, the 32-bit bitstream is read. In the third step,
zero_num is set to the number of leading zeros in those
32 bits. In step 4, the flag indicates whether a VLC table



Index (3 bits) Coeff
Length

(remainder)

0 (000b) 27 3

1 (001b) 14 3

2 (010b) 13 3

3 (011b) 4 3

4 (100b) 23 2

5 (101b) 23 2

6 (110b) 9 2

7 (111b) 9 2

Table
Leading 

zero
Codeword

Maximum
codeword

length

VLC T0

0 1 3

1 01 3

… … …

VLC T1

0 11
10 3

1 0101
0100 3

2

001011
00111
001010
001001
00110
001000

3

… … …

VLC T2
0

1111
1110
1101
1100
1011
1010
1001
1000

3

… … …

FLC -

000011
000000
000001
000100
000101

6

Index (6 bits) Coeff
Length

(remainder)

0 (000000b) 4 6

1 (000001b) 5 6

… … …

17 (001001b) 13 6

18 (001010b) 14 6

… … …

62 (111110b) 66 6

63 (111111b) 67 6

Figure 3 Proposed two-stage coeff_token decoding table.
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or the FLC table is needed. The indicator flag2 contains
the number of zeros in the VLC case (or is zero in the
FLC case). Therefore, this number serves as the division
index for the VLC case. In the FLC case, there is only
one table and the division index is zero. In the sixth step,
the address of the desired division is obtained using the
nC based table selection 

Showbits (32 bits)

CLZ &
Skipbits (zero number+1)

Showbits (3 bits)

Table mapping

Skipbits (remainder bits)

Getbits (6 bits)

Table mapping

Is FLC ?
No Yes

Figure 4 Two different decoding modes for VLC and FLC.
VLC table index. In the FLC case, the start address of
the FLC table is returned. In the seventh step, the bits in
the prefix and the separator ‘1’ are discarded in the VLC
case; however, no bits are discarded in the FLC case. In
the eighth step, 3 and 6 bits are loaded for the VLC and
FLC case, respectively, in order to specify the address for
the mapping table. In the ninth step, the desired value is
obtained from the reorganized table using the address.
In the last step, the processed bits are discarded to pre-
pare for the next bitstream decoding operation.
3.2 Proposed fast decoding for the level syntax element
H.264/AVC uses seven VLC tables for the level syntax
element. For the first level value, the Level_VLC0 or
Level_VLC1 table is used depending on the context. If
the number of non-zero coefficients is greater than ten
and the number of TrailingOnes is less than three, the
Level_VLC1 table is selected; otherwise, Level_VLC0 is
used for the first level value. For the second level value,
when the decoded level value is greater than a threshold
defined for each step, the next VLC table is used. The
thresholds for the seven VLC tables are {0, 3, 6, 12, 24,
48, N/A}.
The VLC table for the level syntax element is essen-

tially based on Exp-Golomb. The number of remainder
bits is determined by the number of leading zeros. Then,
a known arithmetic operation is used to decode Exp-
Golomb-coded syntax elements. Table 3 shows the
codewords and corresponding levels for Level_VLC1. As



Table 3 Codewords and corresponding levels for
LEVEL_VLC1

Codeword Level

10 1

11 −1

010 2

011 −2

… …

0000 0000 0000 0011 −15

0000 0000 0000 0001 xxxx xxxx xxxx ±16…

0000 0000 0000 0000 1xxx xxxx xxxx xx ±2064…
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shown in the table, the length of the codeword varies de-
pending on the number of leading zeros until this value
is less than 15. Because of the exception, branch opera-
tions could be required.
It is inefficient to use the table mapping algorithm

alone for the level syntax element because the table
memory requirement is huge. This paper proposes a
two-stage table mapping algorithm using arithmetic op-
erations with one condition. As shown in Figure 5, if the
number of leading zeros is greater than or equal to 16,
arithmetic operations are used for level decoding. Other-
wise, the two-stage table mapping algorithm is used. As
shown in Figure 6, the next table index, the length of re-
mainder bits, and the starting address of the coefficient
Figure 5 Flowchart for decoding operation of the level
syntax element.
table are accessed using the number of leading zeros as
an index. Addition or comparison is not needed to iden-
tify the next table to be used according to the threshold
because the next table index is obtained from the first-
stage table mapping operation. After the process of lead-
ing zeros table mapping in Figure 5, the processed bits
are discarded. The coefficient table for the second table
mapping is used with a number of bits equal to the
number of remainder bits from the first table. H.264/
AVC utilizes seven coefficient tables depending on the
VLC level number. However, the proposed algorithm
consolidates all these coefficient tables into one, as
shown in Figure 6. The coefficient level value in the con-
solidated coefficient table ranges from −2,528 to +2,528.
From the starting address of the first table, the coeffi-
cient level value can be retrieved using the number of
remainder bits as an index. After coefficient table map-
ping, the remainder bits are discarded.
3.3 Proposed fast decoding for the run_before syntax
element
The run_before syntax element indicates the number
of zero coefficients between two consecutive non-zero
coefficients. This syntax element has seven tables de-
pending on the number of remaining zero coefficients
to be decoded. A table mapping method that does
not need branch operations for table selection is pro-
posed, and the consolidated table for the proposed
decoding method of the run_before syntax element is
as follows: The maximum codeword length from
run_before_T0 to run_before_T5 is 3; therefore, six
tables with 23 entries each are needed. For the last
table, run_before_T6, the maximum number of
codeword bits is 11; therefore, a mapping table with
211 entries must be used for direct memory access.
However, only one codeword in the table consists of
11 bits. Therefore, the codewords can be identified by
checking the first 10 bits only, so the proposed map-
ping table for run_before_T6 consists of 210 entries
as shown in Figure 7. The proposed pseudo-code for
fast decoding of the run_before syntax element is
presented as follows:

In step 1, the table number is determined, with
zeroleft representing the total number of zero coeffi-
cients to be decoded. The run_before_T6 is used in the



Table name
# leading 

zeros
Next table

index
Length

(remainder)
Address 
pointer

Level_VLC0

0 1 0

1 1 0

2 1 0

3 1 0

… … …

Level_VLC1

0 1 1

1 1 1

2 1 1

3 2 1

4 2 1

… … … …

… … … … …

Coefficient table

Address Coefficient

0 1

1 -1

2 2

3 -2

4 3

5 -3

6 4

7 -4

8 5

…

5054 2528

5055 -2528

Figure 6 Proposed two-stage decoding table for level syntax element.
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case that zeroleft is greater than 6. Otherwise, the table
number is selected based on the zeroleft value. In gen-
eral, a branch operation is needed to decide whether
zeroleft is greater than 6. However, in the proposed de-
sign, the I_MIN instruction in Table 1 is used to elimin-
ate the branch operation. In step 2, 10 bits are loaded
for consecutive decoding. In step 3, the I_ONERETURN
instruction is used to carry out table mapping with all
10 bits for run_before_T6 and with only 3 bits for the
remaining tables. In step 4, the run_before value is re-
trieved by using table mapping with the table number
and the associated index. In step 5, the processed bits
are discarded.
Table Maximum
codeword length

run_before_T0 3

run_before_T1 3

run_before_T2 3

run_before_T3 3

run_before_T4 3

run_before_T5 3

run_before_T6 10

In

12

12

10

10

Figure 7 Proposed decoding table for run-before syntax element.
4 Experimental results and discussion
To evaluate the performance of the proposed algorithm,
the number of cycles for H.264/AVC CAVLD is investi-
gated with a RP simulator. We compared the proposed
algorithms with Kim's method [14], Iqbal's method [20],
the multi-level table mapping (MTM) method [21], and
open-source software (FFmpeg) [22] in the sense of
CAVLD cycles and required memory for various video
sequences.

4. 1 Experimental conditions and environment
The performance of bitstream decoding is related to not
only the characteristics of video sequences but also their
dex (3 bits) Value 
(run_before) Length

0 (000b) 1 1

1 (001b) 1 1

2 (010b) 1 1

3 (011b) 1 1

4 (100b) 0 1

5 (101b) 0 1

6 (110b) 0 1

7 (111b) 0 1

Index (10 bits) Value 
(run_before) Length

0 (0000 0000 00b) 14 11

1 (0000 0000 01b) 13 10

2 (0000 0000 10b) 12 9

… … …

8 (0010 0000 00b) 6 3

9 (0010 0000 01b) 6 3

… … …

22 (1111 1111 10b) 0 3

23 (1111 1111 11b) 0 3

…



Table 4 Test sequences and their bitrates

Resolution Sequences QP Bitrate (Mbps) FPS
(frame/s)IPPP IBBBP

HD Parkrun 22 54.2 52.1 30

28 22.8 20.5 30

34 8.5 8.0 30

Shields 22 25.4 23.2 30

28 4.0 3.3 30

34 1.2 1.1 30

Mobcal 22 29.5 24.6 30

28 5.2 3.6 30

34 1.3 1.0 30

Full HD Blue_sky 22 13.8 11.9 30

28 5.0 4.2 30

34 2.2 2.0 30

Riverbed 22 62.2 62.8 30

28 31.4 31.9 30

34 15.0 14.7 30

Station2 22 7.3 7.4 30

28 2.3 2.5 30

34 1.2 1.3 30
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bitrates. For this reason, we used several sequences (720p
and full HD) for the evaluation. Table 4 shows test se-
quences, their resolutions, and bitrates. For 720p, ‘Parkrun’,
‘Shields’, and ‘Mobcal’ sequences were used. In addition,
‘Blue_sky’, ‘Riverbed’, and ‘Station2’ sequences were used for
the full HD test. The encoding conditions are shown in
Table 5. We used JM 17.2 reference software to encode the
test sequences with multiple quantization parameter (QP)
values. By using multiple QP values, we can evaluate the
performance of CAVLD algorithms for various bitrates. In
addition, we used both IPPP and IBBBP coding structures
for thorough analysis because the number of zero value co-
efficients could vary depending on P and B slices.
As mentioned before, we developed a new table map-

ping algorithm for CAVLD and designated instructions
Table 5 Encoding conditions for test bitstreams

Profile/level Main/5.0

Intra period 30

Search range 32

Search mode Fast full search

Coding structure IPPP/IBBBP

QP 22, 28, 34

Reference frames 5 frames

RD optimization High complexity mode

Encoder JM 17.2
for multi-format bitstream decoding. The added instruc-
tions, Showbits, GetBits, and Skipbits instructions run
in 2 cycles, and the other instructions, CLZ and
I_ONERETURN, run in 1 cycle. To evaluate the per-
formance of the new table mapping algorithm for the
coeff_token, level, and run_before syntax elements, we
used a developed CAVLD decoder and compared the de-
coding cycles of the CAVLD. For example, to evaluate
algorithms for coeff_token decoding, we just replaced
the proposed algorithm for coeff_token with other con-
ventional algorithms for the syntax element. In that case,
the designated instructions are also applied not only for
the proposed table mapping algorithm but also for the
conventional algorithms.

4.2 Performance evaluation of the proposed algorithm
and several conventional algorithms for CAVLC syntax
elements
Table 6 shows the numbers of megacycles per second
(MCPS) required by the proposed and conventional al-
gorithms for the coeff_token syntax element and cycle
reduction ratio (CRR) of the proposed algorithm, com-
pared with the conventional algorithms. Kim's method
does not use any table mapping operations except for
arithmetic operations. The rest of the algorithms are
based on table mapping. Table 6 shows that the table
mapping-based algorithms are generally more effective
than the arithmetic-based one. Compared with Kim's
method, the proposed algorithm is 17.2% and 17.3%
faster for IPPP and IBBBP coding structures, respect-
ively, and it just requires 0.718 kB of memory for the
table mapping. As shown in Table 6, the proposed al-
gorithm is around 8% faster than Iqbal's method. The
proposed algorithm and Iqbal's algorithm are based on
table mapping. The only difference is that the pro-
posed algorithm omits the branch operations. We can
state that by omitting branch operations, the proposed
algorithm reduces the number of cycles by avoiding
pipeline stall in multi-stage pipelined processors. Note
that the proposed algorithm is more appropriate on
various target systems because it does not cause pipe-
line stall and it is not affected by the performance of
branch prediction. The cycle requirement of the pro-
posed algorithm is almost the same as those of the
MTM method. However, the proposed method reduces
the memory requirements by approximately 88%. In
summary, the proposed algorithm achieves a small
number of cycles with a minimum memory require-
ment for coeff_token decoding.
Table 7 shows the numbers of MCPS and the memory

requirements required by the proposed and conventional
algorithm for the level syntax, and CRR of the proposed
algorithm, compared to the conventional algorithms.
The number of cycles used by the proposed algorithm is



Table 6 Comparison of MCPS and memory requirements for coeff_token syntax element

Sequences QP MCPS CRR (%)

Kim [14] Iqbal [20] MTM [21] Proposed Kim vs. proposed Iqbal vs. proposed MTM vs. proposed

IPPP IPPP IPPP IPPP IPPP IPPP IPPP

IBBBP IBBBP IBBBP IBBBP IBBBP IBBBP IBBBP

Parkrun 22 1,200.8 1,159.5 1,122.1 1,121.6 6.6 3.3 0.0

579.5 559.2 541.0 540.7 6.7 3.3 0.0

28 492.3 466.7 444.9 444.4 9.7 4.8 0.1

249.7 211.8 203.4 203.2 18.6 4.1 0.1

34 178.2 165.3 155.0 154.8 13.1 6.4 0.1

84.2 79.0 74.8 74.7 11.3 5.5 0.1

Shields 22 554.4 506.8 469.4 469.1 15.4 7.4 0.1

261.2 239.1 221.7 221.5 15.2 7.3 0.1

28 86.2 77.7 70.8 70.7 18.0 9.0 0.1

35.7 32.3 29.5 29.5 17.2 8.5 0.1

34 23.4 20.9 18.9 18.9 19.2 9.6 0.0

10.5 9.4 8.5 8.5 18.8 9.4 −0.1

Mobcal 22 669.1 613.4 569.2 568.9 15.0 7.3 0.1

282.0 258.1 239.2 239.0 15.2 7.4 0.1

28 103.5 94.1 86.3 86.3 16.6 8.3 0.0

36.3 33.2 30.7 30.7 15.4 7.5 0.0

34 20.3 18.4 16.9 17.0 16.3 7.6 −0.6

8.9 8.1 7.5 7.5 15.9 7.6 0.0

Blue_sky 22 347.7 311.8 283.5 283.4 18.5 9.1 0.0

143.8 129.3 117.8 117.8 18.1 8.9 0.0

28 124.8 110.9 99.4 99.6 20.2 10.2 −0.2

46.0 41.0 37.0 37.0 19.6 9.8 −0.1

34 45.2 39.9 35.6 35.8 20.8 10.3 −0.6

17.5 15.5 13.8 13.9 20.4 10.3 −0.3

Riverbed 22 1,526.9 1,381.1 1,274.1 1,273.4 16.6 7.8 0.1

763.8 690.9 637.5 637.1 16.6 7.8 0.1

28 777.5 692.2 623.7 623.2 19.8 10.0 0.1

390.0 347.4 313.3 313.1 19.7 9.9 0.1

34 324.5 287.9 256.2 256.0 21.1 11.1 0.1

160.1 142.1 126.5 126.5 21.0 11.0 0.1

Station2 22 158.4 140.6 125.9 125.9 20.5 10.5 0.0

73.6 65.4 58.6 58.6 20.4 10.4 0.0

28 35.5 31.5 28.0 28.0 21.1 11.1 0.0

17.0 15.1 13.5 13.5 21.0 10.9 0.0

34 13.2 11.7 10.3 10.4 21.2 11.1 −1.0

6.3 5.6 5.0 5.0 21.0 10.9 −0.4

Average - - - - 17.2 8.6 −0.1

- - - - 17.3 8.4 0.0

Required memory (kB) 0 0.718 5.968 0.718 - - -
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Table 7 Comparison of MCPS and memory requirements
for level syntax element

Sequences QP MCPS CRR (%)

MTM [21] Proposed MTM vs. proposed

IPPP IPPP IPPP

IBBBP IBBBP IBBBP

Parkrun 22 1,146.4 1,121.6 2.2

552.9 540.7 2.2

28 465.3 444.4 4.5

210.1 203.2 3.3

34 167.1 154.8 7.4

79.4 74.7 6.0

Shields 22 517.0 469.1 9.3

243.8 221.5 9.1

28 79.5 70.7 11.1

33.0 29.5 10.5

34 21.6 18.9 12.3

9.7 8.5 12.1

Mobcal 22 624.7 568.9 8.9

262.9 239.0 9.1

28 95.9 86.3 10.0

33.8 30.7 9.0

34 18.9 17.0 10.5

8.3 7.5 10.0

Blue_sky 22 321.3 283.4 11.8

133.3 117.8 11.6

28 114.9 99.6 13.3

42.6 37.0 13.1

34 41.6 35.8 14.0

16.1 13.9 13.9

Riverbed 22 1,429.3 1,273.4 10.9

715.0 637.1 10.9

28 717.0 623.2 13.1

360.0 313.1 13.0

34 296.0 256.0 13.5

146.5 126.5 13.7

Station2 22 145.2 125.9 13.3

67.6 58.6 13.3

28 32.5 28.0 13.7

15.6 13.5 13.7

34 12.0 10.4 13.4

5.8 5.0 13.4

Average - - 10.7

- - 10.4

Required memory (kB) 3.5 9.937 -
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reduced by 10.7% and 10.4% for IPPP and IBBBP coding
structures, respectively, compared with the MTM
method. For the level syntax element, the proposed algo-
rithm and the MTM method require 9.937 and 3.5 kB,
respectively. The proposed algorithm requires approxi-
mately 6 kB more than the MTM method for an ap-
proximate 11% speedup.
Table 8 shows the numbers of MCPS, the memory re-

quirements of the proposed and conventional algorithms
for the run_before syntax, and CRR of the proposed al-
gorithm. The number of cycles used by the proposed al-
gorithm is reduced by approximately 7% and 5%,
compared with the MTM method and the arithmetic-
based (Kim's) method, respectively. The MTM algorithm
uses both table mapping and arithmetic methods, but
Kim's method uses only arithmetic operations. The two
conventional algorithms use conditional branches for
table selection. However, the proposed algorithm in-
volves no branch operations. As for the memory require-
ments, the proposed algorithm requires 2.109 kB;
however, they can easily be loaded into the target
system.
In this work, we implemented our own CAVLD to

fully exploit the developed instructions along with the
proposed table mapping algorithms for coeff_token,
level, and run_before syntax elements. To evaluate the
high-performance CAVLD algorithm, the developed
CAVLD is evaluated by comparing the open H.264/
AVC decoder (FFmpeg). Note that JM is not a proper
platform for decoding speed evaluations because JM is
around two times slower than the FFmpeg software
for CAVLD.
Table 9 shows decoding cycles of the proposed

CAVLD and FFmpeg one for various QP values. For
evaluation of the proposed instructions for the BsPU,
we compared decoding cycles between FFmpeg and
modified FFmpeg with the proposed instructions. We
found that we can save 38% cycles by applying the
proposed instructions to the FFmpeg CAVLD. Because
Showbits, Getbits, and Skipbits are frequently called
for CAVLD, these can be accelerated into 2 cycles
with the proposed instructions. For evaluation of the
proposed algorithm, the developed CAVLD and modi-
fied FFmpeg are compared using the proposed instruc-
tions. As a result, we found that the proposed
algorithm is 13.5% and 13.0% faster than the modified
FFmpeg with the proposed instructions for IPPP and
IBBBP coding structures, respectively. We can say that
BsPU is effective with the proposed table mapping al-
gorithm that does not cause any branches. In addition,
the proposed CAVLD with instructions and table map-
ping algorithm can save 46.6% and 46.2% cycles for
IPPP and IBBBP coding structures, respectively, com-
pared with FFmpeg CAVLD without the proposed



Table 8 Comparison of MCPS and memory requirements for run_before syntax element

Sequences QP MCPS CRR (%)

MTM [21] Kim [14] Proposed MTM vs. proposed Kim vs. proposed

IPPP IPPP IPPP IPPP IPPP

IBBBP IBBBP IBBBP IBBBP IBBBP

Parkrun 22 1,284.9 1,259.0 1,121.6 12.7 10.9

614.6 604.3 540.7 12.0 10.5

28 504.3 492.9 444.4 11.9 9.8

228.8 225.0 203.2 11.2 9.7

34 175.0 171.1 154.8 11.6 9.5

84.3 82.7 74.7 11.4 9.7

Shields 22 529.4 514.6 469.1 11.4 8.8

249.6 243.0 221.5 11.3 8.8

28 76.1 74.7 70.7 7.1 5.3

31.9 31.3 29.5 7.3 5.7

34 19.9 19.6 18.9 5.1 3.7

9.0 8.9 8.5 5.1 3.9

Mobcal 22 644.2 626.7 568.9 11.7 9.2

269.6 262.5 239.0 11.3 8.9

28 94.0 92.1 86.3 8.2 6.3

33.5 32.9 30.7 8.3 6.7

34 18.3 18.0 17.0 7.3 6.0

8.1 8.0 7.5 7.7 6.4

Blue_sky 22 304.5 297.6 283.4 6.9 4.8

126.1 123.6 117.8 6.6 4.7

28 103.5 102.1 99.6 3.8 2.4

38.6 38.1 37.0 4.2 2.8

34 36.8 36.4 35.8 2.7 1.6

14.3 14.2 13.9 3.0 1.9

Riverbed 22 1,361.2 1,339.0 1,273.4 6.4 4.9

680.8 669.8 637.1 6.4 4.9

28 650.2 638.2 623.2 4.2 2.4

326.8 320.7 313.1 4.2 2.4

34 263.9 260.1 256.0 3.0 1.6

130.3 128.3 126.5 2.9 1.5

Station2 22 130.8 129.0 125.9 3.8 2.4

60.9 60.1 58.6 3.7 2.4

28 28.7 28.5 28.0 2.4 1.7

13.8 13.7 13.5 2.5 1.8

34 10.7 10.6 10.4 2.6 1.8

5.1 5.1 5.0 2.6 1.8

Average - - - 6.8 5.2

- - - 6.8 5.3

Required memory (kB) 0.57 0 2.109 - -
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instructions. At the same time, we can save the re-
quired memory from 73.6 to 30.1 kB. The cycle reduc-
tion of the proposed CAVLD is persistent regardless
of QP values.
5. Conclusions
In this paper, a novel fast CAVLD method is pro-
posed with table mapping and new dedicated instruc-
tions for fast entropy decoding of H.264/AVC. The



Table 9 Comparison of MCPS for CAVLD

Sequences QP MCPS CRR (%)

FFmpeg [22] FFmpega Proposed FFmpeg vs. FFmpega FFmpeg vs. proposed FFmpega vs. proposed

IPPP IPPP IPPP IPPP IPPP IPPP

IBBBP IBBBP IBBBP IBBBP IBBBP IBBBP

Parkrun 22 1,971.0 1,250.6 1,121.6 36.6 43.1 10.3

944.7 598.9 540.7 36.6 42.8 9.7

28 802.3 504.5 444.4 37.1 44.6 11.9

358.2 226.3 203.2 36.8 43.3 10.2

34 285.4 179.1 154.8 37.2 45.8 13.6

134.5 84.9 74.7 36.9 44.5 12.1

Shields 22 893.7 554.2 469.1 38.0 47.5 15.4

420.7 261.0 221.5 38.0 47.3 15.1

28 134.0 82.4 70.7 38.5 47.2 14.2

55.3 34.1 29.5 38.3 46.6 13.5

34 35.7 21.9 18.9 38.7 47.1 13.7

15.9 9.8 8.5 38.4 46.5 13.1

Mobcal 22 1,082.3 672.2 568.9 37.9 47.4 15.4

455.4 282.3 239.0 38.0 47.5 15.3

28 163.1 100.5 86.3 38.3 47.1 14.2

57.2 35.4 30.7 38.1 46.3 13.2

34 31.4 19.5 17.0 38.1 46.1 12.9

13.7 8.5 7.5 37.8 45.5 12.3

Blue_sky 22 538.5 331.0 283.4 38.5 47.4 14.4

221.4 136.6 117.8 38.3 46.8 13.7

28 188.4 115.4 99.6 38.7 47.2 13.7

69.4 42.7 37.0 38.5 46.6 13.3

34 68.3 41.4 35.8 39.3 47.6 13.6

26.3 16.1 13.9 39.0 47.2 13.4

Riverbed 22 2,313.6 1,438.6 1,273.4 37.8 45.0 11.5

1,156.8 719.4 637.1 37.8 44.9 11.4

28 1,171.3 716.7 623.2 38.8 46.8 13.0

588.2 359.7 313.1 38.8 46.8 13.0

34 484.4 297.0 256.0 38.7 47.2 13.8

240.0 146.5 126.5 38.9 47.3 13.7

Station2 22 242.7 146.9 125.9 39.5 48.1 14.3

112.9 68.3 58.6 39.5 48.1 14.1

28 53.3 32.5 28.0 39.0 47.4 13.8

25.5 15.6 13.5 38.9 47.3 13.7

34 19.6 12.1 10.4 38.5 47.0 13.9

9.4 5.8 5.0 38.5 47.0 13.8

Average - - - 38.3 46.6 13.5

- - - 38.2 46.2 13.0

Required memory (kB) 73.6 73.6 30.1 - - -
aModified FFmpeg with proposed intrinsics.
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proposed algorithm reduces the number of cycles to
about 8% ~ 17% from coeff_token, 11% from level,
and 5% ~ 7% from run_before, respectively. In
addition, the proposed CAVLD is enhanced with the
proposed several instructions for the BsPU along with
the table mapping. By comparing the developed
CAVLD with the FFmpeg one, we achieved a 47% re-
duction in the number of cycles, compared with
FFmpeg CAVLD. In addition, the proposed algorithm
reduces the memory requirements for table mapping
by approximately 59% compared with FFmpeg on the
RP that is commercially used in a smartphone. In the
future, we will focus on the development of CABAD
on the BsPU.
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