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Abstract

and noise-smoothing gradient vector flow

We propose a novel external force for active contours, which we call neighborhood-extending and noise-smoothing
gradient vector flow (NNGVF). The proposed NNGVF snake expresses the gradient vector flow (GVF) as a
convolution with a neighborhood-extending Laplacian operator augmented by a noise-smoothing mask. We find
that the NNGVF snake provides better segmentation than the GVF snake in terms of noise resistance, weak edge
preservation, and an enlarged capture range. The NNGVF snake accomplishes this with a reduced computational
cost while maintaining other desirable properties of the GVF snake, such as initialization insensitivity and good
convergences at concavities. We demonstrate the advantages of NNGVF on synthetic and real images.
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1. Introduction

During the last two decades, variational and PDE-based
methods for image segmentation and analysis have
become standard tools [1]. Active contours or snakes
which have deeply influenced variational approaches to
image segmentation since their introduction [2] are
curves that can conform to object boundaries or other
image features under the influence of internal and exter-
nal forces [2]. Generally, active contours can be categor-
ized as parametric snakes [2] or as geometric snakes
[3-5] according to their representation. Parametric snakes
require an explicit representation while geometric snakes
are defined implicitly. Here, we show how to construct
an effective external force for parametric active contour
models that can also be integrated into geometric active
contours using a level set formulation [4].

Since the external force defines the evolution of an
active contour, many external force models have been
proposed [5-14]. Among these, the gradient vector flow
(GVF) [10] has been most successful, as it provides a
large capture range and the ability to capture concavities
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by diffusing the gradient vectors of an edge map gener-
ated from the image. Although the GVF model has
proved effective and has widely been used in image seg-
mentation, it has some disadvantages, such as a high
computational cost, substantial noise sensitivity, and an
inability to capture and preserve weak edges. Various
improved models based on the GVF have been devel-
oped. For example, generalized gradient vector flow [11],
harmonic gradient vector flow [12], motion gradient vec-
tor flow [13] and generalized dynamic directional gradi-
ent vector flow [14], but none of these are able to resolve
all of the problems mentioned above.

We propose a novel external force for active models,
called neighborhood-extending and noise-smoothing
gradient vector flow (NNGVF), which incorporates a
neighborhood-extended Laplacian operator mask and
modifies the mask by adding a noise-smoothing mask.
The proposed NNGVF snake outperforms the GVF
snake in terms of computation, capture range, noise
resistance, and weak edge preserving ability, while main-
taining other desirable properties of the GVF snake such
as initialization insensitivity and good convergence at
concavities.
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2. Background

2.1. Snakes: active contours

A snake is an elastic curve c¢(s) = [x(s),y(s)], s € [0, 1]
which deforms to minimize the energy functional [2]:

Esnake = / ;(a|cs|2+ﬁ|css|2)+Eext [c(s)] ds, (1)

where ¢,(s) and c(s) are the first and second derivative
of ¢(s) with respect to s weighed by positive o and f3,
respectively. A typical external force for a gray-scale image
Lis Eoy = -|VGs*1|, where G, is the Gaussian kernel with
standard deviation o and where * denotes convolution.
Using standard variational methods, the Euler equation to
minimize Eg, is expressed

(XCSS(S) - ﬂcssss(s) — VEex = 0. )
This can be considered as a force balance equation:
Fint + Fext = 0, (3)

where Fi,; = 0ces(8)-Pegsss(s) and Fexe = -VEey. The
internal force Fj, forces the snake contour to be smooth
while the external force F.,, attracts the snake to the
desired image features.

2.2. GVF: gradient vector flow external force

Typical shortcomings of the external force using the
gradient vector of the edge map of the image include a
limited capture range and convergence to concavities
[10]. In order to solve these problems, Xu and Prince
[10] proposed the GVF model. The GVF is a vector
field v(x, y) = (u(x, ), v(x, y)) obtained by minimizing
the following energy functional [15]:

Eqvr = /f w(u? + uf + 12 +v§) + ]Vf‘z‘v— Vf|2dxdy, (4)

where f'is the edge map of an image, and variable 4 is
a regularization parameter. The functions u(x, y) and v
(%, y) are at least C* when Egyp is minimized. The Euler
equation to minimize Egyr is:

u = uVu — |Vf]* (u— Vf) =0, (5a)

v = uV2 — |Vf]* (v — Vf) = 0, (5b)

where V? is the Laplacian operator.

3. NNGVF snakes

3.1. Extended neighborhood

A simple 4-neighborhood approximation to the Lapla-
cian operator is:

e O e o PO
V=gt oy =f(ij+ 1) =2f (i) + (i — 1)+ f(i+ 1j) = 2 (i, ) + f(i = 1,j) (6)

=fGj+ 1) +fGj— 1) +f(i+ 1)) +f(i = 1.j) — 4f(i.5)
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which can be achieved by convolution of the image
with the mask:

1-41]. (7)

There are a number of alternative Laplacian templates
that may be used to extend the spatial extent of the
Laplacian operator to a larger neighborhood, such as 8-
neighborhood, 16-neighborhood, and 24-neighborhood
approximations. By calculating the Laplacian operator
over a larger neighborhood, more image information
will be used. The 24-neighborhood mask that approxi-
mates the Laplacian operator is

111 11
111 11

Gu=|11-2411]. (8)
111 11
111 11

3.2. Decomposition of the Laplacian operator

The particular Laplacian operator [16] can be expressed as
the difference between an all-pass (AP) filter and a “round
mean” (RM) filter, whose masks are shown in (10). The
Laplacian operator can thus be defined as proportional to

G4 = (AP24 — RMyy), )
00000 1/24 1/24 1/24 1/24 1/24
00000 1/24 1/24 1/24 1/24 1/24

APy = | 00100 |,RMyq = | 1/241/24 0 1/241/24 (10)
00000 1/24 1/24 1/24 1/24 1/24
00000 1/24 1/24 1/24 1/24 1/24

In this model, the AP filter is the 2D linear identity
(do-nothing) filter, while the RM filter is a 2D low-pass
filter. The difference yields high-frequency components
over a large area. Since the purpose of the AP filter is to
estimate the image at the center pixel, but is highly sen-
sitive to noise [17], it is advisable to replace the AP filter
with a better designed filter that can augment edge-pre-
servation and noise robustness.

3.3. The proposed NNGVF external force

Motivated by Wang [17], we utilize the 5 x 5 noise
smoothing (NS) filter shown in (12) instead of the AP
filter, yielding considerably enhanced NS. We dub this
model the NNGVF model. The NNGVF model is
defined as the equilibrium solution of the following vec-
tor partial differential equation:

vy = (v % NSyq — v RMyy) — |Vf|2(v— vf), (11)
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where @ is a regularization parameter and

0 0 1/12 0 0
0 0 1/12 0 0
NSy = | 1/121/12 1/3 1/12 1/12 (12)
0 0 1/12 0 0
0 0 1/12 0 0

In (11), NSy, and RM,, are 5 x 5 masks, which make
use of larger areas of image information. Since the con-
volution is used in (11), the computational cost of
NNGVF is greatly reduced relative to GVF.

4. Experimental results

Next, we demonstrate some desirable properties of the
NNGVF snake and compare the performances of the
NNGVF and GVF snakes. Since NNGVF is an improve-
ment over GVF, we focus primarily on some common
concerns encountered in snake-based image segmenta-
tion, which include (1) capture range enlargement and
U-shape convergence, (2) weak edge preservation, (3)
noise robustness, and (4) real images. The parameters for
all snakes in our experiments are o = 0.1, § = 0 and time
step 7 = 1. The weight u for the GVF and NNGVF snakes
is set to 0.15 in all experiments unless otherwise stated.

4.1. Capture range enlargement and U-shape
convergence

One of the advantages of the GVF snake is that its capture
range is large. However, by expanding the calculations of
the Laplacian operator to a larger neighborhood, more
image information is used, so the NNGVF snake capture a
larger range. Since the NNGVF snake computes the
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Laplacian operator using only a simple convolution, the
computation time for the NNGVF is less than for GVF. As
examples, we used the U-shape and room images, which
have also been employed in [10,11] to verify some general
properties of NNGVF snake. Figure 1 shows that the
NNGVF snake also can locate objects correctly from a dis-
tant initialization, can adhere to boundaries with gaps, and
converges to concavity. For the room image, the execution
time of NNGVF is 0.14 s while that of GVF is 0.42 s. For
the U-shape image, the execution time of NNGVF is 0.17
s while that of GVF is 0.54 s. We can see that compared
to the GVF snake, the NNGVF snake can capture a larger
range with less computation time.

4.2. Weak edge preserving

As pointed out in [18], imposing the Laplacian operator as
a smoothing constraint fields has strong isotropic smooth-
ing and poor edge preservation. Because of this, the GVF
does not effectively preserve weak edges. Figure 2 shows
the performance of the GVF and NNGVF snakes on a syn-
thetic image, where there is a gap neighbored by a line
segment. In Figure 2a, the GVF snake leaks and converges
incorrectly to the line segment; while in Figure 2b, the
NNGVF snake succeeds in preserving the weak edge.

4.3. Noise robustness

Since the Laplacian operator used in GVF is sensitive to
noise, the NNGVF also provides an advantage. The U-
shape image used in [10] is employed here to generate
noisy images. The first noisy image in Figure 3a is created
by adding “salt & pepper” noise of intensity 0.06; the sec-
ond one in Figure 3a by “speckle” noise with mean 0 and
variance 0.08; the third one in Figure 3a by adding

-

Figure 1 Results of snakes: (a) the GVF snake at iterations 60, (b) NNGVF snake at iterations 40, (c) GVF snake at iterations 90, and (d)
NNGVF snake at iterations 50. In each panel, the left is the evolution of snake and the right is the force field.
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(a) (b)
Figure 2 Convergences of snakes: (a) the GVF snake, (b) NNGVF snake. In each panel, the left is the evolution of snake and right is the
force field.

-

“Gaussian” noise of mean 0 and variance 0.01 and the 4.4. Real images

fourth one in Figure 3a is by adding “Rayleigh” noise of  Figure 4 shows segmentation results of the GVF and
mean 0 and variance 0.02. Figure 3 shows the results. It NNGVF snakes on two real medical images: one cardiac
can be seen that the GVF snake was noticeably attracted =~ CT image (the first row) and one lung CT image (the sec-
to noise, but the proposed NNGVF snake moved into the  ond row). In these two examples, the algorithm must cope
concavity successfully. with noise and weak edges. For the cardiac image, we aim

Figure 3 Results of snakes: (a) the noisy images with top to bottom salt and pepper noise, speckle noise, Gaussian noise and
Rayleigh noise, respectively; (b) convergences of GVF snakes, (c) convergences of NNGVF snakes.
A\
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Figure 4 Convergences of snakes: (a) the GVF snake at iterations 250, (b) NNGVF snake at iterations 120, (c) GVF snake at iterations
200, and (d) the NNGVF snake at iterations 100. In each panel, the left is the evolution of snake and the right is the force field.
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to extract the endocardium of the left ventricle, which is a
weak edge. One can see that the GVF snake cannot con-
vergence onto the desirable region on the image, whereas
the NNGVF snake performs well on the weak edges and
supplies good noise resistance. It can be seen that the
GVF force field leaks at weak edges and gets trapped by
the noise, while the NNGVF force field converges to the
endocardium correctly. For the lung image, we aim to
extract the parenchyma in the left and the cancer in the
right part. The GVF snake again leaks at weak edges and
gets trapped by the noise, whereas the NNGVF snake per-
forms well on weak edges and supplies good noise resis-
tance. Furthermore, in Figure 4b, d, the execution times of
NNGVF are 1.26 and 1.15 s, respectively; while in Figure
4a, c, the execution times of GVF are 3.92 and 3.78 s,
respectively.

5. Conclusion

We proposed a novel external force called NNGVF for
active contours. The NNGVF snake deploys the GVF as
a convolution operation using a neighborhood-extending
Laplacian mask, modifying the mask to improve noise-
smoothing, yields a good performance in terms of cap-
ture range, weak edge preservation, and noise robustness
while maintaining the other desirable properties of GVF,
such as initialization insensitivity and good convergence
at concavities. The experimental results showed that the
NNGVF snake outperforms the GVF snake in terms of
computation as well.
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