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Abstract

Face landmarking, defined as the detection and localization of certain characteristic points on the face, is an important
intermediary step for many subsequent face processing operations that range from biometric recognition to the
understanding of mental states. Despite its conceptual simplicity, this computer vision problem has proven extremely
challenging due to inherent face variability as well as the multitude of confounding factors such as pose, expression,
illumination and occlusions. The purpose of this survey is to give an overview of landmarking algorithms and their
progress over the last decade, categorize them and show comparative performance statistics of the state of the art.
We discuss the main trends and indicate current shortcomings with the expectation that this survey will provide
further impetus for the much needed high-performance, real-life face landmarking operating at video rates.

1 Introduction
Accurate face landmarking and facial feature detection are
important operations that have an impact on subsequent
tasks focused on the face, such as coding, face recognition,
expression and/or gesture understanding, gaze detection,
animation, face tracking etc. We define a face landmark
as a prominent feature that can play a discriminative role
or can serve as anchor points on a face graph. Com-
monly used landmarks are the eye corners, the nose tip,
the nostril corners, the mouth corners, the end points of
the eyebrow arcs, ear lobes, nasiona, chin etc. We pre-
fer using the term facial component as denoting an entire
facial semantic region, such as the whole region of an eye
or of eyes, the region of the nose, mouth, chin, cheek,
or eyebrows. Landmarks such as eye corners or nose tip
are known to be little affected by facial expressions, hence
they are more reliable and are in fact referred to as fiducial
points. Fiducial points in imaging systems refer to marks
deliberately placed in the scene to function as a point of
reference or a measure. By extension, relatively stable or
robust facial landmarks such as eye corners or nose tip are
also called fiducial points or fiducial landmarks in the face
processing literature.
Typical applications where face landmarking plays a

prominent role are facial expression analysis [1,2], face
animation [3,4], 3D face reconstruction [5], registration
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[6,7], feature-based face recognition, verification [8-10]
and face tracking [11,12], head gesture understanding
[13]. Subsequent applications of landmarking could be for
anonymization of facial identity in digital photos, image
editing software tailored for faces, lip reading, sign lan-
guage interpretation etc. Below we give more details on
four these landmark dependent tasks:

• Expression understanding: Facial expressions form a
visual channel for emotions and nonverbal messages,
and they have a role in supporting the spoken
communication [14]. The spatial configuration and
temporal dynamics of landmarks provide a viable way
to analyze facial expressions and to objectively
describe head gestures and facial expressions.
Automatic identification of action units within the
framework of the facial action coding system (FACS)
[15] benefits from detected landmarks and their
position. Some of the approaches that use landmarks
for recognizing Action Units are [1,2] and for
interpreting head gestures and facial expressions are
[16,17].

• Face recognition: Face recognition schemes typically
locate the eye region and then extract holistic
features from the windows centered on various
regions of interest [18,19]. The located landmark
coordinates also give rise to a number of geometric
properties such as distances and angles between them
[20]. In fact, anthropometrical face models, where
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typically the face graph nodes correspond to
landmark points, combine both sources of
information, the configurational and appearance
sources. The graph-based methods have proved to be
quite effective in many applications. One seminal
work in this area is the elastic bunch graph matching
technique (EBGM) [9].

• Face tracking: Most face tracking algorithms benefit
from tracked landmark sequences. In the
model-based group of methods [11,21], a face graph
model is fitted to 60-80 facial landmarks. Face
tracking is realized then by letting the model graph to
evolve according to face shape parameters, facial
components and geometrical relations between them.
The alternative tracking approach is model-free
[12,22,23] and is principally based on motion
estimation. In these methods, the motion is estimated
at and around the landmarks vis-à-vis some reference
frame. The advantage of landmark-based tracking is
that both the head motion and the facial
deformations are jointly estimated. This enables us to
detect and classify head gestures, head and facial
emblems, interpret certain mental states as well as to
extract clues for head and face animation.

• Face registration: Face registration is the single most
important factor affecting face recognition
performance [24]. Other applications of landmarking
involve building of 3D face models from stereo, from
multiple images or from video sequences where
landmark points are used to establish point-to-point
correspondences. For example, Jain et al. [5] and
Salah et al. [6], use landmark points and the thin
plate-spline (TPS) algorithm to fit a generic model to
the face. This capability enables various other
applications, e.g., face morphing and face animation
[25]. Thus a face can be transformed into those of
other individuals (inter-personal) or into different
expressions of the same individual (intra-personal,
e.g., a neutral face to a smiling face). In summary, face
landmarking is a prerequisite for face normalization
and registration whether in 2D or 3D.

The goal of this article is to present a comprehensive
review of the past work on face landmarking, to catego-
rize the multitude of algorithms, to point out novel trends,
to show the performances on a comparative basis, and
to understand the limitations. The article is organized
as follows. In Section 2, we list the relevant facial land-
marks, define the performance metrics, describe some
typical feature sets and the face preprocessing steps. The
major landmarking methods in the literature are catego-
rized and reviewed in Section 3. 4 addresses a different
data modality: 3D face data. Section 5 is intended as a
resume of the recent trends and progress in the literature.

Section 6 describes the principal face databases used in
the landmarking literature, and reports the performance
results obtained with simulation results. Finally, we draw
our conclusions in Section 7.

2 Landmarks: preprocessing, performance
evaluation and challenges

2.1 Challenges of landmarking
Despite the plethora of articles, the quest for improved
face landmarking schemes continues. On the one hand,
emerging applications require that the landmarking algo-
rithms run in real-time while operating with the compu-
tational power of an embedded system, such as intelligent
cameras. On the other hand, these applications require
increasingly more robust algorithms against a variety of
confounding factors such as out-of-plane poses, occlu-
sions, illumination effects and expressions. The details of
these confounding factors that compromise the perfor-
mance of facial landmark detection are as follows:

• Variability: Landmark appearances differ due to
intrinsic factors such as face variability between
individuals, but also due to extrinsic factors such as
partial occlusion, illumination, expression, pose and
camera resolution. Facial landmarks can sometimes
be only partially observed due to occlusions of hair,
hand movements or self-occlusion due to extensive
head rotations. The other two major variations that
compromise the success of landmark detection are
illumination artifacts and facial expressions. A face
landmarking algorithm that works well under and
across all intrinsic variations of faces, and that
delivers the target points in a time efficient manner
has not yet been feasible. Figure 1 illustrates the
variations that the mouth can be subjected to under
different expressions and poses.

• Acquisition conditions: Much as in the case of face
recognition, acquisition conditions, such as
illumination, resolution, background clutter can
affect the landmark localization performance. This is
attested by the fact that landmark localizers trained
in one database have usually inferior performance
when tested on another database. A case in point is
version 1 and version 2 (FRGC-1 and FRGC-2) of the
Face Recognition Grand Challenge, which differ in
their data collection conditions. FRGC-1 is a less
challenging database collected under controlled
studio conditions while FRGC-2 is an uncontrolled
image sets collected under varying illumination
conditions, e.g., hallways, atria, or outdoors [26] with
two facial expressions (neutral and smiling). Akakın
and Sankur [27] show a performance drop of about
20–30% when trained on FRGC-1 and tested on
FRGC-2), and vice versa. In a more recent article,
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Figure 1 Illustration of intrinsic mouth variation over identity (upper row), expression (middle) and pose factors (lower row).

Dibeklioǧlu et al. have extensively reported
landmarking performances under several factors such
as resolution, occlusion, expression, model choice and
database [28].

• Number of landmarks and their accuracy
requirements: The accuracy requirements and the
number of landmark points vary based on the
intended application. For example, coarser detection
of only the primary landmarks, e.g., nose tip, four eye
and two mouth corners, or even the bounding box
enclosing these landmarks, may be adequate for face
detection or face recognition tasks. On the other
hand, higher level tasks, such as facial expression
understanding or facial animation, require greater
number of, e.g., from 20–30 to 60–80, landmarks
[29,30] as well as higher spatial accuracy. As for
accuracy requirement, fiducial landmarks such as on
the eyes and nose need to be determined more
accurately as they often guide the search for
secondary landmarks with less prominent or reliable
image evidence. It has been observed, however, that
landmarks on the rim of the face, e.g., chin, cannot be
accurately localized in either manual annotation and
automatic detection. Consequently, the 17 landmark
points within the face contour (4 eyebrows, 6 eyes, 3
nose, 4 mouth) are grouped together as inner
landmarks and denoted asm17 in the literature. We
follow this tradition in our study and base most of the
performance comparisons on them17 set (see Section
6). Shape guide algorithms can benefit from the richer
information coming from a larger set of landmarks.
For example, Milborrow and Nicolls [31] have shown
that the accuracy of landmark localization increases
proportionally to the number of landmarks
considered and have recorded a 50% improvement as
the ensemble increases from 3 to 68 landmarks.

In the final analysis, accurate and precise landmark-
ing remains a difficult problem since, except for a
few, the landmarks do not necessarily correspond to
high-gradient or other salient points. Hence, low-level
image processing tools remain inadequate to detect
them, and recourse has to be made to higher order
face shape information. This probably explains the tens
of algorithms presented and the hundreds of articles
published in the last two decades in the quest to
develop a landmarking scheme on a par with human
annotators.

2.2 Types of landmarks
It is convenient to consider facial landmarks in two
groups, denoted as fiducial and ancillary, or primary and
secondary landmarks. This somewhat artificial distinction
is based on the abundance and reliability of image fea-
tures aiding their detection. For example, the corners of
the eyes, of the mouth, the nose tip, and sometimes the
eyebrows can be detected relatively easily using low-level
image features such as gradient information, cornerness
or local information extracted, e.g., with scale invari-
ant feature transform (SIFT) [32], histogram of gradients
(HOG) [33], and generic information on the face mor-
phology. These directly detected landmarks are referred to
as the primary or fiducial ones, and they play amore deter-
mining role in facial identity and face tracking. The land-
marks in the secondary category such as nostrils, chin,
nasion, cheek contours, non-extremity points on lips or
eyebrow midpoints, eyelids etc. often present scant image
evidence, and the search for them is often guided by the
primary landmarks. The secondary group of landmarks
take more prominent roles in facial expressions, although
the demarcation between these two tasks is not always
clear-cut. The primary and secondary landmarks most
commonly used in the literature are shown in Figure 2.
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Primary landmarks Secondary landmarks
Number Definition Number Definition
16 Left eyebrow outer corner 1 Left temple
19 Left eyebrow inner corner 8 Chin tip
22 Right eyebrow inner corner 2-7, 9-14 Cheek contours
25 Right eyebrow inner corner 15 Right temple
28 Left eye outer corner 16-19 Left eyebrow contours
30 Left eye inner corner 22-25 Right eyebrow corners
32 Right eye inner corner 29, 33 Upper eyelid centers
34 Right eye outer corner 31, 35 Lower eyelid centers
41 Nose tip 36, 37 Nose saddles
46 Left mouth corner 40, 42 Nose peaks (Nostrils)
52 Right mouth corner 38-40, 42-45 Nose contours
63,64 Eye centers 47-51,53-62 Mouth contours

Figure 2m17 landmark set includes squares representing the primary (first order) landmarks.m7 landmark set consists of the most fiducial
points represented by red squares. Green dots the secondary (second order) landmarks, totally 64 landmark points.

2.3 Landmarking performance
One can define two different metrics to evaluate land-
marking performance: (i) ground-truth based localization
error; (ii) task-oriented performance. For ground-truth
based localization error, a straightforward way to assess
landmarking performances is to use manually annotated
ground-truths. For task-oriented performance, one can
measure the impact of the landmarking accuracy on the
performance scores of a task.
A straightforward way to assess landmark detection

and landmark localization performances is to use man-
ually annotated ground-truths. If the ground-truth posi-
tions are available, the localization performance can be
expressed in terms of the normalized root mean square
error (NRMSE). NRMSE can be computed per landmark
or NMSE figures can be averaged over all the landmarks
to produce a global precision figure. The normalization
is typically done with respect to IOD: Inter-Ocular Dis-
tance, which is defined as the distance between the two
eye centers. Normalizing landmark localization errors
by dividing with IOD makes the performance measure
independent of the actual face size or the camera zoom
factor.
One can declare a landmark to be detected whenever the

localization error remains below a suitably chosen error
threshold,Th. The landmark errors are assumed isotropic,
so that one can conceive around each ground-truth land-
mark a detection circle with radius equal to the error
threshold. If the Euclidean distance of the estimated land-
mark is below the threshold, the landmark is considered
as detected; otherwise, whatever the value of the localiza-
tion error, it is declared as a missed landmark. A detection
circle is illustrated in Figure 3. A nice way to illustrate the
detection performance is to plot the percentage of times
a particular landmark is detected within a given error
radius. In Figure 3, the abscissa denotes the error radius
while the ordinate is the empirical probability of landmark
detection. The allowed error radius (detection threshold)

is taken as some percentage of the inter-ocular distance
IOD, typically 10% or below of IOD.
The localization precision is thus computed as the

Euclidean distance d(., .) between the ground-truth coor-
dinates, (x, y), and the estimated coordinates, (x̃, ỹ) , nor-
malized by dnorm, the IOD. The error is given as

δi
k = d{(xki , yki ), (x̃ki , ỹki )}

IOD
, (1)

where the superscript k indicates one of the landmarks
(e.g., eye corner, nose tip) and the subscript i is the image
index.
Landmark detection statistics can be characterized by

the exceedance probability of the localization error. A
general agreement in the literature is that δik < 0.1 is
an acceptable error criterion so that a landmark is con-
sidered detected whenever it is found within proximity
of one tenth of the inter-ocular distance from its true

Figure 3 Detection probability of the left eye outer corner versus
normalized error. Concentric circles denote error ranges with radii
0.05 (red), 0.1 (green), and 0.2 (blue) times IOD, respectively.
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position. More specifically, we calculate the per-landmark
performance:

P(k) = 100
∑I

i=1[ i : δik < Th]
I

(2)

where [ i : δik < Th] is the indicator function assuming 1
if the deviation is smaller than a threshold, otherwise its
value is 0, and I denotes the number of test images. The
overall performance is averaged over all landmark types

P = 100
∑K

k=1
∑I

i=1[ i : δik < Th]
K × I

. (3)

A goal-oriented landmarking measure could be its
impact on the performance of tasks. Some instances of
goal-oriented applications based on landmarking are face
registration algorithm, expression classification as in [28]
or fitting of the active appearance model (AAM) algo-
rithm as in [34], and gesture recognition as in [16,35].
The landmarking accuracy on the performance of the
registration, expression classification, gesture recognition
and AAM fitting algorithms, respectively, would be goal-
oriented measures of landmarking.

2.4 Preprocessing for landmark extraction
There is always some preprocessing before a method
engages in landmark detection. Typical of these steps are
the following: illumination artifact removal, modest geo-
metric corrections, segmentation of the face, use of color
information.

2.4.1 Illumination compensation
The detected face region is subjected to illumination
compensation, which can be operated pixelwise, locally
or globally. One example of pixelwise normalization
is CSDN: center-surround divisive normalization [36],
where each pixel is divided by the mean value of a block
around it; another example is rank filtering where pixels
in the surrounding block are ranked, and the central pixel
is simply assigned its rank value and all such assignments
finally stretched to the [ 0, 255] interval. Local normal-
ization can be attained via filtering with Laplacian of
Gaussians or using a facet model as in [37]. Finally, the
prototypical example of global normalization is histogram
equalization.
Use of geometry: The task of landmark localization is

aided by the knowledge of the geometric relationship
(distances, angles etc.) between landmarks and over-
all shape characteristics. This knowledge can be con-
verted to a set of rules and/or can be expressed as a
set of statistics of point-to-point distances and angles
subtended by local ensembles, e.g., triples of landmarks.
The eyes and sometimes the mouth can be found via an
algorithm like Viola-Jones [38], Gabor filters [39], pro-
jection histograms [40], specifically trained SVMs [41],

or else. Once a few facial components are detected,
e.g., the eyes and mouth, geometry information can be
used to initialize the search for the remaining ones in a
reduced search area. Geometric constraints also help the
post-processing stage where landmarks are geometrically
verified. For example Shih and Chuang [39] initialized
the mouth at one IOD below the eyes, nostrils within
0.6 × IOD below and eyebrows within 0.4 × IOD above
etc. If certain landmarks are missing or if the detected
landmarks or face components do not to satisfy given
reliability criteria, they can be recovered or their search
re-initialized via the geometric face model.

2.4.2 Face segmentation
A commonly occurring theme is the heuristic segmenta-
tion or compartmentalization of the face encompassing
target regions of interest [39,41-43]. For example, the face
is partitioned with a grid structure resulting in two or
more horizontal and vertical stripes. This helps to delin-
eate the search areas so that, e.g., the eyes are searched
in the northeastern and northwestern corners while the
mouth is searched in the southern sector [44]. A pop-
ular method to segment the face is to use projection
histograms [40,45]. The relatively darker eye and mouth
regions cause dips in the histograms and the correspond-
ing bands are used to initialize the search for the eyes
and mouth. Pitas and Tsekeridou [46] take advantage of
the mirror symmetry of the face and use vertical and
horizontal histograms to initialize the location of face
components. Most of the recent study, e.g., [47] however,
use training images to learn the a priori location of the
target landmark within the bounding box of the detected
face.

2.4.3 Role of color
Color information, mostly in the pre-Viola-Jones era, has
been used for face and mouth detection. For example,
in [48], Hsu et al. proposed a face segmentation method
based on skin labeling in the non-linear YCbCr color
model and the connected components analysis. Within
the face region, any non-skin colored blob is regarded as
a candidate for eyes or mouth. In a companion study, in
[49], color information is used in the energy functional of
the snakes [50] or to assist in the initialization step and fit-
ting process of ASM [51]. There have been also a number
of studies, e.g., [52], to detect lips automatically based on
their color properties.

3 Review of face landmarkingmethods
The plethora of face landmarking methods in the liter-
ature can be categorized in various ways, for example,
based on the criteria of the type or modality of the
observed data (still image, video sequence or 3D data),
on the information source underlying the methodology
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(intensity, texture, edge map, geometrical shape, configu-
ration of landmarks), and on the prior information (e.g.,
anthropometrical data), if any used.
The goal of any categorization attempt must be to lead

to a better understanding of the commonality and differ-
ences of the approaches, and to extract a sense of where
the state-of-the-art is heading. Despite the difficulty of
finding clear-cut distinctions since algorithms often share
techniques common to more than one category, neverthe-
less we have found it useful to categorize them based on
the type of information used and on the specific method-
ology [53,54]. In a previous such attempt, Phimoltares et
al. [53] have used the five categories of geometry-based,
color-based, appearance-based, edge-based and motion-
based landmarking algorithms.
We believe that there are two basic categories of

facial landmark detection methods: model-based meth-
ods and texture-based methods. Model-based methods,
also known as shape-based methods, consider the face
image and the ensemble of facial landmarks as a whole
shape. They learn “face shapes” from labeled training
images, and then at the test stage, they try to fit the proper
shape to an unknown face. The second category, texture-
basedmethods, also known as nonmodel-basedmethods,
aim to find each facial landmark or local groups of land-
marks independently, without the guidance of a model. In
these methods the shape information may still be invoked,
but at a later stage for verification.
These two broad categories of landmarking methods

can each be further split into two sub-categories. The
model-based methods can be split as explicit methods,
of which prime examples are ASM and AAM, and as
implicit methods, for example, algorithms using a neural
network applied to the whole face. Similarly, the texture-
based methods can be discussed under the sub-categories
of transform-based methods, e.g., Gabor filters or HOG
features, and template-based methods. Figure 4 illustrates
this categorization. Note that the transform methods can
further be split into linear transform methods, like prin-
cipal component analysis (PCA), independent component

analysis (ICA), Gabor transform, and nonlinear transform
methods like Kernel PCA (KPCA), local linear embedding
(LLE) etc. However, in this study subcategorization at this
detail was not warranted. At this stage, to preclude any
misinterpretation, we have to emphasize that the shape
and texture approaches are not mutually exclusive. As a
case in point, the shape-based methods do also utilize the
local texture information to guide the model shape to fit;
conversely, most of the texture-based methods eventually
use some shape information, e.g., at a later stage for veri-
fication. The shape or texture categorization in this article
puts into evidence the predominant source of information
inmarking. Thirdly, it would be possible to extend the tax-
onomic tree by including the category of 3D landmarking
methods (Section 4). However, we consider 3D as a differ-
ent data modality rather than a methodological category.
In fact, other interesting data modalities that we could
consider would be infrared images, photo-sketch based
images etc.

3.1 Texture-based methods
The texture based category of methods will be con-
sidered in two classes, namely, transform-based and
template-based. In the transform-based schemes, a win-
dow scanning the image has its content transformed
into a feature vector and this feature vector is com-
pared with the learned patterns. In the template approach,
a landmark template or a set of landmark templates
scan the image to identify the target landmark accord-
ing to the strength of the template matching response.
An overview of the texture-based methods is given
in Table 1.

3.1.1 Transform-basedmethods
Pioneering examples in this track are the modular PCA
method and eigenfeatures, which are essentially the eigen-
face approach specialized to facial components. Pentland
et al. [18] derive eigenmouths, eigeneyes and eigennoses,
which coupled with eigenfaces result in good recognition
in multi-pose face databases. The authors also point out

Figure 4 Categorization of landmarking approaches.
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Table 1 An overview of the texture-based face landmarking algorithms

Work Highlights of the method Domain knowledge used Landmark types

Yuille et al.
[72], 1989

Using image saliencies of the face components,
geometrical templates are developed consisting
of arcs and circles. Eye template consists of a cir-
cle for iris, two parabola sections for eye contours,
two center points for the white sclera.

Descriptive information of the eye and
mouth geometries.

Eye, iris and mouth contours.

Pentland et al.
[18], 1994

Extension of the eigenface approach to eigen-
mouth, eigeneye and eigennose. Multiple
eigenspaces mitigate variations due to pose.
Face-ness, mouth-ness etc. are assessed based
on the concept of distance from corresponding
(eye, mouth, nose etc.) eigenspace.

None. Mouth, nose and individual
eye components.

Vukadinovic &
Pantic [44], 2005

GentleBoost templates built from both gray level
intensities and Gabor wavelet features. A sliding
search is run with templates over twenty face
regions.

Face initially divided into search regions on
the basis of IOD vis-à-vis the detected eyes.
In addition horizontal and vertical projection
histograms and symmetry of the frontal face
are used.

20 landmarks.

Arca et al. [41],
2006

Face is detected with skin features, and eyes
are located using SVM. Facial components are
extracted using parametric curves specific to
each component as in [72], and facial landmarks
are traced on these curves.

Various facial component heuristics such as
the vertically alignment of the eyes, the
mouth is centered with respect to the eye
positions etc.

16 landmarks

Zhang & Ruan
[73], 2006

Rectangular eyes, mouth and nose templates
resulting from averaging several instances used
for detection. Geometrical templates consisting
of arcs and circles are fitted to components for
detailed modeling.

Eye and mouth geometry. Eye, iris and mouth contours.

Akakın & Sankur
[16,27], 2007

Templates based on 50% of block DCT fea-
tures (block size 0.4 × IOD) scan the image and
SVM score map is obtained. Initial combinatorial
search decides for 7 fiducial landmark, and the
rest of the landmarks are predicted and locally
tested with their DCT features.

Landmark distances and angles are learned,
modeled as Gaussians and the information
embedded in a graph.

17 landmarks.

Ding & Martinez
[68], 2010

Face components are found via Subclass Deter-
minant Analysis, where multiple models for the
target component, eyes and mouth are devel-
oped; the context is the subspace representation
of the regions surrounding the components.

Estimated positions of the face components
within detected face boxes.

Eyes and mouth
components.

Valstar et al. [70],
2010

SVRs are trained to predict the landmark locations
using RoI samples. The search is regularized via
a Markov network to exploit the learned spatial
relationships between landmarks.

A priori probabilitymap of the likely locations
of seven fiducial landmarks and the locations
of 15 less fiducial landmarks vis-à-vis the first
seven.

20 landmarks as in [44].

to the higher tolerance of the eigenspace approach to
geometric variations as compared to simple template
matching, and claim a method for view-independent
facial component detection. Other instances of the

appearance-based category extract features using Multi-
resolution Wavelet Decomposition [55-57], Gabor
wavelet transform (GWT) [44,57-60], discrete cosine
transform (DCT) [27,61], and independent component
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analysis (ICA) [62]. For any given landmark, after its fea-
tures are extracted, a classifier is trained to convert the
feature vector into a likelihood score.

Gabor transform

Gabor wavelet transform can produce effective features
as these wavelets are known to generate biologically-
motivated convolution kernels [9]. To this effect, a bank
of filters is created by using Gabor kernels in different
orientations and frequencies (scales), and then convolved
with the data to form a Gabor space. In this vein, Smeraldi
and Bigun [59] developed a bio-inspired scheme where
Gabor features were computed on a retinatopic sampling
grid on the face. For uniform frequency coverage, they
used modified Gabor filters, where shifts of Gaussians on
the log-polar frequency plane correspond to rotations and
scaling. The facial components are found by displacing the
retinatopic grid and evaluating the output with SVM clas-
sifiers. Similarly, Vukadinovic and Pantic stacked Gabor
responses at eight orientations and six scales into a feature
vector [44]. This feature is then used to train a Gentle-
boost classifier for each landmark type within its own
region of interest (RoI).
Ersi and Zelek [60] conjectured that facial components

must have higher entropy as compared to the rest of
the face, and they initialized the search regions with a
high entropy threshold. Subsequently, facial components
are verified by using the combined features of Gabor
coefficients and the local entropy (entropy of the search
window). Two- or multi-tiered approaches are common
search strategies [57,63]. A two-level hierarchical Gabor
wavelet networks (GWNs) is presented in Ferris et al. [57].
Here a GWNdenotes a constellation of 2DGabor wavelets
that are specifically chosen to reflect the object proper-
ties and together with its location they constitute a node
in a tree representation. The hierarchy consists of a set
of GWNs that are organized in child node-parent node
relationship, which may differ in position, scale and orien-
tation. The first-level network, trained for the whole face,
yields orientation and scale information of the face as well
as approximate landmark locations. The set of second-
level networks, trained for each landmark separately, yield
refined landmark locations. Duffner and Garcia [63] also
used a neural architecture in such a hierarchical way
where the search area is restricted by the preceding step.

Discrete cosine transform

Salah et al. [58] presented another coarse-to-fine app-
roach where they first search on a lower resolution image
for coarse landmark locations, and then refine them on
the original resolution image. In a comparative analysis,
they observed that DCT features perform slightly better

than Gabor features, both using SVM classifiers [58,64].
DCT coefficients have also proved to work surprisingly
well as low-level features leading to high localization
performance, and furthermore they offer the advantage
of the existing DCT implementation. In [61], Zobel et
al. used DCT features in a probabilistic structure to
detect facial components where the spatial dependencies
between landmark points are statistically modeled. More
specifically, the length of rays emanating from the face
center and pointing to the eyes and mouth as well their
angles subtended were modeled as Gaussians. Akakın
et al. [27,58] generalized this idea and used a proba-
bilistic graph-based framework as a post-processing tool
to correct erroneous estimates and recuperate missing
landmarks.

Independent component analysis

In [62], Antonini et al. resorted to ICA features to
exploit higher order dependencies in images. They ini-
tialize candidate locations with Harris corner detector
and proceed to extract ICA features within 32 × 32 win-
dows at these corners. The resulting feature vectors are
classified with SVM to result in 10 landmarks. It is inter-
esting to note that the ICA method applied to Gabor
features, resulting in the so-called independent Gabor fea-
tures (IGF), improves the performance over the Gabor
only method [64].

Landmark initialization heuristics

Since the costly part of appearance-basedmethods is the
brute-force search for the landmarks, an efficient method
to restrict the search area is the use of vertical and hor-
izontal gray-value projections. Projections are simple to
implement, while being at the same time quite effective
in determining a first coarse estimate of feature positions.
Brunelli and Poggio [65] have performed edge projection
analysis by partitioning the edge map in terms of horizon-
tal and vertical edge directions. Other researchers found
out that more exact results can be obtained by applying
the projection analysis on the intensity image, since most
faces have fairly smooth contours faces [39,40,44,66,67].
These approaches use histogram dips caused by the gray
level variations of the face components, which for the eyes
and mouth regions tend to be darker than the skin level.
Similarly, Ding and Martinez [68] define two patches

enclosing the eyes through a statistical analysis of eye
locations in the training images. They resort to subclass
discriminant analysis (SDA) [69] to combat the variabil-
ity of the appearances of the eye components. Thus, the
gray-level distributions of the patches centered on the
components and of those in their vicinity of the target
regions are modeled with K-means clustering, where the
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optimal value of K is separately determined for the tar-
get and surrounding non-target patches. While eye loca-
tion information aids in the detection of the remaining
landmarks, chin proves especially difficult, and conse-
quently it is deduced with the aid of a quadratic curve
fitted to the available face boundaries [68]. In a more
recent study, Valstar et al. [70], after finding the face
box, model the prior probability of the x- and y-position
of each facial point relative to the coordinate system
of the detected face. Thus the x- and y-coordinates of
the landmarks are described by a set of bivariate Gaus-
sians, with means and variances learned using training
images.

3.1.2 Template-basedmethods
The main differences between template-based and
transform-based category are the matching procedure
and the representation of facial features. Transform-based
methods reduce the observed image patch to a feature
vector, which is then classified; template-based methods
calculate the matching scores.

Fixed templates

In fixed template methods, a face object (component or
landmark) is detected if it responds strongly when con-
volved with the template mask, and the highest scoring
point on the face is declared as the target location. The
template can be obtained using adaptive matched filter
techniques [65]. However, the weakness of the template-
based methods is their scale and pose dependency, since
cross-correlation operation is highly sensitive to geomet-
rical distortions. To mitigate scale dependency of these
methods, Poggio et al. proposed a scheme where target
locations are investigated at multiple resolutions [19]. In
a follow-up study focused on face recognition robust to
poses, Heisele et al. [71] used 14 component detectors
based on component SVMs. The geometrical configura-
tion of these components were analyzed on a second level
in order to complete the face detection and recognition
tasks.

Deformable templates

Deformable templates are proposed to cope with the
limitations of fixed templatematching. A pioneering study
in this direction was presented by Yuille et al. [72].
Accordingly, a deformable parametric template is made
evolve by internal and external forces. The template is
attracted to salient features such as peaks, valleys and
edges in the intensity images. For example, eye and lip
templates are first extracted via morphological filters and
the energy function resulting from internal and external
forces is minimized with a gradient descent algorithm
[72]. In a recent study [73], Zhang and Ruan combined

the fixed and deformable templates, such that first, fixed
templates are used to locate a rectangular RoI around
the face components, and then deformable templates are
used to extract the contour of the component. Notice
that template or transform techniques are often used
in model-based algorithms as well as part of low-level
image processing.
In summary, texture-based methods generate landmark

candidates independently from each local detector. These
result in a score surface for each landmark on the test
face, whether the score is the outcome of the matched fil-
ter or of the classifier, e.g., SVM. The peaks on the score
surface, judiciously chosen in the light of a prior model
for face geometry form the landmarks. Algorithms often
attempt to solve the combinatorial search problem using
various heuristics or invoking learned face models. The
enforcement of the prior information plays the role of a
regularizer.

3.2 Model-based methods
Shape-guided or model-based methods consider the
whole face and the ensemble of landmark as an instan-
tiation of a shape. Of the two sub-categories of model
based methods, the explicit model-based methods are by
far more popular, while there are only a few research
articles in the alternative implicit methods. Neverthe-
less we will discuss it briefly for the sake of com-
pleteness. Major model-based methods are listed in
Table 2.

3.2.1 Implicit model-basedmethods
Implicit models based methods use models without
state information: unstated models. Methods that use
pixel gray levels as input of a neural network to
detect multiple facial landmark try to learn implicitly
the spatial relations between landmark points. Search
with genetic algorithms can also be considered under
this category. For example, Cesar et al. [74] use inex-
act graph matching to discover landmarks. The model
image is segmented at and around landmarks while
the test image is oversegmented, e.g., using water-
shed algorithm, hence it contains a much larger num-
ber of segments as compared to the training (model)
images. Landmarking of the test image, in other words,
labeling of the segments as belonging to a landmark
location is carried using inexact graph matching. The
global dissimilarity function between the two graphs is
minimized using randomized tree search and genetic
algorithms. Ryu and Oh [75] segment the face, and
using a number of heuristics about the geometry of
facial components of interest, develop a face tem-
plate based on genetic algorithm, and apply multilayer
perceptrons as nonlinear templates at the landmark
level.
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Table 2 An overview of themodel-based face landmarking algorithms

Work Highlights of the method Domain knowledge used Landmark types

Leung et al. [76],
1995

Face image is Gaussian filtered at multiple ori-
entations and scales. This process provides a set
of candidate landmarks. Each possible configura-
tion of candidates is validated through random
graph matching.

The geometrical relationship between land-
marks is expressed with a probabilistic
model, which reduces the matching com-
plexity and eliminates irrelevant points.

Eye centers and nose.

Wiskot et al. [9],
1997

A labeled graph is constructedwhere links are the
average distances between landmarks andwhere
nodes represent 40-dimensional Gabor jets at
candidate locations. The face graph is elastically
deformed toward the query face.

Multiple face graphs capture head rota-
tions and bunch graphs capture the various
appearances.

An example graph:

Cootes et al. [79],
1998

AAM, a generalization of ASM, jointly models
the shape and texture variation of the fiducial
points. The main goal is to find the appropriate
model parameters that minimize the difference
between the query and the model face.

PCA models of both texture and shape. An example of fitting:

Cristinacce et al.
[80,81], 2003

Multiple landmark detectors are run on the face
and locate the initial landmarks. Then, two steps
are repeated until convergence: First, estimated
locations are improved by boosted regression;
second, shape model is fitted to the updated
landmark locations.

Configurational constraints are applied to
eliminate false positives as well as to recover
missing landmarks.

17 landmarks: eye, eyebrow,
nose, mouth and chin.

Cristinacce et al.
[83], 2008

Local templates per each landmark type are com-
bined into a geometrical configuration. The esti-
mated locations are updated by a shape-driven
search.

Learned global shape model to avoid non-
plausible face shapes.

22 landmarks.

Milborrow and
Nicolls [31], 2008

Enhancements on ASM such as stacking of two
ASMs for better initialization, 2D profile search for
individual landmarks etc.

Learned profile models for the individual
landmarks and learned global shape model
via PCA

76 landmarks.

Belhumeur et al.
[106], 2011

A local detector collects SIFT features and
landmark-specific SVMs output landmark likeli-
hoods. A Bayesian framework unifies the local
evidences into a global shape.

Anatomical and geometrical constraints on
facial landmarks derived implicitly from the
exemplars.

29 features.

Zhu & Ramanan
[99], 2012

Local and global information merged from
beginning via tree-connected patches covering
the landmarkable zones of the face. Patches
represent HOG features while global shape is
imposed via quadratic springs between them.
The maximum likelihood setting of the tree is
searched.

Linearly-parameterized, tree-structured pic-
torial structure of the landmark rich parts of
the face.

68 landmarks for
frontal and 39
landmarks for profile faces.
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3.2.2 Explicit model-basedmethods
Most of the explicit methods can be subsumed under the
topics of graph methods and active appearance methods.

Graph methods

The study of Leung et al. [76] based on random graph
matching is one of the first methods in this category.
They start with a set of candidate points by convolv-
ing the image with multi-oriented and scaled Gaussian
derivative filters. In order to validate the spatial arrange-
ment of the landmarks, each configuration is tested
by matching it against a graph obtained from train-
ing data. In these graphs, the normalized mutual dis-
tances between landmarks are assumed to be Gaussian
distributed. This probabilistic model helps also to elim-
inate irrelevant configurations and reduce the matching
complexity.
A seminal study in graph fitting was presented by

Wiskott et al. [9], called elastic bunch graph matching
(EBGM). In this model, nodes of the graph are charac-
terized by Gabor jets, that is, Gabor wavelet responses
at several scales and orientations, all stacked as a vector.
The Gabor jet energies help to register the nodes of the
graph to the face landmarks where the graph similar-
ity measure takes into account both the magnitude and
phase information of the jets. This method deforms elas-
tically the face graph depending upon collective Gabor
responses while preserving its geometric configuration.
In the same vein, Zhu and Ji initialize a set of 28 land-
mark points using a face model [77], scaled to the detected
face size. In the first iteration, landmarks are anchored
at the eyes, which are detected via the Viola-Jones algo-
rithm [38]. The initial mesh estimation is successively
refined using Gabor jets and a slightly modified version
of EBGM (using grid search based procedure for match-
ing the phase coefficients). Any abnormal deviation of
facial landmarks is corrected via PCA subspace model.
One disadvantage of these configurational models such as
EBGM or AAM is that they need a good initialization,
which is not straightforward for unknown head poses.
To overcome this limitation, Wiskott et al. [9] trained
graphs corresponding to profile, half-profile and frontal
faces.

Two-tier graph methods

In the studies of [68,78], statistical decision theory is
compounded with geometry information for additional
robustness. Most likely-landmark locator (MLLL), pro-
posed by Beumer et al. [78], can also be thought as a
variety of Viola-Jones algorithm. MLLL aims to maximize
the likelihood ratio of a set of points to be in the prox-
imity of a landmark versus the negative case. This initial
localization step is followed by a shape correction method

based on PCA subspace projection and elimination of
false positives.
In this vein, Akakın and Sankur [27] continue the two-

tier landmark-refinement tradition and employ a prob-
abilistic graphical model (PGM). The initial landmark
estimates are found via landmark specific SVMs oper-
ating on DCT masks. Each landmark neighborhood is
described by selected zonal DCT coefficients. The arcs
between the nodes of the PGM (landmarks) and the sub-
tended angles are modeled as Gaussian spring forces with
parameters learnt during a training phase. Obviously, the
spring forces toward nearer landmarks are stronger since
one expects that the corresponding anthropometric vari-
ability will be smaller and those linking the more distant
landmarks will be weaker. For example, the left outer eye
corner would be tightly coupled to left eye inner corner,
but more loosely coupled to right eye corners, to mouth
corners or to the nose tip. The PGM acceptsm candidates
for each of the k landmark points (m is usually a small
number, a function of the specific landmark), resulting in
a combinatorial search. The n points, composing the best
configuration, are called the support set and they do not
necessarily cover all the landmarks. This support set is
used as anchor points for adapting the graph to the actual
face. Any landmark missing due to occlusion or poor data,
(k − n) points, is estimated using back-projection of the
graph [64]. In [16], the authors increase the number of
detected landmarks to 17 and used them for the purpose
of facial expression and head gestures analysis.

Active shape and appearance models
The most important paradigm in the model-based cat-

egory consist of the active shape model (ASM) and AAM
varieties and their various descendants. In ASM, the
deformable objects (i.e., faces) are represented by a set
of fiducial points, which are found with feature detection
methods. Configurational shape variations are regular-
ized by PCA so that the face shape can only deform
in controlled ways learned during training. In the same
vein, AAM is proposed to impose jointly the constraints
of shape variation and texture variation [79]. In AAM,
the shape and texture are combined in the PCA sub-
space such that PCA coefficients are jointly tuned to
account for the geometry and texture differences from
the mean face. Recall that, in contrast to ASM, AAM
is a generative approach in that by adjusting the model
parameters, the shape and texture of plausible new faces
can be generated. In a sense, a model face is morphed
into a target image so as to minimize the model fitting
residual.
Cristinacce and Cootes have also proposed a Shape

Optimized Search algorithm where the feature responses
corresponding to the landmark shape models are learned
using the ASM [80]. Three types of landmark features are
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used, namely, (i) Gray-level information (15 × 15 win-
dows reduced with PCA), (ii) Orientation maps resulting
from Sobel edge operator, (iii) Features resulting from
a boosted classifiers, e.g., [38]. The concatenation of
these three feature sets forms the landmark shape vector.
The shape vector is then used in a shape-guided search
to select the best candidate among possible configurations
while the positions of missing points are predicted by
the shape model. The Shape Optimized Search method,
where in effect templates are learned under configura-
tional constraints, outperforms AAM approach [79]. Sev-
eral variants of ASM/AAM have recently been proposed.
One of them is the boosted regression ASM [81]. The
main difference of this variant is that it uses landmark
detectors based on Haar features and boosted classifiers
[38] instead of eigen models. In another variant [82],
separate boosted cascade detectors, one for each land-
mark, model shapes implicitly by learning the pairwise
distribution of all true feature locations. This approach
can be thought as a combination of multiple detec-
tors, called pairwise reinforcement of feature responses
(PRFR). Finally an AAM which models edge and corner
features instead of normalized pixel values is used for
refinement.
An important step forward from the AAM algorithm

is the CLM: constrained linear model algorithm [83].
Despite inheriting some of the important tools of AAM,
CLM differs from AAM because it is not a genera-
tive model for the whole face, instead it produces itera-
tively landmark templates and applies a shape-constrained
search technique. Like AAM, CLM also profits from
labeled training set. The idea of template update was
used by the authors in their previous study [79]. In
[83], this idea was developed further so that the posi-
tion vectors of the landmark templates are estimated
using the Bayesian formulation. The posterior distri-
bution in the Bayesian formula incorporates both the
image information via template matching scores and
the statistical shape information. Thus, new landmark
positions are predicted in the light of the image and
the joint shape model, and then templates are updated
by sampling from the training images. The optimiza-
tion search is instrumented via Nelder-Mead simplex
algorithm.
Another important contribution to the ASMmethodol-

ogy was made by Milborrow and Nicolls [31], and their
software, called standard ASM (STASM) is practically one
of the standards, widely adopted by the community. Their
starting point is the original work of Cootes and Taylor
[84], and they modify several of the steps such that cumu-
latively the resulting algorithm—STASM—works roughly
60% better, in that the average landmarking errors form17
decreases from 0.08 × IOD to 0.05 × IOD. The three
improvements consist in using two dimensional profiles

while searching for landmark updates, second, in adapt-
ing the shape model along the progress of the iterative
search by varying the number of shape eigenvectors, and
finally in running two search steps in cascade to recover
from fatal starts. A recent addition to the constrained local
models is the study of Saragih et al. [85] where the authors
bring a probabilistic interpretation to the optimization of
the statistical shape model parameters.

4 Landmarking of 3D faces
Although most of the methodological advances in face
landmarking has been realized on 2D images, the inter-
est in processing 3D face images is rapidly increasing due
to the wider availability of 3D cameras, e.g., Kinect sen-
sor device, the evolution of 3D television and video. A
recent review article on 3D human face description [86]
traces the history of the use of landmarks from anatomi-
cal studies to aesthetic concerns, from face recognition to
anthropometric measures for face correction.
The anatomical landmarks used in 3D are the same

as those used in 2D images; while 2D image landmark-
ing uses the gray-level features, 3D benefits from surface
curvature features. There are, of course schemes that ben-
efit simultaneously from 2D texture and 3D curvature
information since 3D imaging devices provide also regis-
tered 2D optical images. One advantage of landmarking
in 3D is that it enables alternate processing techniques
for landmarks since there are multiple ways of represent-
ing 3D face data. For example, point clouds, depth maps,
multiple profiles, voxels, curvature and shape index [87]
have been used for face recognition, and these have not
yet fully exploited for landmarking. A more important
advantage is that it can potentially mitigate some of the
limitations encountered in 2D landmarking. Recall that
2D landmarking becomes very sensitive to pose variations
beyond 20° tilt and/or yaw, and it suffers also from illumi-
nation effects. In this sense, 3D face data has the promise
of filling the performance gap in the presence of severe
lighting and pose variations. The downside is that 3D face
raw data demands substantially more preprocessing as
compared to 2D. For example, the face surface must be
smoothed, spikes and discontinuities removed, and gaps
filled in.

4.1 The use of heuristics
3D face data provides the heuristics of nose tip defined
as the closest point to the range camera. The nose tip
is found to be a reliable and easily detected landmark,
barring poses with excessive tilt and/or yaw. In fact,
many studies in the literature have exploited this sim-
ple heuristic. Lu and Jain estimated jointly the yaw angle
of the face and the nose tip by exhaustively search-
ing over quantized sectors [88]. The remaining fiducial
landmarks (inner eye corners, mouth corners and chin)
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are estimated using the face orientation information, cor-
nerness feature from intensity image and shape index
from the range image [89]. Note that their method [88]
allows a wide pose angle range extending from -90° to
90°. Dibeklioǧlu et al. [90] introduced a heuristic approach
to increase the performance of 3D landmarking. They
extracted the relevant regions by thresholding the dif-
ference between the Gaussian curvature and the mean
curvature images. This difference image highlights the
facial landmarks and its higher peak locations correspond
to candidate regions. They determined a circular interest
region that embraces all the components left after thresh-
olding the difference image. They also profited from these
heuristic rules on the curvature difference image to deter-
mine a circular RoI that embraces all the components
and the nose tip robustly, both even under occlusions and
severe pose variations.

4.2 Average face model
Gökberk et al. [87] solved the problem by initializing
the landmarks of the test face with the landmarks of an
average face model (AFM), the two being aligned initially
via iterative closest point (ICP) algorithm. The landmark
positions are then searched and refined using such shape
descriptors as Gaussian curvature, mean curvature, sur-
face normals and relative distances to the facial symmetry
plane.

4.3 Surface curvature
Akagündüz et al. [91], inspired by the scale-invariant fea-
ture transform (SIFT), described the facial surface with
the mean and Gaussian curvatures. The curvature data is
calculated at many scales using a Gaussian pyramid and
then binarized via thresholding. This yields a 3D curva-
ture field, with two spatial dimensions (UV) and one scale
dimension (S). The facial components (chin, nose and eye
pits) are then identified using connected components in
the UVS space, and their geometrical relationships sub-
sumed by a graphical model. Segundo et al. [92] also
use the curvature field the landmarks that are the least
affected by expressions, namely the nose tip, eye corners
and nose corners. Using biquadratic approximations to
the local surface, the Gaussian and mean curvature are
computed to identify the peaks and pits. For example, eye
corners present a pit-like surface, and the nose tip presents
a peak-like surface. The coordinates of the landmarks are
found by a number of heuristics, such as the projections
of the depth information reliefs.
Nair and Cavallaro [93] use a different approach, that of

point distribution model (PDM for face detection), regis-
tration, landmarking and description. The PDM actually
represents the face shape including the required land-
marks, as well as the statistical information of the shape
variations. Once a statistical model of PDM is obtained

using a training set (49 ground-truthed landmarks are
used), one proceeds to fit this model to the actual faces.
The fitting process is guided by the curvature-based
feature map characteristic of the faces. The model is
initialized with fiducial landmarks such as eye corner
(endocanthus, exocanthus) curvatures. These vertices
generate the remaining candidates, and they eventually
settle on the landmark as a result of model transformation
with the minimum deviation from the mean shape, while
respecting the constraints of subspace shape.
Conde andCabello [94] used spin images to characterize

the local surface around the landmarks. Spin images can
be thought of as a 3D-to-2Dmapping such that each patch
is characterized by relative distances of the surface points
to a reference point, some sort of distance histogram. The
search space is reduced by selecting the areas with higher
mean curvature, and SVM classifiers are used to differen-
tiate between the spin images of nose tip and inner eye
corners.

4.4 Joint use of 2D and 3D
Since most of the 3D acquisition devices provide also
2D color-texture image over an identical sampling grid,
the prospect of utilizing 3D and 2D data jointly becomes
attractive. Such multi-modal approaches have already
shown promising results [42,95]. For example, Boehnen
and Russ [42] used range and color data jointly. First,
range data is used to eliminate the background and to con-
strain the facial component search area. A YCbCr color
model in conjunction with a geometric-based confidence
measure is used to segment skin regions and determine
eye and mouth regions. Geometry-based modality aids in
the selection of the best landmark set, and it is based on
the 3D measurements made over the range data.
Salah and Akarun [95] compared 3D-based landmark

extraction with 3D-aided 2D landmark extraction. They
model Gabor jet features statistically as a mixture of
Gaussians in a lower-dimensional manifold, and to this
end they use mixture of factor analyzers. They con-
cluded that under favorable conditions (e.g., FRGC v.1)
2D and 3D systems perform on a par. Under unfavor-
able conditions (e.g., FRGC v.2), 3D performs better on
nose tip and eye corners, though the detection rate is
lower at mouth corners. However, under adverse condi-
tions, the 2D and even 3D-assisted 2D algorithms com-
pletely fail. Open-mouthed facial expressions is one of
main reasons for their lower localization performance,
and they observed that the wrinkles between lower lip
corner and chin also cause false positives for the mouth
corners in 3D.
Akakın and Sankur had addressed the 3D landmarking

problem as a combinatorial search [27]. Recently Sunko
et al. [96] have managed the combinatorial problem using
RANSAC algorithm. First, they find the reliable features
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using spin images as features, and the missing ones are
regressed using the multivariate Gaussian model encom-
passing all 3D landmark coordinates. To sort out the
correct landmarks from themultitude of candidate points,
they use all combinations of four points, and RANSAC
is used as the basis of the feature matching procedure.
The median of the closest candidates for the missing land-
marks is considered. The cost function consists of a part
accounting for the reconstruction error, that is the PCA-
instrumented shape fitting term for the found landmarks,
while the other part accounts for the distance from the
inferred landmarks to their closest candidates.
3D face landmarking methods are summarized in

Table 3.

5 Recent progress in face landmarking
Interest in face landmarking seems recently to be
revamped as attested by the flurry of articles in the
last five years. In contrast to the efforts of the last two
decades, recent studies are characterized by the following:
(i) A wider employment of machine learning techniques
ranging from random ferns to the aggregation of weak
learner outcomes to result in a more robust estimator;
(ii) Confronting a wider range of out-of-plane face poses,
notably yaw angles; (iii) Training and testing across sev-
eral databases and increasing use of “faces in the wild”,
e.g., real world faces in unconstrained environments col-
lected mostly from the web; (iv) A more pronounced
employment of regression techniques, whether support
vector regression (SVR) or Random Forests, in lieu of
classification techniques.
Belowwe discuss a sampling of algorithms introduced in

recent articles, which we think are prototypical of recent
progress in face landmarking. These articles could also
have been discussed in Section 3 under the appropriate
categories. However, we opt to discuss them separately
to give a flavor of recent research trends in landmarking.
Furthermore, we have added suggestive subtitles to indi-
cate what we think to be the more innovative aspect
of the work, but otherwise they do not denote a strict
categorization.

5.1 Regression methods
The two-tier approach of Valstar et al. [70] uses in the
first level surrounding image information to predict land-
mark location via support vector regression (SVR), and
in the second level, the global shape information via a
Markov Network. The regressor simplifies the landmark
search in contrast to exhaustive sliding-window search
with a template window. Briefly, they use Haar-like filters
as descriptors of local appearance, benefiting also from
the speed advantage of the integral images. The search for
the initial seven fiducial landmarks exploits a prior model
of landmark locations in the bounding box of the face. The

features are selected by the Adaboost regression, which
uses multiridge regression as the weak classifier, and their
ultimate number is determined not by Adaboost itself, but
subsequent cross-validation using SVRs. Once the fiducial
landmarks are consolidated, they generate hypotheses for
the positions of the remaining 15 “unstable” landmarks,
which are refined then with another application of SVR.
A bank of regressors predict the distance and angle to
the target landmark, and their votes are combined via
the median operator. Finally, the global information is
put into use by means of a Markov Network, which uses
the learned spatial relationships between landmarks and
penalizes improbable landmark configurations. Network
nodes are not landmark locations per se, but relation-
ships between pairs of landmarks, that is, vectors that
point from one landmark to another. Since the angular dif-
ferences and the length ratios of these vectors are used,
planar rotation and scaling problems as well as any initial
Viola-Jones face detector errors are automatically taken
care of. The innovative aspects of this study is a rela-
tively new way of combining local and global information,
rightly called Boosted SVR coupled with Markov Net-
works: BORMAN. In a follow-up version of this work [47],
they use evidence-driven sampling, and test the enhanced
algorithm on a much larger set of conditions and of
databases.
Cao et al. [97] point out that local evidence is sufficiently

strong only for a few prominent landmarks, but otherwise
most others are not salient enough and cannot be reliably
characterized by their image appearance, and therefore
shape constraint is essential. Their method is regression
based where the shape constraint is realized in a nonpara-
metricmanner. Their nonparametric approach is based on
the fact that the regressed shape is a linear combination of
all training shapes. An interesting aspect is that instead of
using the regressors in parallel and fusing their result as in
[98] the authors use sequential regressors, where each one
in the sequence uses the image information and the shape
estimated from the previous stage of regression. Further-
more, the regressed shape is always constrained to reside
in the linear subspace constructed by all training shapes.
This guarantees the plausibility of the shape as well as
global consistency.

5.2 Tree-structured search
Zhu and Ramanan [99] address the three linked prob-
lems of face detection, face pose estimation and face
landmarking jointly. Since pose is part of estimation, the
algorithm practically works as a multiview algorithm. In
contrast to [47,70], where local and global information
are invoked in succession, this algorithm is shape driven,
and local and global information are merged right from
beginning. This is implemented by considering several
(30 to 60) local patches that are connected as a tree, which
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Table 3 An overview of the 3D face landmarking algorithms

Work Highlights of the method Domain knowledge used Landmark types

Lu & Jain [88], 2006 Shape index and cornerness information are
fused into a field where extrema are searched
at conjectured locations. Since face orientation
is estimated, the method is robust against pose
(i.e., yaw).

Nose tip is detected as the peak of
the central vertical profile. Prior loca-
tion probability of the eye and mouth
corners vis-á-vis the nose tip. Anthro-
pometric distances between landmark
points measured in world coordinate
system form a constraint set.

Mouth, inner eye corners,
nose and chin tip.

Gökberk et al. [87],
2006

An Average Face Model with 10 landmark
points is aligned to the scene face via Iterative
Closest Point algorithm. Initialized landmark
positions are corrected via shape descriptors
of Gaussian curvature, mean curvature, surface
normals and landmark distances to the face
symmetry plane.

3D Average Face Model introduces
both face geometry and local shape
information.

10 landmarks (m7 plus
philtruma, nasion and chin).

Conde & Cabello [94],
2006

Mean curvature field of the face reveals the
high curvature extrema; spin images at these
extrema are classified via SVM as eye inner cor-
ners and nose tip.

None. Endocanthionb and nose tip.

Akagunduz & Ulusoy
[91], 2007

Mean and Gaussian curvatures are calculated
at many scales, and organized as a space-scale
Gaussian pyramid (UVS). Surface shape proper-
ties within the connected components in the
UVS space are investigated as being eye pits,
chin and nose protuberances.

Topological graph to regularize the
search is only suggested.

Eye pits, nose tip and pit,
chin.

Salah & Akarun [95],
2006 and Dibeklioǧlu
et al. [90], 2008

Gabor jets are statistically modeled as incre-
mental mixture of factor analyzers (IMoFA) to
generate a lower-dimensional manifold. IMoFA
is run on the difference image of the Gaussian
and mean curvature fields.

Nose tip heuristics. m7 landmark set.

Nair & Cavallaro [93],
2009

PDM: Point Distribution Model, i.e., a
parametrized model of the 49 3D landmark
configurations is computed. The PDM is fitted
to the face driven by local curvedness and
shape index information.

(i) PCA model of the 49 landmark
points; (ii) face heuristics to prune out
combinations of candidate landmarks
to arrive to plausible shapes.

49 upper face landmarks.

aPhiltrum is the vertical groove between the base of the nose and the border of the upper lip.
bEndocanthion is the point at which the inner ends of the upper and lower eyelid meet.

collectively describe the landmark related region of the
face; in other words, the patch-based face graph mod-
els the RoI of the detected face and incorporates its pose
and landmark information. This approach is an adaptation
of the idea of tree-structured pictorial structures [100].
In more detail, each patch is characterized by a HOG
descriptor [33], and these patches are connected with
quadratic springs in order to configure a shape. The
authors employ a mixture of trees where each tree cor-
responds to a pose or to an expression in the frontal

pose. The final shape is determined by the maximum
likelihood tree structure that best explains the landmark
locations for the given mixture, assuming that the land-
marks are Gaussian distributed. In effect, one infers the
face pose and landmarks by maximizing over all mix-
tures and over all possible shapes given the patch HOGs.
They also investigate the sharing of parts [101], and not
surprisingly, non-shared model is better, albeit slightly,
in both pose and landmark accuracies. Tree-structured
pictorial structures have also been successfully applied
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to face recognition by Everingham et al. [102], where
the local appearance of each landmark are learned by
a variation of Adaboost algorithm with Haar-like fea-
tures [38]. Similarly, Uricar et al. [103], inspired by pic-
torial structures, jointly optimize appearance similarity
and deformation cost with a parameterized scoring func-
tion where the parameters are learned from manually
annotated instances using the structured output SVM
classifier.

5.3 Random forests and ferns
Dantone et al. [104] propose pose-dependent land-
mark localization scheme that is achieved by condi-
tional random forests. While regression forests try to
learn the probability over the parameter space from
all face images in the training set, conditional regres-
sion forests learn instead several conditional probabili-
ties over the parameter space, and thus can deal with
facial variations in appearance and shape. The head
pose is quantized into five segments of “left profile,
left, front, right and right profile” faces and specific
random forests are trained. The local properties of a
patch is described both by texture and by 2D displace-
ment vectors that are defined from the centroid of
each patch to the remaining ones. Specifically, texture is
described by Gabor filter responses in addition to nor-
malized gray values in order to cope with illumination
changes. Training of conditional random forests is very
similar to random forests; the main difference is that
the probability of assigning a patch to a class is condi-
tioned on the given head pose. This approach is able to
deliver located landmarks in a query image at real-time
speed.
Efraty et al. [105] contain a very extensive study on land-

marking performance using a multitude of face databases.
Their version of local and global information paradigm
operates as follows: locally, unions of simpler polygonal
sub-shapes represent groups of landmarks; globally, all
sub-shapes are deformed in parallel toward their target
landmark positions. The global search is instrumented via
agglomerate fern regressors. The sub-shapes are triangles,
whose vertices should eventually settle on the correspond-
ing landmark positions. Since multiple instances of sub-
shapes are initialized, the scheme is claimed to be robust
against pose, illumination and expression artifacts. The
final landmark positions are computed as the mean of
these parallel instantiations, and their variance indicates
the reliability of the landmark. In summary, while their
preprocessing step and shape model are fairly standard,
the originality of the method lies in the bank of regres-
sors, which are charged with the duty of predicting the
deformations for all instances of sub-shapes. The algo-
rithm fuses every few iterations the predicted positions for
the landmarks shared by several sub-shapes.

5.4 Bayesian approach
Belhumeur et al. [106] use innovatively a fully Bayesian
approach to deduce landmark positions from local evi-
dences. An interesting aspect of their work is that these
evidences, that is, the local detector outputs are collected
from a cohort of exemplars (sample faces with annotated
landmarks), which thus provide non-parametrically the
global model information. In other words, anatomical and
geometrical constraints on facial landmarks are implicit in
the exemplars. Depending upon the choice of the exem-
plars, localization robustness can be obtained against a
large range of real-world variations in pose, expression,
lighting, makeup and image quality. The local detector
itself consists of a sliding window whose size is pro-
portional to IOD and which collects SIFT features. The
normalized SVM score of the SIFT feature set, d, gives
local likelihood of a landmark at position x: P(x|d). In the
next stage, the global detector models the configurational
information of the ensemble of fiducial points. Thus the
joint probability of the locations of the n landmarks, X =
[ x1, . . . , xn], given the vector of their local detector out-
puts, D =[ d1, . . . , dn], that is P(X|D), is maximized. It is
interesting to note that this method surpasses in accuracy
the performance of the manual landmarking in most of
the 29 landmarks considered.

5.5 Semi-supervised learning
Tong et al. [107] address the tedious and often imperfect
task of manual landmark labeling, and suggest a scheme
to partly automate it. In their method, a negligible per-
centage (e.g., 3%) of faces need to be hand labeled, while
the rest of the faces are automatically marked. This is real-
ized by propagating the landmarking information of the
few exemplars to the whole set. The learning is based on
the minimization of the pairwise pixel differences result-
ing in two error terms: The penalty in one term controls
the warping of each un-marked image toward all other
un-marked images, so that they become more alike irre-
spective of the content. The penalty in the other term
controls the warping of un-marked images towardmarked
images, and it is here that the physical meaning of the
content is imposed. The warping function itself can be a
global affine warp for the whole face, or a piecewise affine
warp to model a non-rigid transformation.

5.6 Multi-kernel SVM
Rapp et al. [108] start with the two major patches on the
face: one covering the eye region and the other roughly
the mouth region. For testing, pixels in the respective
regions to be part of a target landmark; texture data is
extracted using the multiresolution windows (progres-
sively smaller nested windows) that capture information
ranging from global to local view. The pyramidal infor-
mation is not concatenated; instead, every resolution level
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is fed into a different kernel and the convex combina-
tion of these kernels, each dedicated to a resolution level,
forms a multi-kernel SVM. The SVM is trained using
center-surround architecture, with the surround windows
forming the negative examples. Following the discovery
of landmark points, initially without any spatial relation-
ship among them, point distribution models are invoked
to reach to plausible shapes. The point distribution mod-
els are particularized to the eye-eyebrow pairs and to
the mouth. The shape alternatives are evaluated using
Gaussian mixture models (GMMs), so that the point com-
binations that possess the highest sum of SVM scores and
that fit best to the learned models are selected.

5.7 Extended template
Kozakaya et al. [98] solve the landmarking problem
using multiple voting of extended templates. An extended
template is defined for each point as a combination of
three parts, of a local descriptor at the sampling point, of
its directional vector pointing to the given landmark posi-
tion, and thirdly, of the local likelihood pattern around the
landmark positions. Sampling points are taken on a regu-
lar grid. Every local descriptor has N vectors pointing to
the N landmark points and the associated local likelihood
patterns, where local likelihoods are obtained from the
HOG vectors. In other words, local information resides in
the HOG features of the two, sampling and target land-
mark localities while the global shape information resides
in the joint treatment of the N landmarks. This scheme
attains robustness by two means, by the large number
of sample points around each target on the face and by
nonlinear fusion of the resulting pointing vectors. In the
fusion stage, pointing vectors are weighted inversely pro-
portional to the local appearance error and are combined
robustly with least median of the squares.
In summary, from the above articles and from the many

others reviewed but not accommodated in the text, we
have observed the leitmotiv of coordinating and exploiting
the local image evidence and the global shape information
at various levels of sophistication.

6 Experimental study and comparisons
6.1 Standard databases
Since standard databases are compulsory for experimental
assessment and performance comparisons of algorithms,
we briefly review the most relevant face databases suitable
for landmarking studies. Ground truth data, i.e., manu-
ally landmarked spatial positions of the landmark points
is much desired for referenced landmarking performance.
One way to obtain the ground-truth data is to employ
manual work or use Amazon mechanical turk (MTurk)
scheme to carry out this tedious task. Typically, several
folds of independent manual landmarking are run since
there is rarely full agreement between the markers, and

the ground truth positions are taken as the mean of these
folds (typically three). An interesting result is reported in
[106] where the automatic landmark detector proves to
be more consistent than three human annotators, espe-
cially for eyebrows and chin tip. We would like to note
that quality of the manual landmarking is critical since
higher consistency can boost performance. A case in point
is the annotation with Mechanical Turk where the quality
checks are loose; instead the average variance of trained
annotators tends to be much lower.
We present prominent ground-truthed face databases

according to two categories: databases under controlled
conditions and databases without any control and con-
ditioning. Controlled databases are collected within the
framework of a defined experimental setup using one
or more of the four control instructions: (i) differ-
ent facial expressions; (ii) occlusions; (iii) head rota-
tions; and (iv) illumination variations. For example, CMU
Multi-PIE database [109] is a good testbed for rota-
tions, and the Bosphorus database [110] is very rich
in the variety of facial action units and facial expres-
sions. Uncontrolled databases, on the other hand, are
collected without any directives given to the subjects,
and they are appropriately called sometimes “faces in
the wild”. Recently, databases culled from social network
sites such as google.com, flickr.com, facebook.com have
stirred a lot of interest, first, because they provide more
realistic and challenging databases, and second, due to
the huge potential of web sources in sharp contrast to
the laborious process of building controlled databases.
The downside is, of course, uncontrolled faces are
seldom labeled.

6.1.1 Controlled databases
Themore commonly used controlled face databases are as
follows:

Aleix-Robert face database (AR’98): AR face
database contains 4000 color images of 126 people
[111]. There are strict constraints on the pose of
subjects. Each subject has 13 different images,
including 4 facial expressions, 3 illumination
variations, 2 occlusions (wearing sun glasses and
scarf) and 4 occlusions on top of illumination changes
(e.g., wearing sun glasses and leftward illumination);
these images are captured in two sessions with a
two-week interval. Ding and Martinez[68] have
provided also 130 manually annotated landmarks on
the contour of faces and of the facial components.
The dataset is available on request at: http://www2.
ece.ohio-state.edu/~aleix/ARdatabase.
Extended M2VTS database (XM2VTS’99):
XM2VTS database contains video recordings of 295
people [112]. All recordings are collected in four

http://www2.ece.ohio-state.edu/~aleix/ARdatabase
http://www2.ece.ohio-state.edu/~aleix/ARdatabase
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sessions over a period of four months. Each
recording is captured while the subject is speaking or
rotating his head along yaw and pitch directions as
instructed. The collection consists of 2360 color
images, sound files and 3D face models. Note that
30% of the images are of poor quality due to motion
blur on faces or due to closed eyes and hair occlusion
on face. The data set is available on request at:
http://www.ee.surrey.ac.uk/CVSSP/xm2vtsdb.
Cohn-Kanade database (CK’00): The 97 subjects in
the first released portion of the Cohn-Kanade
AU-Coded Facial Expression Database [113] were
instructed by an experimenter to perform a series of
facial displays that include single action units and
combinations of action units. Totally, 486 video
sequences were recorded where each sequence
begins with a neutral expression and leads to the
apex of the target expression. The extended version
CK+’10 [114] contains 43 FACS coded action units
and 8 studied facial expressions as well as
spontaneous smile expressions. Faces in all
sequences are frontal and free of illumination
variations. In this release, the number of subjects is
further increased to 123, resulting in totally 593 video
sequences. For each sequence, a keyframe is
manually annotated, and in the remaining frames
annotated landmarks are automatically aligned to
face by the gradient descent AAM fitting algorithm
in [115]. The dataset is available for distribution at:
http://www.pitt.edu/~jeffcohn/CKandCK+.htm.
Bosphorus 3D face database (Bosp’08): This
database includes 2D and 3D facial images of 105
subjects imaged with a great variety of action units
(more than 35 per person), in addition to the six
universal motions and several occlusion instances.
The head poses of subjects can have mild rotation,
yaw and/or tilt, but otherwise faces are free of the
illumination artifacts [110]. Since faces are captured
both in 2D and in 3D with a structured light camera,
the two modalities are registered. The faces
annotated with 24 landmarks in addition to being
FACS (Facial Action Coding System) [116] coded,
therefore this database can be used as a testbed for
3D landmarking as well as for comparative study of
2D and 3D landmarking. Information on how to
obtain the dataset can be found at: http://bosphorus.
ee.boun.edu.tr.
CMUmulti-pose, illumination, and expression
face database (Multi-PIE’08): The CMU PIE face
database [109] contains over 750, 000 facial images of
337 people. People are imaged across 15 different
poses, under 19 different illumination conditions,
and with 6 different expressions. The number of
annotated landmarks, provided only for a small

subset of the dataset, varies between 39 and 68 since
all landmarks are not visible in profile faces. Details
on obtaining the dataset can be found at: http://www.
multipie.org.

While the collections described above are the more
important controlled databases for landmarking, we find
it worth mentioning the following: FRGC data set of
2D and 3D face images [26], FERET database con-
taining face rotations from frontal to left/right profiles
[117], MMI Facial Expression database [118], UHDB11
database containing rotations and light variations [119]
etc.

6.1.2 Uncontrolled databases
Uncontrolled face databases are become increasingly pop-
ular in face detection, recognition, pose estimation and
in landmarking studies as they are more realistic and
challenging. The following datasets are of interest:

BioID face database (BioID’01): BioID database is
one of the most popular benchmarks for landmarking
algorithms. The database consists of 1521 gray level
images [120], collected within the framework of
FGNet project, European Working Group on face
and gesture recognition. These images show the
frontal views of faces of 23 different subjects, which
are recorded during several sessions in uncontrolled
conditions using a web camera within an office
environment. Compared to the controlled databases,
this dataset features a larger variety of illumination
conditions, backgrounds and face sizes.
Faces are manually annotated on 20 landmarks for the
purposes of facial analysis and gesture recognition.
The data is publicly available at: http://www.bioid.
com/downloads/software/bioid-face-database.
Labeled face parts in the wild database
(LFPW’11): LFPW database contains 3000 face
images downloaded from the web [106]. Face images
are automatically detected by a commercial face
detection system. This database exhibits a large
variety in appearance, e.g., facial expressions, pose,
age, ethnicity, imaging and environmental conditions
etc., and also includes manipulated photos, cropped
faces from movie scenes with extreme make-up and
clothing. However, the face detector fails to detect
near- and in-profile faces, which therefore are
excluded from the database. There are 29 manually
landmarked points, and this number can go up to 35
whenever landmark points on the ear are visible.
Manual annotations are obtained by employing three
MTurk workers and the ground truth is determined
by averaging the three manual annotated locations. A
subset of the database is made available and divided

http://www.ee.surrey.ac.uk/CVSSP/xm2vtsdb
http://www.pitt.edu/~jeffcohn/CKandCK+.htm
http://bosphorus.ee.boun.edu.tr
http://bosphorus.ee.boun.edu.tr
http://www.multipie.org
http://www.multipie.org
http://www.bioid.com/downloads/software/bioid-face-database
http://www.bioid.com/downloads/software/bioid-face-database
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into two protocols, i.e., training and testing, at:
http://www.kbvt.com/LFPW/.
Annotated facial landmarks in the wild
(AFLW’11): In the same vein, AFLW, contains
real-world images collected with a large variety in
appearance from Flickr [121].
This database is an order of magnitude bigger and
more complex as compared to LFPW dataset in that
the number of images and with annotated face
landmarks totals to 25, 993 and it possesses a much
larger variety of face poses (the ratio of the
non-frontal faces is 66% including up to ±90° head
rotations). Annotated locations are provided for 21
landmark points in addition to the ellipses and
rectangles enclosing the face can be found. The
database is available on request at: http://lrs.icg.
tugraz.at/research/aflw.
Annotated faces in the wild (AFW’12): AFW
dataset [99] is another example of in-the-wild
collections and differs from the previous datasets
[106,121] in that it consist of 205 images including

more than one face per image, 468 faces in total. This
renders AFW relatively more challenging as it
contains images with highly cluttered background
and with large variations both in face scale and pose,
i.e., it is possible to observe frontal and non-frontal
faces or close up and distance shots in a single image.
Each face is labeled with a bounding box, 6 landmark
locations and head rotation angles. The database is
not available online yet, but more information can be
found at:http://www.ics.uci.edu/~xzhu/face.

Another potentially useful database is called labeled
faces in the wild (LFW’07) [122], which contains 13, 233
facial images downloaded from the web. There are 5749
distinct subjects, 1680 of which have more than one
image. Manual landmark annotations are not provided
for this dataset, though recently Dantone et al. [104] had
MTurk workers to annotate the locations of 10 landmark
points.
The main characteristics of the aforementioned data

sets are summarized in Table 4.

Table 4 Overview of databases for landmarking studies

Number Number Number of Control Reference
of of landmarks∗ Modality tag∗∗ works
subjects images

Controlled

AR’98 [111] 126 4000 130 color image e, i, o, f [31,123]

[28,108]

XM2VTS’99 [112] 295 2360 68 video sequence o, f, nf, b [59,80,81]

[41,47,85]

[31,83,124]

[28]

CK+’10 [114] 123 10,734 68 video sequence e, f [28,44,108]

Bosp’08 [110] 105 4666 22–24 color, 3D data e, o, f, nf, r [28,90]

Multi-PIE’08 [109] 337 750,000 39–68 color image e, i, f, nf, r [47,105,123]

[85,99,108]

Uncontrolled

BioID’01 [120] 23 1521 20 gray-scale image e, i, o, f, nf, s [81,82,105]

[47,70,83]

[97,106,124]

[28,31,108]

Uncontrolled

LFPW’11 [106] – 3000 29–35 color, e, i, o, f, nf, s [97]

gray-scale

AFLW’11 [121] – 25,993 21 color e, i, o, f, nf, r, s –

AFW’12 [99] 468 205 6 color e, i, o, f, nf, r, s –

*Number of landmarks can vary upon visibility, e.g., 68 landmarks points are not available for profile faces.
**Acronyms of the control tags are as follows: i: illumination changes, f: facial expression, o: occlusion, r: head rotation, f: frontal face, nf: near-frontal (up to 15° yaw), s:
scale change, b: blur. The rightmost column lists representative methods that have used the corresponding database.

http://www.kbvt.com/LFPW/
http://lrs.icg.tugraz.at/research/aflw
http://lrs.icg.tugraz.at/research/aflw
http://www.ics.uci.edu/~xzhu/face
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Table 5 Experimented face landmarking algorithms

Acronym Face detector #Landmarks Training set Face pose Processing time

and expression per image�

FFPD [44] Haar feature based 20 CK frontal faces Frontal; Neutral 0.85

GentleBoost classifier

AAM [125] Viola-Jones face 66 Multi-PIE, XM2VTS Near-frontal; 0.12 s

detector Expression

STASM [31] Viola-Jones and Rowley 76 XM2VTS, AR Near-frontal; 0.18 s

face detector [126] Expression

BORMAN [70] Viola-Jones face detector 22 FERET, MMI Near-frontal; 65 s

detector Expression

ZhuRamanan† [99] A mixture of tree 68 Multi-PIE Free of pose and 25 s

structured part models expression

Everingham [102] Viola-Jones face detector 9 Consumer images Near frontal 0.4 s

flandmark [103] Description NA 7 LFW Near frontal; 0.12 s

expression

�Average run time on BioID database with a CPU of 2.50GHz and 8GB RAM. Each image has a resolution of 384 × 286.
†Trained model with 1050 parts.

Figure 5 Results of the tested algorithms. The columns refer to different algorithms form left to right: FFPD, AAM, STASM, BORMAN,
ZhuRamanan, Everingham, and flandmark. The rows correspond to three different datasets: BioID (upper row), CK+ neutral (middle) and CK+
expressions (lower row).
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Figure 6 Experimental results on BioID database. Th is set to 0.1.
(a) Detection rates of the seven different methods on them7
landmark set; (b) detection rates of the five different methods (FFPD,
AAM, STASM, BORMAN, ZhuRamanan) on them17 landmark set.

6.2 Comparative assessment of landmarking methods
In this section, we present the performance of selected
landmarking algorithms comparatively as tested on three
diverse face databases. Among several candidates, we
selected seven landmarking algorithms as listed in Table 5.
The rationale of selection was that the algorithm was
deemed to be representative of the state of the art and

for which an open software was available. For a thorough
comparison, we ran the algorithms both on controlled
databases (CK+ and Bosphorus) and an uncontrolled
database (BioID). With the controlled databases, we aim
to study in detail the influence of two confounding fac-
tors: facial expression (CK+) and head pose (Bosphorus).
These tested databases have been particularly selected
since none of the algorithms listed in Table 5 have been
trained on these three databases. We believe that this
point is important for a fair evaluation of algorithms. Face
literature ranging from face recognition to pose estima-
tion reports that testing and training within the same
database, even with non-overlapping training and test-
ing subsets, can yield optimistic results as compared to
experiments where databases used for training and testing
are different. The experiments on the Bosphorus database
is limited, because the considered methods were trained
only with frontal and near-frontal faces, and this did not
permit us to make a fair comparison against head poses
on Bosphorus database.
The results of the tested algorithms are illustrated for

BioID and CK+ database in Figure 5. The detailed exper-
imental results are presented in the sequel.
Recall that there are two subsets of landmarks that are

often used for testing, and these are referred to as the m7
andm17 subsets:

• m7 set: This set consists of four eye, one nose and
two mouth landmarks. According to Figure 2, these
are 28, 30, 32, 34, 41, 46, and 52.

• m17 set: This set consists of four eyebrow, six eye,
three nose, and four mouth landmarks. These are
16, 19, 22, 25, 28, 30, 32, 34, 40, 41, 42, 46, 49, 52, 55, 63,
and 64 as illustrated in Figure 2.

6.3 Tests on BioID database
We first compared the seven different methods on the
BioID dataset, which is the most frequently used uncon-
trolled testbed for landmarking algorithms. Figure 6a
reports the performance results for the m7 set and
Figure 6b reports those for the m17 set. Since the two
methods, Everingham and flandmark are not designed to

Figure 7 Comparison of landmarking accuracy due of different landmark of types (BioID database).
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Figure 8 Experimental results on CK+ database. Th is set to 0.1.
(a) Detection rates of the seven different methods on them7
landmark set; (b) Detection rates of the five different methods (FFPD,
AAM, STASM, BORMAN, ZhuRamanan), on them17 landmark set.

output m17 landmarks, there are only five competitors
for the m17 set: FFPD, AAM, STASM, BORMAN, and
ZhuRamanan. We observe that only STASM qualifies and
has the best performance among all, reaching above 90%
detection rate at the 0.1 × IOD threshold. AAM can be
considered as a runner up form7 with a performance high
in the upper 80%. One would have expected, for exam-
ple, ZhuRamanan to achieve better performance over 90%
on this uncontrolled database. One explanation would be
that ZhuRamanan was trained with Multi-PIE database, a
controlled database, while BioID is uncontrolled.
Recall that the m17 set contains somewhat more dif-

ficult landmarks, such as mouth centers and four on
the eyebrows, while m7 contains the most fiducial ones.
Hence it is natural that the m17 curves are below
those of m7. In Figure 7, a more detailed compar-
ison based on landmark types is given. The figures
reported in the bar chart are the average of the left

and right landmarks, e.g., “eye centers” means the aver-
age of the eye center accuracies of the left and right
eye. We observed that STASM does overall quite well
while the other remaining four methods have variable
performance, some dramatically falling down on cer-
tain landmarks. We found out that FFPD and BOR-
MAN detect almost the middle of eyebrows instead of
the eyebrow outer corners. This is illustrated in the
first and forth columns of Figure 5. This explains the
significant lower performance of eyebrow outer corner
detection in Figure 7. However, even excluding eye-
brow outer corners and evaluating the performance
over the remaining 15 landmark points did not change
the performance: STASM, AAM, FFPD, BORMAN, and
ZhuRamanan.

6.4 Tests on CK+ database
We repeated the same experiments on the CK+ database,
a controlled database, where we compared the seven and
the five selected algorithms for m7 and m17 landmark
sets, respectively. Figure 8a gives the performance of the
seven algorithms on m7 and Figure 8b of the five algo-
rithms onm17. We notice that in this controlled database,
AAM and ZhuRamanan algorithms surpass the perfor-
mance of STASM, partly because the former two were
trained on similar (but not identical) databases. Following
the same reasoning, one can state that the FFPD algorithm
has a low performance for expression faces since it is only
trained with neutral faces. In Figure 8b, while the perfor-
mances of STASM, FFPD, and BORMAN are significantly
dropped, AAM and ZhuRamanan are much more robust
under different facial expressions. Figure 9 reveals perfor-
mance details per expression type. Again we see that AAM
and ZhuRamanan are the best performers, uniformly over
all expressions while STASM is a lagging runner-up.
A summary of experimental results as exceedance per-

centage of the 0.1 × IOD threshold is given on BioID
and CK+ databases in Table 6. It is difficult to reach
a fair and general conclusion on the methods because
their performance depends critically on their training
set. However, taking into account the computational effi-
ciency and overall performance (please refer to Tables 5
and 6, respectively), AAM and STASM seem to be most
promising for real time applications, while ZhuRamanan
is the method to pursue for offline applications. It is true
that the algorithm of ZhuRamanan is two orders of mag-
nitude slower than, for example the AAM method. On
the other hand, it is one of the best performing meth-
ods, especially in adverse conditions where most other
methods fail.

6.5 Tests on Bosphorus database
The Bosphorus database is rich in facial action units, in
expressions and poses. Since expressions were addressed
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Figure 9 Comparison of landmarking accuracy for different facial expressions (CK+ database).

in the CK+ experiments, we used a subset of the Bospho-
rus database with yaw movement, that is, faces with yaw
angles of 10°, 20°, 30°, 45°, and 90°. However, all algorithms
fail since their code uses the Viola-Jones detector, which
can only handle faces up to ±15° yaw angles. The only
surviving algorithm is ZhuRamanan algorithmwhich does
not explicitly depend upon the Viola-Jones face detector.
For this reason, and partly because one cannot express
performance figures for occluded landmarks, we lim-
ited ourselves to give illustrations of landmark detections
for various yaw angles. As can be seen from Figure 10,
ZhuRamanan can handle yaw rotations even if trained
on a different database, which is another merit of this
algorithm.

7 Conclusion
After surveying of face landmarking techniques, of recent
research trends and comparative performance figures, we
could draw the following conclusions:

• State-of-the-art: The successful methods are the
model-based ones, which integrate landmark
evidences from local patches with a global shape
constraint. The two-tier approaches are methods that
in the first tier extract fiducial landmarks, and in the
second tier predict and consolidate landmarks with
less informative features under the guidance of a face
shape model are more successful. The coordination

Table 6 The detection accuracies of the algorithms on
BioID and CK+ databases for the threshold set at 10% IOD
value

BioID database CK+ database

m7 m17 m7 m17

FFPD 65 60 83 69

AAM 84 79 95 92

STASM 93 94 95 83

BORMAN 53 50 79 66

ZhuRamanan 69 51 94 90

Everingham 59 NA 76 NA

flandmark 69 NA 86 NA

Average 70 66 85 78

of the local and global information, or first- and
second-tier operations is realized with a diversity of
methods ranging from Bayesian prediction to SVR. It
appears that the performance of algorithms in the last
five years have improved to a point where for the
m17, it is on a par with manual landmarking. In fact,
if we limit our observations to the published results in
the articles this signifies a few percentage points, like
2–3% of IOD. Outside them17 set, the accuracy
remains within 5–8%. However, our experiments on
the seven most prominent landmarking algorithms
have revealed that these results are not always
reproducible. More specifically, when testing and
training database pairs are different than the ones
mentioned in the article, there can be significant
deviations from the announced results.

• Landmarking under realistic and adverse
conditions: Face landmarking methods, being often
local in nature, can be made more robust to intrinsic
variability and acquisition conditions. It is possible to
state that illumination effects can be mostly
compensated by such preprocessing steps as LoG:
Laplacian of Gaussian filtering or histogram
equalization. Similarly, facial expressions and modest
pose variations can be made up for by a richer set of
training instances. The bane of landmarking remain
severe pose variations, i.e., beyond 20° yaw angles and
tilts, especially when self-occlusions occur. We
assume that in-plane rotations can be corrected after
detection of the face and of the eyes. It appears that
hybrid methods like appearance-assisted
geometry-based methods [9,58], 3D-assisted methods
[88,90] or a connected battery of local templates as in
[99] hold a good promise for success.

• Robustness and ground-truthed databases: The
performances of algorithms may differ strongly from
database to database. In fact, the across-database
performance of the early algorithms, when they were
trained on one database and tested on another
database, showed this weakness, incurring sharp
drops in performance. It is encouraging to witness
that recent algorithms, notably [47,97,99,106,108]
have robust performance across a number of
different databases. The experimental results, though
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Figure 10 Results of the ZhuRamanan algorithm on Bosphorus database. Sample landmarked faces for different yaw rotations (from left to
right): 10°, 20°, 30°, 45°, and 90°.

quite extensive in intent, has not yet revealed the
ultimate and most fair comparison, in that methods
have not been given chances to be trained on
arbitrary combinations of databases. In fact, for a fair
comparison, we suggest that methods should be
tested in the LODBO manner: Leave One Database
Out style, where algorithms are trained with all
databases except one and then tested on the excluded
one. Finally, this survey of methodological
comparisons and the landmark databases should be
extended to dynamic scenes to evaluate the
concomitant problem of landmark tracking
algorithms [35]. In fact, the landmark tracking
problem itself deserve a separate
review effort.

• Methods to be explored:We believe some of the
promising research paths in landmarking techniques
are the following: (i) Sparse dictionaries: The
paradigm of recognition under sparsity constraint
and building of discriminatory dictionaries seems one
viable method. The discriminative sparse dictionary
can be constructed per landmark [127,128] or
collectively as in [129]; (ii) Adaboost selected features
for multiview landmarking: Gabor or Haar wavelet
features selected via modified Adaboost scheme
where commonality and geometric configuration of
landmark appearances is exploited [101]; (iii)
Multiframe landmarking: Determination of landmark
positions exploits the information in subsequent
frames of a video, using, for example, a
spatio-temporal representations [130,131].

• Facial expression and gesture data mining:
Presently Internet contains at least 200, 000 face
videos [132], usually annotated with contextual
information, and this number is rapidly increasing.
This wealth of data provides an interesting
opportunity to explore human facial expressions, in a
sense, to data mine expressions across cultures,
genders, ages and contexts. This source of face data is
important because it has been pointed out that the
lack of naturalistic, spontaneous expression data was
a major roadblock in computer analysis of facial
expressions. It has been pointed out that role-playing

expressions, that is facial expressions acted out as
prompted by a controller differ in their dynamics and
variety as compared to spontaneous expression
of the same emotions. We believe robust
landmarking will be instrumental for tapping this
very rich web source of genuine human expressions.

In conclusion, facial landmarking has come a long way
from its meager beginning at the end of eighties. The
problem can be considered to be solved for near frontal
faces with neutral to mild expressions, and adequate res-
olution. It appears that some of the successful algorithms
can be run at video rates. On the other hand, for uncon-
trolled conditions involving arbitrary poses and expres-
sions, the problem cannot yet be considered as thoroughly
solved. Recent research results, however, give us a positive
outlook.

Endnote
aNasion is a distinctly depressed area directly between

the eyes, just superior to the bridge of the nose.
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