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Abstract

In this article, we propose a novel blind image deconvolution method developed within the Bayesian framework. We
concentrate on the restoration of blurred photographs taken by commercial cameras to show its effectiveness. The
proposed method is based on a non-convex lp quasi norm with 0 < p < 1 that is used for the image, and a total
variation (TV) based prior that is utilized for the blur. Bayesian inference is carried out by utilizing bounds for both the
image and blur priors using a majorization-minimization principle. Maximum a posteriori estimates of the unknown
image, blur and model parameters are calculated. Experimental results (i.e., restorations of more than 30 blurred
photographs) are presented to demonstrate the advantage of the proposed method compared to existing ones.

1 Introduction
Blind image deconvolution (BID) refers to the process of
estimating both the original image and the blur from the
degraded noisy image observation by using partial infor-
mation about the imaging system. Blind image decon-
volution algorithms represent a valuable tool that can
be used for improving image quality without requiring
complicated calibrations of the real-time image acquisi-
tion and processing system (i.e., medical imaging, video-
conferencing, space exploration, x-ray imaging, etc.).
The blind image deconvolution problem is encountered

in many different technical areas, such as astronomical
imaging, remote sensing, microscopy, medical imaging,
optics, super-resolution applications, and motion track-
ing applications among others (see, for example, [1-9]).
Astronomical imaging is one of the primary applications
of blind image deconvolution algorithms [1,2]. Ground
based imaging systems are subject to blurring due to
the rapidly changing index of refractions of the atmo-
sphere. Extraterrestrial observations of the Earth and the
planets are degraded by motion blur as a result of slow
camera shutter speeds relative to the rapid spacecraft
motion. Blind image deconvolution is used for improv-
ing the quality of the Poisson distributed film grain noise
present in the blurred X-rays, mammograms, and digital
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angiographic images. In such applications, many times,
the blurring is unavoidable because the medical imag-
ing systems limit the intensity (e.g., low X-ray intensity)
of the incident radiation in order to protect the patient’s
health [10]. In optics, blind image deconvolution is used
to restore the original image from the degradation intro-
duced by a microscope or any other optical instrument
[6,7]. The Hubble Space Telescope main mirror imper-
fections have provided an inordinate amount of images
for the digital image processing community [1]. As a
final example, in tracking applications the object being
tracked might be blurred due to its speed or the motion
of the camera. As a result, the track is lost with conven-
tional tracking approaches and the application of blind
restoration approaches can improve tracking results [9].
The standard formulation of the gray-scale image degra-

dation model is given in matrix-vector form by

y = Hx + n, (1)

where theN×1 vectors x, y, and n represent, respectively,
the original image, the available noisy and blurred image,
and the observation noise, and H represents the blurring
matrix created from the blur point spread function h. The
images are assumed to be of sizem× n = N , and they are
lexicographically ordered into N × 1 vectors. Given y, the
BID problem calls for finding estimates of x and H using
prior knowledge on them.
A number of methods have been proposed to address

BID (a recent literature review can be found in [11]). The
most recent methods are based on a Bayesian framework,
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and have addressed the removal of the camera motion
from blurred photographs [12-19]. In [12] the unknown
image and blur were estimated in a two step process. In
the first step the blur is estimated from the blurred photo-
graph by regularizing the image gradients with a mixture
of Gaussian distributions and by regularizing the blur
with a mixture of exponential distributions. In the second
step the image is estimated from the blurred photograph
and the estimated blur by utilizing the Richardson-Lucy
(RL) algorithm. Finally, the restored image is obtained
by performing the histogram equalization (to that of
the observed image) on the output of RL. A multi-scale
approach is utilized for the algorithm implementation.
The multi-scale approach consists of down-sampling the
blurred photograph to number of low resolution images,
and by utilizing the proposed algorithm iteratively to
obtain the blur estimate at each resolution.
Estimating camera motion has also been investigated

in [13,14], where the unknown image and blur were
estimated in a simultaneous fashion. Additionally, [14]
concentrated on synthetic experiments where the perfor-
mance of the algorithmwas evaluated by the improvement
in signal to noise ratio. Also, in [13,14] the regularization
parameters are not automatically estimated but rather
heuristically chosen by the user at each iteration in order
to yield an unknown image estimate with good visual
quality. The major disadvantage of the methods proposed
in [13,14] compared to the method proposed in [12] is the
lack of parameter estimation.
In this article, we extend our study in [20] by provid-

ing (1) a multi-scale based implementation of the algo-
rithm which improves the quality of the obtained restored
images, and (2) a complete comparison with many exist-
ing state of the art blind deconvolution methods. The
proposed Bayesian algorithm for BID utilizes a variant
of the non-convex lp quasi norm based prior as the
unknown image prior and the TV prior as the unknown
blur prior. Furthermore, we utilize the Bayesian frame-
work to provide the estimates for all model parameters.
Finally, we evaluate the performance of the proposed
algorithm and provide comparisons with [12-14,16,19]
by restoring blurred photographs taken by commercial
cameras.
This article is organized as follows. In Section 2 we

provide the proposed Bayesian modeling of the BID prob-
lem. The Bayesian inference is presented in Section 3.
In Section 4, we describe implementation details of the
proposed algorithm. Experimental results are provided in
Section 5 and conclusions are drawn in Section 6.

2 Bayesianmodeling
As already discussed in the previous section, the observa-
tion noise is modeled as a zero mean white Gaussian ran-

dom vector. Therefore, the observation model is defined
as

p(y|β , x,h) ∝ βN/2 exp
[
−β

2
‖ y − Hx ‖2

]
, (2)

where β is the precision of the multivariate Gaussian
distribution.
As the image prior we utilize a variant of the generalized

Gaussian distribution, given by

p(x|α) = 1
ZGG(α)

exp
[
−

∑
d∈D

αd
∑
i

|�d
i (x)|p

]
, (3)

where ZGG(α) is the partition function, 0 < p < 1,
α denotes the set {αd} and d ∈ D = {h, v, hh, vv, hv}.
�h

i (x) and �v
i (x) correspond to, respectively, the hori-

zontal and vertical first order differences, at pixel i, that
is, �h

i (x) = xi − xl(i) and �v
i (x) = xi − xa(i), where

l(i) and a(i) denote the nearest neighbors of i, to the
left and above, respectively. The operators�hh

i (x),�vv
i (x),

�hv
i (x) correspond to, respectively, horizontal, vertical

and horizontal-vertical second order differences, at pixel i.
In this study, similarly to [15,21], we utilize a non-

convex lp quasi norm with 0 < p < 1 since the derivatives
of blurry photographs are expected to be sparse. The dis-
tributions of the image derivatives often have heavier tails
that are better modeled with the non-convex lp quasi
norm prior with 0 < p < 1 compared to the convex priors
modeled with p = 1, 2.
For reducing the complexity of the problem we assume

that αh = αv = α and αhh = αvv = αhv = α/2.
Additionally, similarly to [22], the partition function is
approximated asZGG(α) ∝ α−λ1N/p, where λ1 is a positive
real number. We then simplify (3) accordingly to obtain
the following image prior

p(x|α) ∝ αλ1N/p exp
[
−α

∑
d∈D

21−o(d)

N∑
i=1

|�d
i (x)|p

]
,

(4)

where o(d) ∈ {1, 2} denotes the order of the difference
operator �d

i (x).
For the blur we utilize the total-variation prior given by

(see [23] for more details)

p(h|γ ) ∝ γ λ2N exp [−γTV(h)] , (5)

where λ2 is a positive real number and TV(h) is defined as

TV(h) =
∑
i

√
(�h

i (h))2 + (�v
i (h))2. (6)

In this study, we use flat improper hyperpriors on α, β
and γ , that is, we utilize

p(α) ∝ const, p(β) ∝ const, p(γ ) ∝ const.
(7)
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Note that with this choice of the hyperpriors, the observed
image y is made solely responsible for the estimation of
the image, blur and hyperparameters.

3 Bayesian inference
Bayesian inference on the unknown components of
the blind image deconvolution problem is based on
the estimation of the unknown posterior distribution
p(α,β , γ , x,h | y), given by

p(α,β , γ , x,h | y) = p(α,β , γ , x,h, y)
p(y)

. (8)

Assuming that x and h are independent, the joint dis-
tribution p(α,β , γ , x,h, y) can be factorized in terms of
the observation model p(y|β , x,h), the prior distributions
p(x|α) and p(h|γ ), and the hyperparameter distributions
p(α), p(β) and p(γ ), that is,

p(α,β , γ , x,h, y) = p(y|β , x,h)p(x|α)p(h|γ )p(α)p(β)p(γ ).
(9)

In this study, we adopt the maximum a posteriori
(MAP) approach to obtain a single point estimate, �̄ =
(ᾱ, β̄ , γ̄ , x̄, h̄), that maximizes p(α,β , γ , x,h | y) as follows,

�̄ = argmax�p(α,β , γ , x,h | y)

= min�

{
β

2
‖y − Hx‖2 + α

∑
d∈D

21−o(d)
∑
i

|�d
i (x)|p

+ γTV(h)− λ1N
p

logα−N
2
logβ − λ2N log γ

}
.

(10)

As can be seen from (10), obtaining the point estimate
that maximizes the posterior distribution p(α,β , γ , x,h |
y) is not straightforward since it requires the minimiza-
tion of a non-convex functional. Maximizing the posterior
distribution p(α,β , γ , x,h | y) by iteratively optimizing in
one variable while fixing the others (the so called iterated
conditional modes (ICM) method [24]) is equivalent to
the variational Bayesian based maximization (see [25] for
an example derivation) for the special case when all the
posterior distributions are assumed to be degenerate.
In this article, we apply the majorization-minimization

approach twice to bound the non-convex functional to be
minimized. We start by bounding the non-convex image
prior p(x|α) by the functional M1(α, x,Z), that is

p(x|α) ≥ const · M1(α, x,Z). (11)

The majorization-minimization approach has been uti-
lized in several approaches for image restoration [25,26].
The functional M1(α, x,Z) is derived by considering the

relationship between the weighted geometric and arith-
metic means, which is given by

tp/2z1−p/2 ≤ p
2
t +

(
1 − p

2

)
z, (12)

where t ≥ 0, z > 0, and 0 < p < 2. We first rewrite (12) as

tp/2 ≤ p
2
t + 2−p

p z
z1−p/2 . (13)

Using (13) we obtain

|�d
i (x)|p ≤ p

2
[�d

i (x)]2 + 2−p
p zd,i

z1−p/2
d,i

. (14)

Therefore, we have

p(x|α)=const · αλ1N/p exp
[
−α

∑
d∈D

21−o(d)
∑
i

|�d
i (x)|p

]

≥ const · αλ1N/p exp
[
−αp

2
∑
d∈D

21−o(d)

∑
i

[�d
i (x)]2 + 2−p

p zd,i

z1−p/2
d,i

⎤
⎦ .

(15)

Then (11) holds by setting

M1(α, x,Z) = αλ1N/p exp
[
−αp

2
∑
d∈D

21−o(d)

∑
i

[�d
i (x)]2 + 2−p

p zd,i

z1−p/2
d,i

⎤
⎦ ,

(16)

where Z is a matrix with elements zd,i, with d ∈
{h, v, hh, vv, hv} and i = 1, . . . ,N .
Similarly, the majorization-minimization criterion is

used to bound the blur prior p(h|γ ) utilizing the func-
tional M2(γ ,h,u). Let us define, for γ and any N-
dimensional vector u ∈ (R+)N , with components ui, i =
1, . . . ,N , the following functional

M2(γ ,h,u)=αλ2Nexp
[
−γ

2
∑
i

(�h
i (h))2 + (�v

i (h))2 + ui√ui

]
.

(17)

Using the inequality in (13) with p = 1, for t ≥ 0 and
z > 0, that is,

√
t ≤ √

z + 1
2
√
z
(t − z), (18)

we obtain

p(h|γ ) ≥ const · M2(γ ,h,u). (19)

The lower bounds of p(x|α) and p(h|γ ) defined above
lead to the following lower bound of the distribution
p(α,β , γ , x,h, y)
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Figure 1 Five different synthetic non-parametric motion blurs included in the window of size 21 × 21: (a) Blur 1: the support is 14 × 12,
(b) Blur 2: the support is 15 × 14, (c) Blur 3: the support is 14 × 14 (d) Blur 4: the support is 18 × 19, (e) Blur 5: the support is 18 × 15.

Figure 2 Example restorations from Table 1: 1st column represents four different blurred observations, 2nd column represents their
respective restorations obtained by the proposed algorithm, 3rd column represents their respective original images, 4th column
represents their respective blurs obtained by the proposed algorithm, 5th column represents their respective original blurs.
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Table 1 ISNRx̂ and ISNRĥ values, for the cameraman, satellite, shepp-logan, and airplane images degraded by five
different motion blurs (BSNR= 40dB)

Image Blur 1 Blur 2 Blur 3 Blur 4 Blur 5

ISNRx̂ ISNRĥ ISNRx̂ ISNRĥ ISNRx̂ ISNRĥ ISNRx̂ ISNRĥ ISNRx̂ ISNRĥ
cameraman 11.41 20.80 7.07 16.74 6.64 18.41 5.96 21.94 6.92 21.22

satellite 18.50 39.44 17.85 35.49 17.98 20.56 8.76 25.76 9.02 26.17

shepp-logan 32.49 47.34 24.27 45.23 31.16 20.51 22.99 49.00 22.36 49.76

airplane-color 8.10 17.55 9.34 15.67 7.99 15.78 8.50 20.84 4.83 18.32

p(α,β , γ , x,h, y)=p(α)p(β)p(γ )p(x|α)p(h|γ )p(y|β , x,h)

≥ const · p(α)p(β)p(γ )M1(α, x,V)M2

(γ ,h,u)p(y|β , x,h).

Therefore, a single point estimate that maximizes the
lower bound of the posterior distribution p(α,β , γ , x,h |
y) is found as follows

�̄ = min�

{
β

2
‖y − Hx‖2 + αp

2
∑
d∈D

21−o(d)

∑
i

[�d
i (x)]2 + 2−p

p zd,i

z1−p/2
d,i

+

+γ

2
∑
i

(�h
i (h))2 + (�v

i (h))2 + ui√ui

−λ1N
p

logα − N
2
logβ − λ2N log γ

}
.

(20)

As shown in (20), we are effectively replacing the origi-
nal non-convex minimization problem (10) by a series of
convex ones by utilizing the majorization-minimization
criteria and introducing the additional variational vectors
zd and u. By iteratively solving this convex optimiza-
tion problem in an alternating fashion with respect to all
unknowns, we obtain a sequence of point estimates and
derive the proposed algorithm as shown next.

3.1 Algorithm
Given α1,β1,γ 1, h1, u1i =[�h

i (h1)]2 +[�v
i (h1)]2, and z1d,i.

for k = 1, 2, . . . until a stopping criterion is met:

1. Calculate
xk =

[
βk(Hk)t(Hk) + αkp

∑
d

21−o(d)(�d)tWk
d(�

d)

]−1

βk(Hk)ty, (21)

(a) (b) (c)

(d) (e)
Figure 3 Example convergence curves for the finest scale of the proposed algorithm of the airplane-color restoration for five different
synthetic non-parametric motion blurs: (a) Blur 1. (b) Blur 2. (c) Blur 3. (d) Blur 4 and (e) Blur 5.
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(a) (b) (c) (d)
Figure 4 Four different original images from [27]: (a) Image 1. (b) Image 2. (c) Image 3. (d) Image 4.

whereWk
d is a diagonal matrix with entries

Wk
d(i, i) = (zkd,i)

p/2−1.
2. Calculate

hk+1 =
[
βk(Xk)t(Xk) + γ k

∑
d∈{h,v}

(�d)tUk(�d)

⎤
⎦

−1

βk(Xk)ty, (22)

where Uk is a diagonal matrix with entries
Uk(i, i) = (uki )−1/2.

3. For each d ∈ {h, v, hh, vv, hv} calculate
zk+1
d,i =[�d

i (x
k)]2 , (23)

4. Calculate

uk+1
i =[�h

i (h
k+1)]2 +[�v

i (h
k+1)]2 , (24)

5. Calculate

αk+1 = λ1N/p∑
d∈D 21−o(d)

∑
i |�d

i (xk)|p
, (25)

βk+1 = N
‖ y − Hk+1xk ‖2 , (26)

γ k+1 = λ2N
TV(hk+1)

, (27)

In the line of study presented in [21] the parameter p
is set to 4/5 (see [21] for a detailed discussion). Addition-
ally, the parameters λ1 and λ2 are needed to approximate
the partition functions for prior distributions p(x|α) and

p(h|γ ), respectively. Unfortunately, the approximations of
partition functions for the distributions p(x|α) and p(h|γ )

are necessary since its corresponding partition functions
are analytically intractable. We follow the approaches pro-
posed in [22,23], as already described in the previous
section, and determine the values of the parameters λ1
and λ2 experimentally. The values of the parameters p, λ1,
and λ2 are therefore set throughout all the experiments
that follow. The robustness of the proposed method will
be tested and evaluated under various blurring and noisy
conditions.
Note that if the blur h and the hyperparameters α,β , and

γ are assumed to be known, the proposed algorithm coin-
cides with the iteratively re-weighted least squares (IRLS)
algorithm presented in [21] (i.e., in this case for both algo-
rithms the image estimate is calculated as shown in (21)).
Note, that the lp quasi norm based prior is also utilized in
[15], and that this study simplifies the prior used in [21] by
omitting the second order derivatives.

4 Multi-scale implementation
The restoration results presented in [12], and more
recently in [27], showed the effectiveness of the multi-
scale approach in implementing blind image deconvolu-
tion algorithms. Furthermore, it is shown in [27] that the
multi-scale approach prevents the algorithm from con-
verging to the unit impulse. Alternatively, the authors
in [13,14] introduced heuristic re-weighting of the reg-
ularization parameters, at each iteration, to prevent the

(a) (b) (c) (d) (e) (f) (g) (h)
Figure 5 Eight different non-parametric motion blurs from [27]: (a) Blur 1. (b) Blur 2. (c) Blur 3. (d) Blur 4. (e) Blur 5. (f) Blur 6. (g) Blur 7 and
(h) Blur 8.
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Table 2 SSEx̂ and ERx̂ values, for the images and blurs defined in Figures 4 and 5, respectively

Blur Method Image 1 Image 2 Image 3 Image 4

SSEx̂ ERx̂ SSEx̂ ERx̂ SSEx̂ ERx̂ SSEx̂ ERx̂

Blur 1 ALG 29.91 0.91 43.93 0.91 24.75 0.78 43.73 1.46

Fergus et al. 39.73 1.21 59.71 1.24 39.48 1.25 44.33 1.48

Cho et al. 33.05 1.00 64.88 1.35 26.74 0.85 31.59 1.05

Shan et al. 49.79 1.51 100.70 2.09 45.83 1.45 53.76 1.79

Levin et al. 44.06 1.34 63.98 1.33 38.82 1.23 78.25 2.61

Blur 2 ALG 33.47 0.89 50.00 0.97 20.59 0.57 42.18 0.96

Fergus et al. 40.70 1.08 66.12 1.29 41.55 1.15 93.14 2.11

Cho et al. 34.13 0.91 53.42 1.04 30.18 0.83 102.24 2.32

Shan et al. 38.87 1.03 313.48 6.11 29.74 0.82 146.73 3.33

Levin et al. 48.50 1.29 74.05 1.44 46.73 1.29 128.82 2.92

Blur 3 ALG 27.45 1.06 19.38 0.45 16.96 0.92 17.78 1.16

Fergus et al. 30.05 1.16 55.75 1.31 21.36 1.16 19.63 1.29

Cho et al. 31.41 1.21 29.17 0.68 17.56 0.95 19.55 1.28

Shan et al. 28.12 1.08 53.48 1.25 19.20 1.04 16.33 1.07

Levin et al. 34.93 1.35 64.27 1.50 18.93 1.03 49.97 3.27

Blur 4 ALG 51.59 1.08 93.70 1.30 28.69 0.74 44.15 1.11

Fergus et al. 125.80 2.64 112.92 1.56 81.28 2.09 11658.02 294.05

Cho et al. 63.73 1.34 80.16 1.11 41.34 1.06 84.32 2.13

Shan et al. 100.43 2.11 178.28 2.47 134.77 3.46 429.12 10.82

Levin et al. 95.81 2.01 105.20 1.45 68.15 1.75 97.73 2.46

Blur 5 ALG 31.39 1.50 36.54 1.32 21.28 1.45 20.27 1.31

Fergus et al. 27.32 1.31 39.50 1.42 21.58 1.47 20.61 1.34

Cho et al. 38.59 1.85 33.25 1.20 23.30 1.59 16.00 1.04

Shan et al. 30.76 1.47 51.94 1.87 17.71 1.21 20.85 1.35

Levin et al. 26.50 1.27 35.98 1.29 17.43 1.19 34.01 2.20

Blur 6 ALG 20.72 1.32 23.71 1.17 18.61 1.88 23.66 1.32

Fergus et al. 44.02 2.80 84.12 4.16 33.29 3.36 46.83 2.62

Cho et al. 42.68 2.72 36.37 1.80 19.24 1.94 37.60 2.10

Shan et al. 71.33 4.54 199.59 9.87 28.90 2.91 58.19 3.25

Levin et al. 28.47 1.81 36.73 1.82 20.98 2.12 62.42 3.49

Blur 7 ALG 38.51 1.90 61.57 1.56 20.74 1.59 64.40 4.36

Fergus et al. 206.70 10.22 152.18 3.86 137.37 10.53 501.31 33.90

Cho et al. 43.46 2.15 48.99 1.24 26.81 2.06 31.38 2.12

Shan et al. 252.56 12.49 250.20 6.34 230.76 17.69 300.06 20.29

Levin et al. 45.91 2.27 64.07 1.62 27.05 2.07 97.97 6.63

Blur 8 ALG 30.07 1.16 44.67 1.10 33.23 1.43 77.69 3.37

Fergus et al. 49.42 1.91 89.65 2.20 51.95 2.24 781.10 33.88

Cho et al. 45.48 1.76 73.35 1.80 47.10 2.03 41.63 1.81

Shan et al. 158.72 6.14 106.66 2.62 202.18 8.73 287.21 12.46

Levin et al. 48.19 1.86 71.32 1.75 31.20 1.35 112.69 4.89

Entries of the table in bold denote the lowest values.
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Figure 6 Comparing the proposed algorithmwith the methods
proposed in [12,13,16,19] based on the restoration results from
Table 2: Percentage of cases for which the restored image yields
the smallest SSEx̂ values.

algorithms from converging to unrealistic blur estimates.
In our study, no heuristic adjustment of each parame-
ter is performed but instead we estimate the parameters
automatically within the Bayesian framework.
To avoid unrealistic blur estimates we adopt here a

multi-scale scheme similar in spirit to the one proposed
in [12]. Additionally, the proposed multi-scale approach

allows user to automatically initialize the proposed algo-
rithm without visually inspecting the observed blurred
image for determining the initial blur estimate. By analyz-
ing the observed blurred image it is possible to come up
with more informative initial blur estimates; however in
this study our focus is to develop a completely automated
algorithm once the blur support is provided.
The basic idea behind the multi-scale approach is to

down-sample the observed blurred image to a number of
low resolution images. At the lowest resolution the initial
blur estimate (i.e., h1) is set to the uniform blur and the
lowest resolution of the down-sampled observed image is
utilized as the initial image estimate (i.e., x1). After con-
vergence is achieved at each scale we up-sample the image
and the blur estimates to the next higher resolution and
re-run the proposed algorithm. This iterative process is
repeated until the algorithm converges and image and
blur estimates are obtained at their native resolutions. The
detailed pseudocode used in the implementation of our
multi-scale approach is shown in Appendix.

5 Experimental results
In this section, we present the experimental results
obtained by the use of the proposed algorithm. As the
performance metric, for the experiments in which the
original image is known, we utilize the improvement in
signal to noise ratio of the restored image (denoted as
ISNRx̂), which is defined as 10 log10

(‖x − y‖2/‖x − x̂‖2),

Figure 7 Comparing the cumulative histogram of the proposed algorithmwith the cumulative histogram of the methods proposed in
[12,13,16,19] based on the restoration results from Table 2 in terms of the ERx̂ comparison metric.
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where x, y and x̂ are the original, observed and estimated
images, respectively. Analogously, when the blur is known
we utilize the improvement in signal to noise ratio of
the restored blur (denoted as ISNRĥ), which is defined
as 10 log10

(
‖h − hδ‖2/‖h − ĥ‖2

)
, where h, hδ and ĥ are

the original blur, the unit impulse, and the estimated blur,
respectively.
In addition, after the blur support, greater than the

original one, is specified by the user, all unknown param-
eters and the estimates of the unknown image and blur

Figure 8 Example restorations from Table 2: 1st column represents eight different blurred observations, 2nd column represents their
respective original undistorted versions, 3rd column represents their respective restorations obtained by the proposed algorithm, 4th
column represents their respective restorations obtained by the method proposed in [12], 5th column represents their respective
original blurs, 6th column represents their respective restored blurs obtained by the proposed algorithm, 7th column represents their
respective restored blurs obtained by the method proposed in [12].
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are estimated automatically as described in Sections 3
and 4. Specifying the blur support for the unknown
blur is common with the state-of-the-art approaches
(see [12-14,16,19]).

Similarly to these approaches, the proposed algorithm
is very robust when the support of the blur is largely
overestimated by the user, as can be seen in all the exper-
iments that follow. Also, for the experiments in which

Figure 9 Example restorations from Table 2: 1st column represents eight different blurred observations, 2nd column represents their
respective original undistorted versions, 3rd column represents their respective restorations obtained by the proposed algorithm, 4th
column represents their respective restorations obtained by the method proposed in [16], 5th column represents their respective
original blurs, 6th column represents their respective restored blurs obtained by the proposed algorithm, 7th column represents their
respective restored blurs obtained by the method proposed in [16].
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blurred colored images are considered, only the lumi-
nance component of the observed image is restored while
the observed chroma components are used to obtain the
restored colored image once the original luminance is esti-
mated. Finally, the proposed algorithm is terminated when

the criterion ‖xk − xk−1‖/‖xk−1‖ < 10−3 is achieved
or the number of iterations reaches 100. After each iter-
ation, we enforce the following constraints on the blur
estimates: the positivity (blur elements less than zero
are set to zero), the support constraint (blur elements

Figure 10 Example restorations from Table 2: 1st column represents eight different blurred observations, 2nd column represents their
respective original undistorted versions, 3rd column represents their respective restorations obtained by the proposed algorithm, 4th
column represents their respective restorations obtained by the method proposed in [13], 5th column represents their respective
original blurs, 6th column represents their respective restored blurs obtained by the proposed algorithm, 7th column represents their
respective restored blurs obtained by the method proposed in [13].
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outside of the blur support estimate are set to zero),
and the energy conservation (sum of the blur elements
equals one).
In the first set of experiments, we evaluate the perfor-

mance of the proposed method on four standard images

(cameraman, satellite, shepp-logan phantom and airplane)
which are widely used in image restoration experiments.
The original images are then blurred with five different
motion blurs, which are shown in Figure 1. Realizations of
white Gaussian noise are added to the respective blurred

Figure 11 Example restorations from Table 2: 1st column represents eight different blurred observations, 2nd column represents their
respective original undistorted versions, 3rd column represents their respective restorations obtained by the proposed algorithm, 4th
column represents their respective restorations obtained by the method proposed in [19], 5th column represents their respective
original blurs, 6th column represents their respective restored blurs obtained by the proposed algorithm, 7th column represents their
respective restored blurs obtained by the method proposed in [19].
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Figure 12 Comparing the proposedmethod with the method proposed in [14]: 1st column represents three different blurred
observations, 2nd column represents their respective restorations obtained by the proposed algorithm, 3rd column represents their
respective restorations obtained by themethod proposed in [14], 4th column represents their respective blurs obtained by the proposed
algorithm, 5th column represents their respective blurs obtained by the method proposed in [14].

images in order to obtain degraded images with the
blurred signal to noise (BSNR) ratio of 40 dB. The blurred
signal to noise ratio is defined as follows

BSNR = 10 log10
Var(Hx)
Var(n)

, (28)

where Var(·) denotes the variance of the random
sequence. Example restorations obtained by the proposed
algorithm are shown in Figure 2. The restoration results
in terms of the previously defined ISNRx̂ and ISNRĥ,
metrics are shown in Table 1. It can be observed from
Table 1 that the proposed algorithm is very robust and it is
capable of restoring the blurred images very successfully
under various non-parametric motion blurs. Example
convergence curves obtained by the proposed algorithm
are shown in Figure 3.
In the second set of experiments, we evaluate the

performance of the proposed method on a set of 32
blurred test images taken by a commercial camera.
The test images are obtained from [27] and they are
available online (www.wisdom.weizmann.ac.il/∼levina/
papers/LevinEtalCVPR09Data.zip). The set of 32 blurred

images was obtained by taking the original images shown
in Figure 4 and by putting them side by side in order to
form a calibration image. Once the calibration image was
formed, a commercial camera was mounted on a tripod
and eight photos of the calibration image were obtained.
Note that during the acquisition process, the Z-axis
rotation handle was locked in while the X-axis and Y-axis
handles were loosened up in order to simulate in-plane
camera shake (see [27] for details; resulting blurs are
shown in Figure 5). In this study, we consider a com-
parison with the following methods [12,13,16,19]. For
convenience, from now on, the methods proposed in
[12,13,16], and the best method from [19] will be denoted,
respectively, as Fergus et al., Shan et al., Cho et al., and
Levin at al., while the proposed algorithm will be denoted
as ALG.
The restoration results, for the second set of experi-

ments where the original image and blur are both known,
in terms of Sum of Squared Errors (i.e., SSEx̂ = ‖x − x̂‖2)
and the SSE ratio test (i.e., ERx̂ = SSEx̂/SSEx̃) defined
in [27] are shown in Table 2. Note that x̃ is an image
estimation obtained from the non-blind method from
[27]. It can be observed from Table 2 that the proposed

www.wisdom.weizmann.ac.il/~levina/papers/LevinEtalCVPR09Data.zip
www.wisdom.weizmann.ac.il/~levina/papers/LevinEtalCVPR09Data.zip
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algorithm is very robust and that it is capable of restoring
blurred images taken by a commercial camera very suc-
cessfully under various non-parametric motion blurs. In
addition, the proposed algorithm is very competitive with
the state-of-the-art methods. As can be noted in Table 2,
the SSEx̂ metric for the proposed algorithm is respectively,
on the average, 427, 89, 6, and 21 smaller than the SSEx̂
metric for the Fergus at al., Shan at al., Cho at al., and
Levin et al. methods. Note that in Fergus’ method, the blur
estimation is performed separately from the image estima-
tion. In order to understand the differences in the restora-
tion results we provide some additional information. In
Figure 6 it can be seen that for 66% of tested cases the
proposed algorithm yields the smallest SSEx̂ values. In
addition, Figure 7 shows that for a number of test cases the
proposed algorithm is capable of achieving very small ERx̂
values. For example, there are 78% of the cases for which
the proposed algorithm has ERx̂ smaller than 1.5 while at
the same time (as the second best) there are 53% of the
test cases for which Cho et al. method achieves such con-
dition. Example restorations and comparison with Fergus
at al., Cho at al., Shan at al, and Levin at al. are shown,
respectively, in Figures 8, 9, 10, and 11.
In the third set of experiments, we compare the perfor-

mance of the proposedmethod with themethod proposed
in [14] by using the same set of blurred photographs as
presented in [14]. Note that in the method proposed in
[14] the parameters are not estimated but rather they are
manually tuned which results in the sequence of num-
bers for each parameter. As can be seen in Figure 12 the
restoration results obtained by the proposed algorithm
are very competitive with the method proposed in [14]. It
is clear from Figure 12 that the proposed algorithm pro-
duces much sharper restoration results with higher visual
quality. Since we lack the true knowledge of the scene, the
comparison metrics SSEx̂ and ERx̂ are undefined for this
experiment.

6 Conclusions
In this article, a novel blind image deconvolution algo-
rithm is presented. The proposed algorithm was devel-
oped within a Bayesian framework utilizing a non-convex
lp quasi norm based sparse prior on the image, and a
total-variation prior on the unknown blur. The proposed
algorithm is completely automated once the blur sup-
port is provided. Experimental results demonstrate that
using sparse priors and the proposed parameter estima-
tion, both the unknown image and blur can be estimated
with very high accuracy. Furthermore, numerous restora-
tions of photographs taken by commercial cameras are
provided to demonstrate the robustness and effectiveness
of the proposed approach. Finally, it was shown that the
performance of the proposed algorithm is competitive

to existing state-of-the-art blind image deconvolution
algorithms.

Appendix
Algorithm 1 is shown below.
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