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Abstract

achieves real-time CCA in RTATR system.

Due to the demand for real-time processing in real-time automatic target recognition (RTATR) systems, fast
connected components analysis (CCA) is significant to RTATR performance improvement. Conventional single-pass
CCA algorithms need horizontal blanking periods to resolve the equivalence, which are difficult to be applied when
the streamed data is transmitted without horizontal blanking periods. In this paper, a real-time single-pass CCA
algorithm is proposed. Unlike the conventional ones, we adopt the pixel as a scan unit while the line as a labeling
unit and manage the correspondence of labels between adjacent rows by designing a multi-layer-index structure.
Equivalence is resolved when the image is scanning, without extra processing time. The proposed algorithm is
suitable for hardware acceleration, and the streamed image data can be processed during image transmission
without horizontal blanking periods. Experimental results indicate that the hardware acceleration of algorithm
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1 Introduction

Connected components analysis (CCA) is an important
step in many machine vision applications. In real-time
automatic target recognition (RTATR) systems, such as
imaging homing guidance weapon systems, CCA is one
of the most fundamental operations, which extracts fea-
tures of targets for tracking and recognition. Because of
the high-frame rate, which is usually no less than 60 Hz,
only about 17 ms are allowed in each frame for all the
tasks (such as target detection, tracking, and recog-
nition), and less time for fundamental processing.
Therefore, fast CCA is significant to the performance
improvement in these systems. To date, two main lines
of CCA have been followed in general:

(1)Labeling first algorithms [1-5]. These algorithms
label the binary image first, and then the features
are extracted from the labeled image. The
connected components labeling is a general purpose
method, and many researchers have concentrated
on the fast connected components labeling. Existing
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fast connected components labeling (CCL)
algorithm can be divided into two classes: (a) label-
equivalence-based algorithms [1-4] and (b) region-
growing-based algorithms [5]. These algorithms
process an image in the raster-scan order (top to
bottom, left to right) at least twice. In the first scan,
provisional labels are assigned, and then the key
point is to resolve label equivalence by finding a
unique representative label for each group of
equivalent labels. In the second scan, the pixel’s
provisional label is replaced by the representative
label. According to different scan unit, label-
equivalence-based algorithms can be divided into
run-based algorithms [1], pixel-based algorithms
[2,4], and block-based algorithms [3]. Label
equivalence is not recorded and resolved in such
algorithms, and connected components of any
shapes can be labeled in single scan. But these
algorithms access the image in an irregular way,
which means that the whole image must be
available before labeling.
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Most of the above-mentioned algorithms were designed
or improved on general purpose processor (GPP) platform
(e.g., PC), and some of them have achieved a good per-
formance. For example, algorithms in [1] and [5] offered
higher processing speed than others and they only need
less than 4 ms to label 512 x 512 binary images on high-
performance PC (Intel Pentium D 3.0 GHz + 3.0 GHz
CPUs, 2 GB memory, Mandriva Linux OS; Intel Corpor-
ation, Sta. Clara, CA, USA) [1]. However, these fast algo-
rithms still cannot meet the real-time processing demand
in the RTATR systems. This is because the processors’
performance in RTATR system is far poorer than the PC
mentioned above when power consumption and volume
must be considered. Therefore, studies on algorithms
which can be easily accelerated by hardware (e.g., im-
plemented on field-programmable gate array, FPGA) be-
come a feasible way to figure out real-time problem.
Crookes, Benkrid, et al. have implemented a resource-
efficient multi-pass algorithm on FPGA [6], but indeter-
minate number of passes is required to complete the
labeling. Jablonski and Gorgon [7] have implemented the
classic two-pass connected components labeling on
FPGA, but the method requires a second pass, and two-
clock cycles per pixel plus a small overhead for region
merging. Kofi et al. have presented a run-length-based
connected component algorithm for FPGA implementa-
tion [8,9], runs in images are extracted and initially labeled
in the first pass, then equivalence sets are resolved, and
runs are translated to connected components. However,
the equivalence resolution is still sequential and requires
that all runs are initially labeled at first. Clearly, it is un-
suitable for real-time processing of streamed image data.

(2)Single-pass CCA algorithms [10-12]. D.G. Baily et al.
have proposed another CCA method, in a more
goal-directed way: Single-pass CCA algorithm,
which accumulates the feature data (such as the
area, center of gravity, and perimeter) while the
pixels are being scanned and labeled, does not
generate a labeled image. Essentially, the single-pass
CCA algorithms are label-equivalence-based too,
which resolve equivalence in each row during the
horizontal blanking periods as well as merge
accumulated data. These algorithms eliminate the
need for producing a labeled image and spare the
second re-labeling pass, hence suitable for
processing streamed image data on FPGA.
Furthermore, an optimized single-pass CCA
algorithm [12] is proposed, which applies a label
recycling scheme between adjacent rows to save the
memory resources. Such methods will be of great
benefit to the RTATR systems: streamed images can
be processed in the transmission from detector to
processing unit and this will save the processing
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time and shorten the delays of closed-loop control.
However, these methods require horizontal blanking
periods to resolve equivalence, which will be a
bottleneck when the streamed data is transmitted
without horizontal blanking periods.

In this study, we present a new single-pass CCA al-
gorithm, which eliminates the requirement for hori-
zontal blanking periods in aforementioned methods,
and the FPGA implementation of proposed algorithm
which achieves real-time processing for streamed im-
ages. The remainder of this paper is organized as fol-
lows. Section 2 presents the principle of the algorithm.
In Section 3, the hardware implementation of the pro-
posed method is introduced. Section 4 gives the ex-
periment results of the algorithm in both PC and
RTATR platforms, and the comparison with existing
single-pass CCA algorithm is presented, too. Section 5
concludes the discussion.

2 Proposed algorithm

Classical label-equivalence-based algorithms set pixel as
a scan unit, so redundant labels and label equivalence
will be generated for stair-like connected components.
As shown in Figure 1 (assuming four-connectivity), the
pixels belonging to the same region are labeled with
different numbers, and more label equivalence will be
encountered while the image is being scanned (the
shadowed squares represent the pixels at which label
equivalence is encountered). It also means that more

]

labeled pixel in one region

pixel where equivalences are found

— -9 scan direction

Figure 1 Stair-like connected component.
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resources are needed for equivalence resolving. Run-
based algorithms can solve the problem, and runs ex-
traction is necessary in such algorithm. When a run is
extracted, connectivity of runs between adjacent rows is
detected, and label equivalence is recorded and re-
solved. In other words, few operations are needed be-
fore a run is extracted, and most operations are
gathered at the end of a run. Centralized operations be-
come the bottleneck of hardware acceleration.

In this paper, we combine the advantages of pixel-
based and run-based algorithms, adopt pixel as a scan
unit and run as a labeling unit. That means we scan the
image pixel by pixel without labeling, and the labels are
assigned for the runs. Therefore, redundant labels and
equivalence shown in Figure 1 are avoided, the opera-
tions are distributed to each pixel, and only run labels
assigned in the previous row are concerned in labeling
and equivalence. In addition, a multi-layer-index struc-
ture is designed to manage the correspondence between
labels in the previous row and labels in the current row.
The structure of multi-layer-index is shown in Figure 2.

As shown in Figure 2, Previous_P_Label and New_P_
Label are provisional labels assigned in the previous row
and the current row; Previous F_Label and New_ F Label
are label-index tables, which indicate the representative
labels corresponding to Previous P_Label and New_P_
Label. For instance, if Previous F_Label (p) = n, it indicates
that the representative label for p is n, in which p and »
are labels assigned in the previous row; if Previous F Label
(p) = 0, it indicates that the representative label for p is
itself, and New_F _Label has the same meaning in the
current row. MAP is the translation table, which denotes
the correspondence between the representative labels in
the previous row and the provisional labels in the current

layerd index —====—==—-==--- }— ————————————————————
| New F Label |
]
layer3_index ——-——--—-—-——--- Iile_w__f __L_aEe_l ————————————
| MAP | (Data_Previous)

layer2_index —-=-=--=-=---=-—----------—--— $ ——————

layerl index =-----cccooo oo e e e mmmemmmaoo oo

Previous P Label

Figure 2 Multi-layer-index structure.
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row. If MAP(i) = k, it indicates that i which is a repre-
sentative label in the previous row has been translated to
label k in the current row; if MAP(i) = 0, it indicates that
representative label i in the previous row does not have
a translated label in the current row. The feature data ta-
bles which store the accumulated features are presented
as Data_Previous and Data_New and the four layer in-
dexes (shown as layerl_index, layer2_index, layer3_index,
and layerd_index in Figure 2) form a pipeline when a
provisional label in the previous row is indexed.

In our method, the key point is to keep the
consistency of multi-layer-index between adjacent rows,
which means the correctness of correspondence(such as
correspondence between labels in adjacent rows, corres-
pondence between feature data in adjacent rows, and
correspondence between feature data and labels in the
same row) must be kept in the scanning. By setting the
run as labeling unit, only the labels in the previous row
are concerned in the scanning. Thus, the assignment of
provisional labels in the current row is simplified, and
only in some special cases (such as overlapping between
runs in adjacent rows, label equivalence and tail of runs)
does the multi-layer-index structure need to be
updated. Furthermore, the updating can be distributed
into each layer of multi-layer-index (from layerl_index
to layerd_index), and the operations in each layer can
be accomplished independently while the pixel is in
scanning. By doing this, all the special cases can be re-
solved in the scanning, eliminating the need for hori-
zontal blanking periods. In the scanning of pixels, the
feature data are accumulated and labels are assigned to
the runs, the multi-layer-index is updated in some spe-
cial cases to keep the consistency, and the features of
completed connected components are passed to subse-
quent processing unit. In this study, the proposed algo-
rithm is divided into two blocks for introduction: (1)
special case detection and feature accumulation and (2)
multi-layer-index update.

2.1 Special case detection and feature accumulation

In the pixel-based scan process, the run is set as label-
ing unit, which means we must detect the beginning of
the run at first and accumulate the features before the
tail of the run. When the scanning pixel lies inside the
run, overlapping between runs in adjacent rows and
label equivalence in the previous row are detected, and
some details (presented as overlapping modes and
equivalence modes) about the special cases are pro-
vided for the updating. When the scanning pixel is the
tail of the run, the run which is just scanned will be la-
beled by a provisional label, and some details about the
run (such as run end modes) will be sent to the updat-
ing module, too.
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To detect the overlapping of runs in the pixel-based
scan, the relations between scanned pixels and runs in
the current row need to be detected first. For a binary
image, suppose that the current scanning pixel is P(y,x),
y and «x are row and column. The information of pixels
in the previous row (y — 1) is stored as info(x) =
{run_start, g, label}, in which x is column; run_start = 1
indicates that P(y - 1, x) is the head of a run, g = 1 indi-
cates that P(y — 1, x) is nonzero, label is the provisional
label of run which contains P(y - 1, x). When P(y,x) is
scanned, the relation between P(y,x) and runs is ex-
tracted as follows:

(DIf P(yx — 1) = 0 and P(y,x) = 0, then P(y,x) is the
beginning of a run.
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(2)If P(y,x — 1) = 0 and (yx) = 0, then P(y,x) exists
inside a run.

(3)If P(y,x — 1) = 0 and P(y,x) = 0, then P(y,x) is the
first pixel behind the tail of a run.

(4)If P(y,x — 1) = 0 and P(y,x) = 0, then P(y,x) does not
exist inside the run.

In this paper, we take four-connectivity as example to
detect the connectivity between adjacent rows. The
whole flow of special case detection and label assign-
ment is shown in Figure 3, in which overlapped is the
flag of overlapping between runs in adjacent rows; when
overlapped = 1, it indicates the run which contains P(yx)
is connected with the run labeled as last_label in the
previous row; pfll = last_label if Previous_F_Label(last_

last_label=info(x).label;

P(y.x)does not P(y,x) is the
" exist inside the run W beginning of the run V

Y

A

P(y.x) exists inside
the run

info(x).g=0; 3 A :
iﬂﬂ)(x).‘lfﬂl?lim rt=0; MfO(XS);’U:;’S‘l.MFL info(x).run_start=0;
run_end _mode=0; -

info(x).g=1? and
overlapped=0?

Yes
MAP(pfl1)=0?
Yes

P(y.x) is the first pixel
behind The tail of the run

tun_end mode=1;
run_end_mode=2; new_cnt=new_cnt+l;
info(sp_x).label=line_new_cnt; info(sp_x).label=new_cnt;

Y
info(x).g=0;
info(x).run_start=0;
overlapped=0;

line_new_cnt=MAP(pfll);
overlapping_mode=0;

new_cnt=new_cnt+1;
line_new_cnt=new_cnt;
overlapping_mode=1;

overlapped=1;
"y

info(x).g=1;

run_end_mode=0;

Figure 3 Special case detection and label assignment.

Ce )




Zhao et al. EURASIP Journal on Image and Video Processing 2013, 2013:21

http://jivp.eurasipjournals.com/content/2013/1/21

label) = 0, else pfll = Previous_F_Label(last_label); new_
cnt indicates the assigned new provisional label in the
current row.

As shown in Figure 3, when the image is scanned, the
label in the previous row is stored in last_label and
equivalence decision is performed. When P(yx) is the
beginning of the run or inside a run, the connectivity is
detected by judging info(x).g. If the connectivity is
detected (overlapped = 1), the translated label (the label
which corresponds to pfll in the current row (i.e., MAP
(pfl1)) when MAP(pfl1) = 0, or new_cnt when MAP
(pfl1) = 0) is stored in line_new_cnt, and it is used to as-
sign provisional label for the run when the first pixel be-
hind the tail of the run is encountered, the line_new_cnt
is also used for updating of the multi-layer-index struc-
ture. The overlapping mode (overlapping_mode) and run
end mode (run_end_mode) are also recorded for the
updating of the multi-layer-index structure. In the scan-
ning, updating of info(x).g and info(x).run_start is per-
formed at each pixel, and assignment of info(x).label is
performed at the tail of the run.

By setting the run as labeling unit, the equivalence is
detected between two provisional labels which are
assigned in the previous row. As shown in Figure 3,
equivalence decision is performed when the beginning
of the run in the previous row is found: when P(y,x) = 0
and info(x).run_start = 1, if overlapped = 1, it indicates
that last_label and info(x).label are equivalent. Suppose

A2 — info(x).label ,
PIe= Previous_F_Label(info(x).label) |

pl2 = Map(pfl2)

else

Equivalence decision

overlapped=1)? and (P(y,x)=1)? and
(last_label !=info(x).label)?

equ_mode=0

equ_mode=2

equ_mode=1

[ [ I

End

Figure 4 Equivalence decision.
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Depending on the different results of layer2_index for
last_label and info(x).label (i.e., different provisional labels
in the current row which correspond to last_label and
info(x).label), two different equivalence modes (shown as
equ_mode = 1 and equ_mode = 2 in Figure 4) may exist,
which are important for multi-layer-index updating.

For analysis of the features of the region, such as the
area, center of gravity, bounding box, or perimeter, some
features should be collected when each pixel is scanned.
When position of P(yx) is judged, the data can be accu-
mulated from the beginning to the tail of the run, and the
accumulated data can be used for updating of data table.

2.2 Multi-layer-index update

Depending on different modes of special cases (such as
overlapping between runs in adjacent rows, equivalence
and run end), the multi-layer-index structure should be
updated during the scanning to maintain the correct-
ness of index results in each layer.

2.2.1 Overlapping between runs in adjacent rows

To save the resources for labels storing, labels are reused
between adjacent rows. When the scanning pixel P(yx)
connects with run L, in the previous row, it means that
the connected component which contains L, is not
complete, label assigned for L, in the previous row should

if Previous_F_Label(info(x).label) = 0

equ_mode=1

MAP(pfl2)=pl1

Yes No

Data_New(pl1)
=Data_New(pll)
+Data_Previous(pfl2);
|

Data New(fl1)
=Data_New(fl1)
+Data_Previous(pfl2);

|

End

Figure 5 Update when Equ_sta = 1.
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be translated to a new label, and the translation table
MARP needs to be updated.

When it is the first time to set overlapped = 1 and MAP
(pfl1) = 0 (as shown in Figure 3) (which means L, con-
nects with no pixels before, corresponding to overlapping
mode = 1), a new label in the current row is assigned and
the translation table MAP is updated as MAP(pfll) =
line_new_cnt; line_new_cnt is the assigned new label which is
recorded in Figure 3. The feature data is translated as
Data_New(line_new_cnt) = Previous(pfll). If it is not the first
time to find overlapped = 1 (i.e., MAP(last_label) = O corre-
sponding to overlapping_mode = 0), no update is required.

Page 6 of 10

2.2.2 Equivalence

As described before when P(yx) =z 0 and info(x).
line_start = 1 and if overlap = 1, it indicates that last_label
and info(x).label are equivalent. Suppose that pl1 = Map
(pfl1), fll = New_F_Label(pll), and New_F_Label(pl2) =
f12. As shown in Figure 4, there are two different equiva-
lence modes depending on p/2. When the equivalence is
encountered, the translation table, label-index table, and
data table in the multi-layer-index should be updated to
keep the consistency. When equ_mode = 1, the update is
shown in Figure 5. When equ_mode = 2, the update is
shown in Figure 6.

equ_mode=2

fl11=0 and
f12=0?

Data New(pll)=Data New(pll)+

New_F_Label(pll)=pl1;
New _{ label(pl2)=pll;

Data New(pl2);
Data New(pl1)=0;

f11!=0 and
f12=0?

Data New(fll)=Data New(fl1)+

New F_Label(pl2)=fl1;

Data New(pl2);
Data_New(pl2)=0;

f11=0 and
f121=0?

Data_New(fl2)=Data_New(fl2)+

New F_Label(pl1)=f12;

Data New(pll);
Data_New(pl1)=0;

-

For all New_F_Label(i)=f12

Data New(pll)=Data New(fl1)+

New F Label(i)=fl1;

Data_New(f12);
Data New(f12)=0;

End

Figure 6 Update when Equ_sta = 2.




Zhao et al. EURASIP Journal on Image and Video Processing 2013, 2013:21

http://jivp.eurasipjournals.com/content/2013/1/21

2.2.3 Run end

When P(yx) is found at the first pixel behind the tail of
the run, the data table needs to be updated with accumu-
lated feature data of the run. Assume the accumulated fea-
ture data are denoted as D_line, when run_end_mode = 1,
that is, the run just scanned does not connect to any runs
in the previous row, Data_new(new_cnt) = D_line. 1If
run_end_mode = 2, the updating is different according to
/11, as it is shown in Figure 7.

After the above-mentioned update, the multi-layer-
index and data table are kept up to date. The update is
carried out as soon as the pixel is scanned, and no extra
periods are required.

When the last pixel in the current row is scanned,
Previous_F_Label is replaced with New_F_Label, and the
Data_Previous is replaced with Data_New for the updating
in the next row. By analyzing the translation table MAP
and the previous data table Data_Previous, connected
components which are completed can be found so the fea-
ture data can be passed to the next processing unit imme-
diately, without waiting for the end of image scanning. At
the end of image, a dummy row is needed for analyzing
the last row in the image and initializing the memories.

3 Hardware acceleration design

According to the principle of proposed algorithm, the
algorithm can be divided into two main blocks: (1) spe-
cial cases detection and data accumulation and (2)
multi-layer-index update. In the first block, the opera-
tions depending on the different positions of the scan-
ning pixel can be processed in parallel. Meanwhile, the
index and update of multi-layer-index can be accom-
plished by pipelining, and operations in each level of
pipeline can be executed in parallel depending on the
different modes (such as different equivalence modes,
run end modes and overlapping modes). The proposed
algorithm is implemented on Xilinx XC2V3000-6FG676

No

v

Data New(pl1)=D line+| |[Data New(fl11)=D line+
Data New(pll) ; Data New(f11);
[ |

End

Figure 7 Update in run end.

Page 7 of 10

FPGA, and the architecture of hardware implementation
is shown in Figure 8. As shown in Figure 8, the hardware
implementation of proposed algorithm can be divided
into four main blocks:

1. The row buffer block is used to store the pixel
information in the previous row. It is implemented
by dual-port block RAM (BRAM). Considering that
the information updating of scanning pixel will
conflict with the provisional label assignment at the
tail of the run, two BRAMs are used alternately to
store pixel information in each row.

2. The special cases detection and data accumulation
block provide different flags for multi-layer-index
updating; meanwhile, the feature data are also
accumulated.

3. Multi-layer-index update block updates the translation
table, label-index tables, and data tables, and
maintains the correctness of index results in each
layer. In this block, the label-index tables (such as
Previous_F_Label and New_F_Label) are implemented
by register array; translation table MAP and data
tables (such as Data_Previous, Data_New) are
implemented by dual-port Block RAMs.

4. MAP and data analysis block analyze the translation
table MAP and the data table Data_Previous in the
scanning, then output the feature data of connected
components if they are found complete.

In the implementation, three data tables, two transla-
tion tables, and two label-index tables are used in turn
to achieve real-time update and analysis. We assume d1,
d2, and d3 are three identical data tables, m1 and m2
are two identical translation tables, and il and i2 are two
identical label-index tables before the image is scanned,
they are all initialized to 0. In the first row of image, d1
and d2 are used as Data_Previous and Data_New, ml
is used as MAP, il is used as Previous_F_Label, and i2 is
used as New_F Label. At the end of the first row, d2 is
used as Data_Previous and d3 is used as Data_New, m2
is used as MAP, and m1 and d1 are replaced and used to
extract the feature data of regions if the regions are
found complete. Meanwhile, the i1 is initialized to 0 and
exchanged for i2, so i2 becomes the Previous_F_Label and
il becomes the New F Label in the second row. At the
end of each row, the tables exchange alternately, and the
analysis for completed connected components and updat-
ing of multi-layer-index can be processed in parallel.

Due to its preferable pipeline and parallel architecture,
the implementation of proposed algorithm can perform
real-time analysis by the original pixel clock, and no
extra periods (like horizontal blanking periods in [10]
and [12]) are required, which means that the time con-
sumption of the hardware acceleration is only relevant
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Figure 8 Architecture of hardware acceleration.

to the frequency of pixel clock and equals to the trans-
mission period of images.

4 Experiment results

As aforementioned, the proposed algorithm not only runs
on GPP platform, but also suits hardware acceleration in
FPGA-based RTATR platform. Therefore, we verified the
performance in both PC and RTATR platforms. The algo-
rithm in [5], as an acknowledged fast connected compo-
nents labeling algorithm, is selected for comparison; and
running time is the key measurement in the experiment.
For a more special purpose, the optimized single pass [12]
algorithm which is designed for hardware implementation
is also selected for comparison, and the resource utili-
zation and processing ability are analyzed.

4.1 Experiment in different platforms

In the experiment, the two platforms are PC (2.5 GHz +
2.5 GHz, 2G memory, Windows XP OS, VC6) and our
RTATR (digital signal processor, DSP: TMS320C67 13,200
MHz + FPGA: XC2V3000-4FG676) system. In the RTATR
system, selection of processor (DSP) is limited because of
the volume and power consumption constraints, the fre-
quency of the processor is only 200 MHz, and the external
bus bandwidth is ideally 400 MB/s. For processor-based
algorithms (like algorithm in [5]), the image can only be
processed after the transmission, and the access of image
data from external memory becomes the bottleneck of
processing. Algorithm in [5] is performed by adding an
analysis step after the CCL in the experiment. By contrast,
the proposed algorithm can be implemented by FPGA in
the transmission of image.

Many images have been chosen for experiment. Some of
the images were acquired by the long wave infrared (IR)
detector (MARS LW K508; Sofradir Company, Chatenay,
Malabry, France) and without loss of generality, the others
are downloaded from SIPI Image Database [13]; all the ex-
periment images are converted to 256 x 256 binary images
in advance. In this paper, six representative images with
different connectivity complexities are selected for discus-
sion. They are illustrated in Figure 9, in which panels a, b,
and ¢ are acquired from the IR detector and panels d, e,
and f are downloaded from the SIDBA. As shown in
Figure 9, more and more connected components and
equivalence occur in the Figure 9a,b,c,d,e,f. Therefore, dif-
ferent processing resources (e.g., buffers and processing
time) are required for these images. In the comparison be-
tween the proposed algorithm and the algorithm in [5], we
take these images as examples to verify the running time
on different connectivity complexity condition. In the PC
system, the images are loaded into the memory and then
the two algorithms are performed. In RTATR system, a
dedicated PCI card is used to send images to RTATR sys-
tem, as same as the IR detector; the streamed data consist
of image data, pixel clock, and frame synchronization sig-
nal; the frequency of pixel clock is 15 MHz, and the frame
rate is 100 Hz.

As shown in Table 1, in the high-performance PC sys-
tem, the algorithm in [5] can finish the CCA in less than
1 ms; while the proposed algorithm needs more than 3
ms to complete the analysis of the most complex image
in Figure 9. This is because the proposed algorithm con-
tains more memory operations. But in the RTATR system,
the proposed algorithm can accomplish the analysis when
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Figure 9 Experiment images. (a) Cone target, (b) two persons in
forest, (c) two persons beside river, (d) truck and APCs, (e) aerial,
() mandrill.

image is being transmitted in a raster-scan order; the pro-

cessing time is a fixed value, and it is the transmission
period (% ~4.37 ms) . By contrast, the algorithm in

[5] can only process the stored image by DSP when the

Table 1 Experiment results

Image CC° Time consumption of Time consumption of

proposed algorithm (ms) algorithm in [5] (ms)
PC RTATR PC RTATR

a 5 2.34 4.37 032 22.7

b 67 2.81 4.37 0.34 304

d 134 279 437 033 337

d 220 2.75 4.37 046 378

e 341 322 4.37 091 62.7

f 802 333 437 0.82 732
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transmitting is over, so the time consumption is relevant
to the complexity of image and exceeds the frame period
(10 ms) in all the cases. This means that the algorithm is
not suitable for such a RTATR platform. By accelerating
the proposed algorithm on FPGA, about 5.6 ms is left for
other algorithms after the transmission of streamed image,
and real-time processing in RTATR platform is realizable.

4.2 Hardware acceleration comparison
In the implementation of proposed algorithm, the length
of row buffers is the same size as the number of col-
umns; in the extreme situation, there will be AM/2
provisional labels in a row, which means that the length
of the data tables, translation tables, and label-index ta-
bles is M/2. In this study, the hardware acceleration of
proposed algorithm is used for analyzing the area, sum
of columns, and sum of rows of pixels in each connected
component and therefore, the center of each region will
be obtained. Suppose the images are acquired by the
aforementioned IR detector, the size of image is 256 x
256, and the streamed image data consist of 14 bits gray
data, 1 bit frame synchronization, and 1 bit pixel clock,
which are transmitted in raster-scan order without hori-
zontal blanking periods. The resources and the best timing
performance of pixel clock in FPGA XC2V3000-4FG676
are shown in Table 2, and the resources used in [12] is
presented, too. The percentage of resources utilization of
proposed algorithm is also shown in the bracket.
Comparing with existing single-pass CCA algorithm
(such as hardware-implemented algorithm in [12]), our
goal is to obtain the center of region, and implementation
in [12] only aims at the area, therefore, the used BRAM is
much more than [12]. Considering the image size is larger
n [12], the occupied resource in our implementation is
much more than in [12]. This is because the multi-layer-
index structure and row buffer occupy more RAM and
registers to store intermediate results, and more logical
judgments in the indexing and updating of multi-layer-
index cause more occupation of LUTs. However, the
contribution of this paper is that the need of horizontal
blanking periods has been eliminated for equivalence reso-
lution. From this point of view, the consumption in our
application is acceptable. By performing the CCA in the
scanning, the center of each region is obtained when the

Table 2 Resource utilization

Resource Proposed Algorithm
method in [12]
Used BRAMs 13 (14%) 4
Used slice flip-flops 3,154 (11%) 600
Used four-input LUTs 4,587 (16%) 1,757
Maximum clock frequency (MHz) 95.7 4063

“Number of connected components.

LUTSs, look-up tables.
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scanning is over. This is very important for real-time pro-
cessing in systems without blanking periods (such as the
IR detector in our system).

Furthermore, the maximum clock frequency of the de-
sign exceeds 90 MHz which is more than twice the fre-
quency which can be gotten in [12]. If the pixel clock
frequency is higher (must lower than 90 MHz), the hard-
ware implementation of the proposed algorithm will
consume less time, and real-time CCA can be realized
for larger size images.

5 Conclusions

In this study, a real-time single-pass connected compo-
nents analysis algorithm is proposed. Compared with the
existing single-pass CCA algorithms, the pixel is set as a
scan unit, the run is set as a labeling unit, and the corres-
pondence of labels in adjacent rows are managed by the
multi-layer-index structure. By doing this, the equivalence
can be resolved as soon as it is encountered, eliminating
the need for waiting for the end of the row. Due to the
preferable architecture, the algorithm can perform single-
pass CCA on FPGA while the pixel is being transmitted.
Experimental results indicated that the algorithm is suit-
able for real-time processing in the RTATR system.
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