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Abstract

This article presents a robust approach to tracking multiple vehicles with integration of multiple visual features. The
observation is modeled by democratic integration strategies according to the reliability of the information in the
current multi-visual features to adjust their weights. The appearance model is also embedded in a particle filter (PF)
tracking framework. Furthermore, we propose a new model updating algorithm based on the PF. In order to avoid
incorrect results caused by “model drift” introduced into the observation model, model updating should only be
controlled in a reliable manner, and the rate of updating is based on reliability. This article also presents the
experiments using a real video sequence to verify the proposed method.
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1. Introduction
With the rapid process of urbanization, the concept of
developing a “smart city” has gained prominence. As an
important part of this trend, Intelligent Transportation
Systems (ITS) will be critical for effective management
of urban traffic. Vehicle tracking under different traffic
scenarios is one of the key issues in ITS. Vehicle motion
parameters, such as location, velocity, orientation, and
acceleration, can be obtained to further recognize and
understand vehicular behavior. However, the challenges
of robust tracking come from uncertain and dynamic
conditions of speed, occlusion, deformation, illumination
variation, background clutter, real-time restriction, etc.
In order to handle these problems, great effort has been
made to devise robust tracking algorithms. In general,
the following three key problems should be solved in
tracking: (1) an effective framework to locate vehicles in
motion; (2) modeling observation of vehicles; and (3)
reliable updating of vehicle models.
An ideal locating framework should be able to predict

and update the motion state and observation model of
an object, and even track multiple objects under various
conditions. Probabilistic tracking, which is a process uti-
lizing posterior probability density of target states in a

Bayesian framework, is a highly effective approach. Kal-
man Filter (KF) [1], Hidden Markov Model [2], and Par-
ticle Filter (PF) [3-7] techniques have been used in
different tracking applications. PF recursively constructs
the posterior probability distribution function of the
state space using a Monte Carlo integral. A PF-based
tracking algorithm has the added advantage that any
visual feature can be used for the observation model.
Meanwhile, it has the ability to integrate multiple visual
features.
The observation model depicts similarity measurements

between a template region and the candidate region of a
vehicle, and plays an even critical role in visual tracking
associated with PF. Many visual features can be selected
for vehicle observation modeling, including color [8], edge
[3,9], feature descriptors [10], color-spatial features [11],
wavelets [12], etc. For instance, it is sensitive to the varia-
tion of a given illumination environment using a color-
based method when the illumination varies. An edge-
based method can avoid disturbances caused by illumina-
tion variances, but it is either time-consuming or limited
to a single shape model, and presents difficulties in achiev-
ing accurate real-time tracking. The algorithms based on
these methods have achieved good tracking performance,
but relying on a single visual feature is often inadequate
and unstable in some complex tracking scenarios. Various
complementary features can be combined to derive more
robust tracking results. It is our interest to employ
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multiple visual features under a robust tracking frame-
work. The advantage of this kind of method is that vehicle
information can complement other visual features. When
one visual feature fails, others can be used to maintain
tracking. However, the difficulty is how to design a good
strategy to integrate visual features reliably. Methods pro-
posed in [13-15] are based on the fixed weight integration.
If one visual feature with a fixed weight changes markedly,
the observation model after integration will be unreliable.
This leads to tracking drift away from the true location,
and even tracking failure. Spengler and Schiele [16] pro-
posed an algorithm with an adaptive integration strategy
using an EM algorithm to adjust the weight of each visual
feature online. However, this algorithm is based on a
matching algorithm under a local search. When partial or
complete occlusion occurs, tracking performance will ser-
iously decline.
How to update a vehicle model to deal with appear-

ance changes during tracking is very important for the
robustness of an algorithm. Many algorithms assume
the appearance of an object as being invariable during
tracking. The appearance model of an object is usually
extracted in the first frame image, and then the most
probable location of the object is found in the following
frame. This assumption is reasonable for short-term
tracking. However, for long-term tracking, appearance
changes in an object are inevitable. Jepson et al. [17]
proposed an adaptive texture-based model named WSL.
This model consists of three components to describe
object appearance changes, where W describes the rapid
changes in object appearance, S is used to characterize
the stability in an object whose change in appearance is
slow, and L is defined to depict abnormal variations in
object appearance. A Gaussian Mixture Model (GMM)
is constructed by these components, and the parameters
of GMM are updated through the EM algorithm online.
The proposed model has strong robustness to changes
in both illumination and shape. However, it fails to
track when an object is occluded by one with the same
visual features for even a moment. The reason is that
the same information presented by the occluding object
is added into the model of the occluded object during
updating. After occlusion, the appearance model cannot
correctly reflect the object. This phenomenon is called
“model drift”. A fixed number of pre-learned exemplars
are used as templates by Toyama and Blake [18]. The
problem with this method is that only a fixed number
of examples can be used as templates to model the
appearance of an object. Yang and Wu [19] introduced
a closed-form solution by “discriminative training” of a
generative model to alleviate model drift. They optimize
a convex combination of the generative and discrimina-
tive log likelihood functions to obtain the model. Avidan
[20] treated tracking as a classification problem. The

ensemble of weak classifiers is combined into a strong
classifier using AdaBoost. The strong classifier is then
used to label pixels in the next frame as either belonging
to the object or the background, creating a confidence
map. The new position of the object is found in the
peak of the map by using a mean shift. However, only
the color of each pixel is used to classify, and the classi-
fier needs to update background information around the
object. When two objects of a similar color are very
near each other, tracking will fail.
This article proposes a robust tracking approach with

an adaptive integration of multiple visual features for
vehicles. A color histogram and an edge orientation his-
togram (EOH) are selected as visual features to model
the observation of the vehicle and integrated by a demo-
cratic integration strategy proposed by Triesch and
Malsburg [21]. It is suitable for dynamic scenes due to
the adaptive adjustment of the weight of each visual fea-
ture with its reliability in the current frame. However,
deterministic integration is vulnerable to occlusion for a
few frames because the present iteration is initialized
according to the previous one. Thus, the observation
model is embedded in the PF tracking framework. In
order to improve the robustness of object representa-
tion, spatial information is incorporated into the obser-
vation model by dividing the object to be tracked into a
number of fragments. We then analyze the reason for
model drift during the model update process, and pro-
pose a new model updating method under a PF. In
order to avoid errors caused by model drift, the updat-
ing process should only be implemented in a reliable
manner, and the rate of updating can be controlled
according to this reliability. The posterior probability
density function of distribution of state vector and simi-
larity between the candidate and reference observation
of an object are used to define the valid measurement of
the reliability to model updating during tracking. Experi-
mental results in real traffic surveillance video sequences
show that our approach outperforms others in vehicle
tracking under complex conditions.
The remainder of this article is organized as follows.

The preprocessing before tracking is described in Sec-
tion 2. The state model for multiple vehicles is built in
Section 3. The adaptive and robust observation model is
presented in Section 4. The reliable model updating
strategy is introduced in Section 5. The PF-based track-
ing algorithm is completely summarized in Section 6.
The experimental results are given in Section 7, and
finally, the conclusion is given in Section 8.

2. Preprocessing before tracking
2.1. Background modeling
In surveillance video, it can be seen that the background
changes along with illumination, weather, and other
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conditions. So, we must process the surveillance video
scene first. Our previous research has given a self-adap-
tive modeling for real-time background modeling with
lower computational-complexity and higher accuracy
[22].
In the (n + 1)th frame, the gray value of point p can

be described as follows:

G(n + 1, p) = G(n, p) + L(n, p) + noise1(n, p) (1)

where G(n, p) is the pixel p’s gray value in the nth
frame, L(n, p) is the model to describe the change of
illumination with the change of time, and noise1(n, p) is
the Gaussian noise taking zero as the center. The gray
value of pixel p in the input image can be described as:

I(n, p) = G(n, p) + noise2(n, p) (2)

where noise2(n, p) is Gaussian noise taking zero as the
center. A comparison between (1) and (2) can easily
indicate that

I(n + 1, p) = G(n, p) + ω(n + 1, p) (3)

where ω(n+1, p) = L(n, p)+noise1(n, p)+noise2(n+1, p).
ω(n, p) is a Gaussian distribution. We use a mean value
to represent m(n, p) and s(n, p), respectively, and use a
variable to represent ω(n, p). In traffic surveillance
video, illumination and noise distribution change little
in a triangular region. Therefore, m(n, p) and s(n, p) are
independent of the position of pixel p. Then, a histo-
gram can be derived from the difference between {I(n+1,
p)} and {G(n, p)} in a triangular region. From this histo-
gram, the mean value of m(n) and s(n) can be estimated
by a self-adaptive filter based on a recursive least square
method.
Figure 1 gives the background in four video surveil-

lance scenes, where the regions masked in red are not
our monitoring driveways.

2.2. Detecting the ROI of a vehicle
The aim is to track vehicle targets in real time and as
robustly as possible. The first step is to detect the vehi-
cle targets automatically. The initial detection and the
tracking regions are set in the field of vision, respec-
tively, as shown in Figure 2.
Then, due to its success in vehicle detection of a real

surveillance scene, a fast-constrained Delaunay triangu-
lation (FCDT) algorithm [23] is used as follows:

(1) Extract contour information with a Canny filter
(2) Extract lines from image contours with a Hough
transformer
(3) Achieve a set of corners at both ends of the lines

(4) Initialize the CDT based on all constrained edges
(5) Insert all corner points in turn to reconstruct the
CDT
(6) Extract corner density, horizontal straight line
density, vertical straight line density, triangle density,
and average intensity of a vehicle region to construct
the feature vector
(7) Put the feature vector into SVM to determine the
ROI of the vehicle target

The detection results are shown in Figure 3. The blue
lines construct the Delaunay triangulation net. The red
rectangle bounding box is the ROI of the vehicle.

3. State modeling for multiple vehicles
According to the characteristics of vehicle motion, we
build the prediction equation of the motion state using the
second-order linear regression. The state model is built by
a centroid and the area of a rectangular bounding box:

S = (x, y, s)T (4)

where C = (x, y) and s are the centroid and area
bounding box, respectively.
The current state St is predicted by three parts: the

previous state St-1, the last state displacement St-1 - St-2,
and a zero-mean Gaussian stochastic component ωt

with covariance matrix ∑:{
St − St−1 = St−1 − St−2 + ωt

ωk ∼ N(0,�)
(5)

Hence, the model can be denoted as a Gaussian distri-
bution as follows:

p(St|St−1,St−2, ...,S1) ∼ N(St; 2St−1 − St−2,�) (6)

For multiple vehicles, we suppose that vehicles are
independent from each other and there are M vehicles
in a video scene. So, the model is regarded as

p(St(m)|St−1(m), ..., S1(m)) ∼ N(St(m); 2St−1(m) − St−2(m),�(m)) (7)

where St(m) is the state vector of the mth vehicle in
the kth frame.

4. Adaptive integration-based observation model
The observation models encode the visual information
of a vehicle’s appearance. Since a single visual feature
does not work in all cases, we utilize the Hue-Satura-
tion-Value (HSV) color histogram to capture the color
information of a vehicle, and an EOH to encode shape
information, indicating that O = {Ot; t Î N} is denoted
as the vehicle’s observation model.
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4.1. Color features
We obtain the color information of a vehicle by a two-
part color histogram based on the HSV color space. We
use the HSV color histogram because it decouples the
intensity from Hue and Saturation, and thus it is less
sensitive to illumination effects than a histogram from
the RGB color space. The exploitation of the spatial lay-
out of the color is also crucial due to the fact that differ-
ent vehicles usually have different colors.

In the non-Gaussian state space, state model S is
assumed to be a hidden Markov process, with an initial
distribution p(S0) and a transfer distribution p(St|St-1). A
color histogram-based observation model Oc

t is obtained

through the marginal distribution p(Oc
t |St) . Our color

observation model is composed of a 2D histogram based
on Hue and Saturation and a 1D histogram based on
value. Both histograms are normalized such that all bins
sum to one. We assign the same number of bins for

Figure 1 The results of background estimation. (a) Straight driveway. (b) Turning driveway. (c) Straight driveway in the evening. (d) Turning
driveway late at night.

Figure 2 Initial detection region and tracking region.
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each color component, i.e., Nh = Ns = Nv = 10, resulting
in an N = Nh × Ns+Nv = 110-dimensional HSV
histogram.
Assume that R(St) is the candidate region of vehicle at

time t, the kernel density estimation of color distribu-
tion is

k(n;St) = κ
∑

d∈R(St)
δ[bt(d) − n] (8)

where bt(d) Î {1, ..., N} is the index of color bins of a
pixel at position d; δ[·] is the delta function; � is a nor-

malized factor to subject to
∑N

n=1
k(n;St) = 1; position

d is a pixel in the candidate region R(St). Suppose that

K∗ � {k∗(n;S0)}n=1,...,N is the reference template and

K(St) � {k(n;St)}n=1,...,N is the candidate model, the

similarity measurement is defined based on Bhattachar-
yya coefficient:

ρc(K∗,K(St)) =

(
1 −

N∑
n=1

√
k∗(n;S0)k(n;St)

)1
2 (9)

Therefore, the color-based observation model is
denoted as follows:

p(Oc
t |St) ∝ e−λcρ

2
c (K

∗,K(St)) (10)

where lc is a factor determined by the variation of
color Gaussian distribution. Figure 4 shows the HSV
color histograms of two vehicles.

4.2. Shape features
We apply an EOH to describe shape information of a
vehicle. In order to detect the edge, the color image
must be converted to grayscale at first. The gradient at

pixel (x, y) in the image I can be computed by the Sobel
operator mask:

Gh(x, y) = Sobelh × I(x, y) (11)

Gv(x, y) = Sobelv × I(x, y) (12)

where Sobelh and Sobelv are horizontal and vertical
masks of the Sobel operator. The strength of an edge is
computed as follows:

G(x, y) =
√
G2
h(x, y) + G2

v (x, y) (13)

In order to suppress noise we threshold G(x, y) such
that

G′(x, y) =
{
G(x, y)

0
if G(x, y) ≥ T
otherwise

(14)

where the value of T was suggested to be set between
80 and 110 in [24]. The orientation of the edge is

θ(x, y) =

⎧⎪⎨
⎪⎩
arctan

(
Gv(x, y)
Gh(x, y)

)
if Gh(x, y) �= 0

π

2
if Gh(x, y) = 0

(15)

Then, the edges are divided into K bins. The value of
the kth bin is denoted as

ψk(x, y) =
{
G′(x, y)

0
if θ(x, y) ∈ bink

otherwise
(16)

Figure 5 shows the EOHs of the vehicles in Figure 4.
Levi and Weiss [25] introduced three extended fea-

tures based on EOH. However, direct use of these fea-
tures for vehicles has some limitations. First, the values
of both the ratio of edge strength of any two orienta-
tions and the dominant orientation feature have a large

Figure 3 Results of detecting the ROI of the vehicle targets using FCDT.
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range, but the values of the discriminative features dis-
tribute into a relatively small scope. It cannot reflect
characteristics of the majority of edges. Second, the
orientations of symmetrical edges should be comple-
mentary instead of equal, because of the symmetry of
two regions. Hence, we provide an enhanced feature set.
These features are used to improve robustness in

Section 4.3.

(1) Edge Strength Features in any two orientations j:

φi,j(ql) = arctan
(
Ei(ql) + ε

Ej(ql) + ε

)
(17)

Figure 4 HSV color histograms of vehicles.
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(2) Dominant orientation features �:

ϕi(ql) = arctan

⎛
⎜⎝ Ei(ql) + ε∑

j∈K
Ej(ql) + ε

⎞
⎟⎠ (18)

(3) Symmetry features ζ:

ζ1(R1,R2) = arctan

⎛
⎜⎝ Ei(R1) − Eπ(i)(R2) + ε∑

j∈K
(Ej(R1) + Ej(R2)) + ε

⎞
⎟⎠ (19)

ζ2(R1,R2) = arctan

⎛
⎜⎝ Ei(R1) + Eπ(i)(R2) + ε∑

j∈K
(Ej(R1) + Ej(R2)) + ε

⎞
⎟⎠ (20)

where R1 and R2 are regions of the same size and are
positioned at opposite sides of the symmetry axes. π(i) =
(Mζ - i)%Mζ; Mζ is interval numbers of [0, π] and Mζ =
6 in the experiment.
Suppose that E∗ � {e∗(n;S0)}n=1,...,K is the reference

template and E(St) � {e(n;St)}n=1,...,K is the candidate
model of EOH, the similarity measurement is defined as
follows:

ρe(E∗,E(St)) =

(
K∑
n=1

(e∗(n;S0)e(n;St))

)1
2 (21)

Therefore, the color-based observation model is
denoted as follows:

p(Oe
t |St) ∝ e−λeρ

2
e (E

∗,E(St)) (22)

where Oe is denoted as the observation model based
on an EOH, and le is a factor determined by the varia-
tion of the EOH distribution.

4.3. Improving robustness
Both visual features introduced above are based on his-
tograms, while all spatial information is discarded. This
may lead to false objects and local minima, and even
tracking failure under occlusion. On the other hand,
methods incorporating the spatial information are com-
putationally intensive. Motivated by the approaches pro-
posed in [26,27], spatial information is incorporated into
the observation model by dividing the vehicle to be
tracked into a number of fragments.
The reference observation of a vehicle is represented

by multiple fragments using multiple feature histograms
{ql}l = 1, ..., L instead of one global histogram, where L is
the number of fragments. Let the target candidate cen-
tered at position C be represented by {pl(C)}l = 1, ..., L,
where pl(C) is built in the same manner as the observa-
tion model. With this definition, we propose the similar-
ity function as follows:

ρ(C) = λ(1)ρ(1) + · · · + λ(L)ρ(L) =
L∑
l=1

λ(l)ρ(l) (23)

where l(l) describes the important weight of each frag-

ment and subjects to
∑L

l=1
λ(l) = 1 . The similarity func-

tion of each fragment is calculated by similarity
measurements of different features between pl(C) and ql.
During tracking, each fragment should play a role at dif-
ferent levels due to occlusions or other kinds of appear-
ance changes. A higher value l(l) means that the
tracking algorithm will refer more to the lth fragment.
Conversely, a fragment with little weight will count less
for the final tracking result. Here, we regard a fragment
as being more important if it is more similar with the
reference fragment, and at the same time less similar

Figure 5 EOHs of vehicles.
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with the background:

λ(l) = γ λ
(l)
fg + (1 − γ )λ(l)

bg (24)

where g tunes the proportion of λ
(l)
fg and λ

(l)
bg , that we

set it 0.8 in the following experiments. The background
region for each fragment is selected as the neighborhood
surrounding region with a double size excluding the
fragment. Accordingly, the feature histogram of the
background region is extracted. To measure the similar-
ity more properly, we use the metric proposed by Num-
miaro et al. [28]:

λ
(l)
fg =

1√
2πσ

exp

⎛
⎝−

(d(l)fg )
2

2σ 2

⎞
⎠ (25)

λ
(l)
bg = 1 − 1√

2πσ
exp

⎛
⎝−

(d(l)bg)
2

2σ 2

⎞
⎠ (26)

where d(l) is the distance of two feature histograms.
Many suggested methods [29-31] divide an object into

multiple non-overlapping fragments. Note that both the
number of fragments and their delineation have an
impact on tracking efficiency and accuracy. Although
the robustness increases with the number of fragments,
too many fragments mean an increased processing time
for each frame. Since the computation required for each
frame greatly depends on the size of each fragment,
which also needs to be restricted. Further, selecting very
small fragments will result in tracking drift, or some
information about the vehicle being discarded. So, a
trade-off is required. We prompt the use of some over-
lapping fragments. A set of non-overlapping horizontal
fragments and a set of non-overlapping vertical frag-
ments are overlapped. Horizontal and vertical fragments
are obtained by the dominant orientation features and
the symmetry feature introduced in Section 4.2,

respectively. When the size of the fragment is less than
8 × 8, it will be discarded. The satisfactory results of
fragmentation are shown in Figure 6.
Hence, the color and EOH-based observation with

fragmentation are denoted as follows:

p(Oc
t |St) ∝ e

−λc

L∑
l=1

(ρ(l)
c (K∗,K(St)))

2

(27)

p(Oe
t |St) ∝ e

−λe

L∑
l=1

(ρ(l)
e (E∗,E(St)))

2

(28)

4.4. Adaptive integration
We employ an adaptive integration of the multiple
visual features mentioned above, i.e., democratic integra-
tion. This integration strategy changes each feature’s
weight adaptively, according to its reliability in the pre-
vious frame, and improves the performance robustness
of the visual features.
The complete observation model is defined as

p(O|S) = αcp(Oc|S) + αep(Oe|S) (29)

where ac and ae are the weights of color histogram
and EOH features, respectively, and ac +ae = 1. The
final state vector can be obtained by the maximum like-
lihood estimation:

Ŝ = argmax
s

{p(O|S)} (30)

In order to verify the consistency between results by
integration of multiple visual features and by a single

feature, a quality function γ
f
t
is introduced and normal-

ized as follows:

γ̄
f
t =

γ
f
t∑
f γ

f
t

(31)

Figure 6 The satisfactory results of fragmentation.
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where f is a sign to indicate the type of feature, i.e.,
color or EOH. In general, the change between two adja-
cent frames is small, so the weight of a feature can be
predicted by

τ
α
f
t − α

f
t−1

�t
= γ̄

f
t−1 − α

f
t−1

(32)

where τ is a constant to determine the adaptive rate of
change of weight; Δt is a continuous time interval
between two frames. From Equation (32), the weight of
feature whose current weight is less than the value of

γ̄
f
t−1 may be increased. That is to say that this strategy

always increases the weight of a feature with a high
reliability and reduces the weight with a low reliability.

In fact, γ
f
t
can be treated as the feedback of the track-

ing result Ŝt . The weight of each visual feature is adap-
tively calculated by the normalized quality function in

the previous frame. In order to define γ
f
t
, we employ

the probabilistic distribution map in [31]: pf(xi, t) ∝pf(Zi|
Mf, F). Zi is the observation at pixel i; Mf, F is the fore-
ground model of feature f, pf(Zi|Mf, F) represents the
observation likelihood of the pixel i given the fore-
ground model Mf, F of feature f. The higher the pixel’s
value in pf(xi, t) is, the higher the likelihood of pixel i

belongs to the foreground. Hence, γ
f
t
is defined as the

ratio between the numbers of probabilistic pixels of
foreground and background in the probabilistic distribu-
tion map:

γ
f
t =

Sum(pf (xi, t), Ŝt)

Sum(pf (xi, t), Ŝ
′
t − Ŝt)

(33)

where the background is defined as the area between

the tracking box and a larger window Ŝ
′
t
, which shares

the same centroid of a bounding box. Sum(·,·) is the
sum of probabilistic pixels in the window W:

Sum(p(xi),W) =
∑
i

p(xi), xi ∈ W (34)

5. Model updating
Tracking is usually performed by searching for a loca-
tion in the image that is similar to a given reference
model. The updating of the observation model is imple-
mented by the new appearance and a previous observa-
tion model O1, ..., Ot to estimate to the observation
model Ot+1 in the next frame. Assume that the

appearance of a vehicle remains the same during track-
ing, the observation model in the coming frame is

Ot+1 = Ot (35)

It is reasonable for short-term tracking under some
conditions. However in reality, vehicles will change
appearance due to a variety of factors, such as turning,
scale, camera angle, etc. Therefore, this assumption will
eventually lead to some errors where the observation
model cannot correctly represent the actual appearance
of the vehicle. In order to obtain the latest and real
observation model of a vehicle, a simple model updating
strategy is proposed where the observation model in the
next frame is estimated by the state vector of tracking
results from the previous frame:

Ot+1 = p(S̄t) (36)

where S̄t is the state of the vehicle at time t, and

p(S̄t) is the observation estimation covered by S̄t .
This updating strategy can make the observation

model of a vehicle respond to appearance changes, but
it easily leads to model drift when the vehicle is
occluded by other vehicles or tracking errors, or the
rapid deviations from the ground-truth of vehicle obser-
vation present during the updating process. Thus, we
have created an adaptive update method to maintain
stability over observation changes:

Ot+1 = (1 − βt)Ot + βtp(S̄t) (37)

where bt is named as a forgetting factor, and it is used
to minimize the impact on the observation model by
specific frames and to control the speed of model updat-
ing. It is inevitable that some kinds of errors will be
made during tracking. There exist two kinds of errors:
errors caused by accumulation, and errors caused by
object distortion. The former is caused by the accumula-
tion of small errors from frequent updating; the latter is
usually a fatal error which is induced by maintaining the
same observation model during tracking. Therefore, the
key problems are when to update the model and the
rate of updating.
In a traffic scene, the changes of tracked vehicles

usually fall into two categories: change of a vehicle’s
scale and changes in appearance. Therefore, we define
two factors, h1(t) and h2(t), to determine the forgetting
factor bt at time t:

βt = kη1(t)η2(t) (38)

where k is a constant.
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First, when the appearance of a vehicle is obviously
changed by occlusion, illumination, etc., a significant dif-
ference appears between the reference observation and
the candidate one. At this time, updating should be
avoided. Thus, h1(t) is defined using the similarity mea-
surement between the candidate and the reference
observation:

η1(t) =
{

ρ(Ot, S̄t),
0,

ρ(Ot, S̄t) > Th1
otherwise

(39)

where r(·,·) is the similarity measurement between Ot

and S̄t . Th1 is empirical and is set to 0.8 in the experi-
ments. The bounding box scale changes due to the vehi-
cle’s motion trajectory. We employ the bounding box
scale recursion introduced by McKenna et al. [32]:

μt+1 = cμt + (1 − c)s′t+1 (40)

σ 2
t+1 = c(σ 2

t + (μt+1 − μt)2) + (1 − c)(s′t+1 − μt+1)2(41)

where μt+1 and σ 2
t+1 represent the new mean and the

new variance of the recursive bounding box scale,
respectively, and s′t+1 represents the newly detected

bounding box scale. C is used to control the forgotten
rate of the recursive bounding box scale of the vehicle.
If c is large, the history of the bounding box scale will
fade out slowly. This is good for a vehicle as a rigid
object with a fixed shape, and the history of the bound-
ing box scale will be kept through the large c. In the
experiments, c is set to 0.9. Here, h2(t) is defined
according to the new mean and variance:

η2(t) =
{
CV(t),
0,

0 < CV(t) < Th2
otherwise

(42)

where CV(t) = st/μt is the dispersion coefficient. Th1
is empirical and is set to 0.2 in the experiments.

6. Robust tracking under PF
According to the state and observation model, multi-vehi-
cle tracking is performed by running multiple-independent
PFs for every vehicle in the scene. Algorithm 1 summarizes
the fully automatic multi-vehicle tracking algorithm.

Algorithm 1. Robust Tracking under PF
Input: {It}t = 1, ..., T;

Output: {Ŝt(m)}t=1,...,T;m=1,...,M ;

1. Detect the ROI of vehicle;
2. Divide (0, 1] into N independent intervals, and N is

the number of initial particles, i.e.

(0, 1] =
(
0,

1
N

]
∪ · · · ∪

(
N − 1
N

, 1
]
, where N is the

number of initial particles;
3. For each initial particle set {Si}i = 1,2,...,N, which is

independent identical distribution, Si is denoted as

Si = U
((

i − 1
N

,
i
N

])
, where U((u, v]) is uniform distri-

bution in (u, v];
4. The vehicle is fragmented according to the set of

features generated by the EOH;
5. Compute the initial HSV color histogram of each

fragments of vehicle;
6. Compute the initial EOH histogram of each frag-

ments of vehicle;
7. Initialize the weights of integration of the color and

EOH features: ac = ae = 0.5;
8. For t = 1,2,...

For i = 1,...,N
Predict the state of the vehicle by Equation (5):

S̄
i
t = E(Sit) = 2Sit−1 − Sit−2

;

Compute the observation likelihood of color

p(Oc
t |Sit) by Equation (27)

Compute the observation likelihood of EOH

p(Oe
t |Sit) by Equation (28)

Generate the observation likelihood integrating

both color and EOH p(Ot|Sit) by Equation (29);

Update the importance weights:

ωi
t = ωi

t−1p(Ot|Sit) ;
End For

9. If it is necessary to do re-sampling

Obtain a new set of particles: {Sit, 1
/
N} ∼ {Sit,ωi

t} ;

End if
10. Generate the final state vector by Eqn. (30);

11. Compute the quality function γ
f
t
of color and

EOH by Equation (33), respectively;

12. Compute the integrated weight α
f
t
of color and

EOH by Equation (32), respectively;
13. According to probability density distribution of the

posterior of a vehicle’s state, compute the two factors h1
(t) and h2(t) by Equations (39) and (42), respectively;
14. Obtain the forgetting factor bt by Equation (38) to

update the vehicle’s observation model by Equation (37);
End For
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7. Experimental results
In this section, the proposed approach is used to track
vehicles on the road. In our experiments, the dataset is
composed of video sequences which were obtained from a

real surveillance camera. The camera is fixed on a pole in
highway and has a high-angle shot to one side of a drive-
way. All the experiments were carried out on 640 × 480
pixel sequences with an Intel® Core™ Duo CPU T7500

Figure 7 Vehicle tracked when moving straight forward in the evening.
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2.93 GHz PC. A real-life scenario, including partial occlu-
sion, large-area occlusion in a short time and scale varia-
tion, is considered. We verify the performance of our
approach via single and multiple vehicle target trackings.
In the experiments, the length of each video sequence is
100 frames, and the number of particles is set to 50.

7.1. Quantitative evaluation
We evaluate our algorithm quantitatively in order to
show the robustness for tracking. The evaluation com-
pares the position and scale estimation of our approach
with the ground-truth. Root mean squared error
(RMSE) is used as the performance metric. The RMSE

Figure 8 Vehicle tracked during turning in daytime.
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of a vehicle’s centroid and bounding box scale are
defined as follows:

RMSEcentroid(t) =

√√√√ 1
M

M∑
m=1

[(xt,m − x′
t)
2 + (yt,m − y′t)

2] (43)

RMSEscale(t) =

√√√√ 1
M

M∑
m=1

(st,m − s′t)2 (44)

Figure 9 Vehicle tracked during turning at night.
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where (x′
t, y

′
t) and s′t are the ground-truth centroid

and scale of a vehicle at time t, respectively. M is the
measurement time.

7.2. Tracking results and discussion
For comparison, we conducted our experiments with
four different types of trackers: a color-based PF tracker
(Tracker 1), an EOH-based PF tracker (Tracker 2), a PF
tracker based on fixed-weight multiple visual features
(Tracker 3), and our approach. The former three track-
ers had no adaptive updating during tracking, and the
weights of color histogram and EOH features are 0.5 in
Tracker 3, respectively.

In Figure 7, the vehicle traveled on a straight drive-
way. The tracking results of the four trackers are shown
in Figure 7a-d. From Figure 7e, f, we can see that the
RMSEs of a vehicle’s centroid and bounding box scale
of the four trackers are all maintained at a lower level,
and the four trackers provide nearly similar tracking
results. Figure 7g gives the curves of weights of different
visual features. It can be seen that the features are in a
relatively stable state with no dramatic change through-
out the video sequence because of no obvious change of
illumination or translation, rotation, etc. So, the tracking
results of Track 3 and our approach are more similar to
each other.

Figure 10 Two similarly colored vehicles when slight occlusion occurs in daytime.

Sheng et al. EURASIP Journal on Image and Video Processing 2012, 2012:2
http://jivp.eurasipjournals.com/content/2012/1/2

Page 14 of 19



Figure 8 shows the vehicle turning. Figure 8a-d pre-
sents the tracking results of the four trackers and we
can see from Figure 8e, f that the RMSE of our
approach is lower than that of the other three track-
ers, especially obvious when the vehicle turns between
frames 30 and 40. In Figure 8g, due to translation and
rotation, the EOH of the vehicle has a greater change.
The decline of the EOH weight makes the color histo-
gram more reliable. From the comparison of the
RMSEs of Tracker 3 and our approach in Figure 8e, f,
we can see that the RMSEs of a vehicle’s centroid are
provided more similar tracking results than the

bounding box scale because of the advantage of multi-
ple visual features integration for vehicles.
The third sequence is captured at night, as shown in

Figure 9. The color of the vehicle and the background
are very similar, but the edge feature is obvious due to
the streetlight and the headlight of the rear vehicle.
Figure 9a-d is still the tracking results of four trackers.
From Figure 9e, f, we can see that the RMSEs of all
trackers increase significantly, but our approach is still
more accurate than the other methods. Furthermore,
the accuracy of Tracker 3 decreases much faster than
our approach, caused by the fixed weights of multiple

Figure 11 Vehicles tracked when partial occlusion occurs in daytime.

Sheng et al. EURASIP Journal on Image and Video Processing 2012, 2012:2
http://jivp.eurasipjournals.com/content/2012/1/2

Page 15 of 19



visual features. In Figure 9g, the changes of weight
show that the color histogram is unreliable with low
weight because the color of the vehicle shows weak
discrimination from the background. Instead, the EOH
feature plays a dominant role at this moment.
When vehicles with very similar colors appear close

to each other, tracking algorithms using color, EOH,
or fixed-weight multiple visual features fail. As shown
in Figure 10, the precision of tracking with fixed-
weight multiple visual features is slightly better than
color-based tracking, but the deviation caused by color
similarity is just prolonged and cannot be prevented
completely. And the adaptive integration of multiple

features makes a contribution to distinguish the vehi-
cles to get a robust tracking result. Partial occlusion
between vehicles, even large area occlusion, is the key
issue to influence robustness and tracking accuracy.
Figures 11, 12, 13, and 14 show the cases of occur-
rence of occlusion. As illustrated in Figures 11 and 12,
partial and large area occlusion appear and last for
about 50 frames, respectively. While the proposed
approach incorporates spatial information, i.e., frag-
mentation, the proposed approach can track vehicles
with non-occluded fragments. Since some fragments
were occluded, the observation model of these regions
is unreliable and the forgetting factor is determined to

Figure 12 Vehicles tracked when large-area occlusion occurs in daytime.
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be equal to 0. Therefore, the observation model is
stopped from updating. When occlusion is finished,
the proposed tracker can still give continuous tracking.
Figure 14 shows vehicles traveling under occlusion at
night. As Figure 14a-c demonstrates, the former three
trackers may lead to inaccurate results due to the
ambiguities inherent in the processing of the video
sequence when considering single modalities. There
are objects in the background which have a similar
appearance to the vehicle. Therefore, soon after the
initialization, the color-based tracking framework starts
on the vehicle and gradually deviates from the ground-
truth.

8. Conclusions
This article presents a robust tracking approach for
multiple vehicles using adaptive integration of multiple
visual features. Color histograms and EOHs are selected
as visual features to model the observation of vehicles
and integrated by a democratic integration strategy, and
the observation model is embedded in a PF tracking fra-
mework. The spatial information is incorporated into
the observation model to improve the robustness of
object representation by dividing the object to be
tracked into a number of fragments. Further, in order to
avoid errors caused by model drift, the updating process
should only be implemented in a reliable manner, and

Figure 13 More vehicles tracked under occlusion in the evening.
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the rate of updating can be controlled according to this
reliability. The posterior probability density function of
distribution of state vector and similarity between the
candidate and reference observation of an object are
used to define the valid measurement of reliability to
model updating during tracking. Experimental results in
real traffic surveillance video sequences show that our
approach outperforms others in vehicle tracking under
complex conditions.
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