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Abstract

It is well known that discrete wavelet transform (DWT) is sensitive to shift, which means a slight shift of feature in the
original signal may cause unpredictable changes in the analysis subbands. Some modified versions of DWT can
reduce the shift sensitivity, however, they are all redundant. In this article, we shows the shift sensitivity is caused by
the aliasing terms formed in the downsampling operation during analysis process. A novel scheme for the design of
wavelet is proposed to reduce the effect of aliasing terms as much as possible in the general framework of DWT. A few
of biorthogonal wavelets have been designed and applied in the simulation examples. The results of examples
demonstrate the efficiency of the designed wavelets in the term of shift insensitivity and nonredundancy.
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Introduction
Discrete wavelet transform (DWT) has been applied in
many fields as a tool of signal processing, e.g., signal de-
noising, feature extraction, pattern recognition and image
registration [1-3]. However, DWT is shift-sensitive [4]. A
slight shift of feature in the original signals or images may
generate unpredictable changes in its DWT analysis sub-
bands. For example, for level-d low-low (LL) subbands
of a two-dimensional figure, only the features that con-
sist of more than 22d pixels in the original images can be
insensitive to shift in image registration [5]. Some new
wavelets and modified calculation frameworks of DWT
have been presented to reduce the shift sensitivity. How-
ever, all these DWTs become redundant, i.e., they are no
longer critically-sampled [6-10]. For example, Kingsbury’s
dual tree complex wavelet transform (DTCWT) and
Selesnick’s double-density wavelet transform (DDWT) are
all redundant. A pair of filter banks is employed in Kings-
bury’s DTCWT, which leads to a constant redundancy
rate of 2 : 1 for 1-D signals and 2m : 1 for m-dimensional
signals. The other modified DWTs, such as DDWT, also
cannot be critically-sampled. The lack of directionality
is other main drawback of DWTs. Many modified trans-
formations have been presented to improve directional
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selectivity, such as curvelet and contourlet transforma-
tions [11-13]. These multiresolution representations are
much more redundant.
The shift sensitivity of DWT can be expressed in

many ways. In this article, it is expressed in the fre-
quency domain by the aliasing terms formed in down-
sampling operation during analysis process (see Figure 1).
According to this point, a new method for the design
of wavelet is proposed to reduce the effect of aliasing
terms. Some extra requirements are introduced besides
the basic requirements (i.e., the perfect reconstruction
requirement) on wavelets. In the design, we focus on the
design of biorthogonal wavelets because they are symmet-
rical (or linear-phase) and have been used in many fields.
The general calculation framework (Figure 1) is remained
to keep DWT non-redundant. A few of biorthogonal
wavelets have been designed, and applied in some sim-
ulation examples. The results of the design examples
illustrate the shift sensitivity has been reduced efficiently.

The shift sensitivity of DWT
Consider the calculation framework of DWT using
biorthogonal wavelet in Figure 1, in which H0 and H̃0(z)
denote the analysis and synthesis filters in the low-pass
branch. H0 and H̃0(z) can be designed to be symmetrical
to ensure linear-phase. H̃0(z) denotes the complex conju-
gate of H̃0(z).H1 and H̃1(z) are the corresponding filters in
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Figure 1 DWT framework: analysis and synthesis using the biorthogonal wavelet.

the high-pass branch. Let X(z) denote the original signal.
The analysis subbands become
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where “↓ 2” denotes the downsampling operation by the
factor of “2”. The synthesis signal Y (z) becomes

Y (z) =H̃0(z)[Xl(z) ↑ 2]+H̃1(z)[Xh(z) ↑ 2]

=1
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where “↑ 2” denotes the upsampling process by the fac-
tor of “2”. The no-aliasing condition and no-distortion
condition require

H̃0(z)H0(−z) + H̃1(z)H1(−z) = 0.

H̃0(z)H0(z) + H̃1(z)H1(z) = 2zk , k ∈ Z.
(3)

The no-aliasing and no-distortion conditions ensure
that the aliasing terms in Equation (1), 1
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2 ), will be eliminated in synthesis

process, and the original signal can be perfectly recon-
structed. However, the wavelet representation in the
analysis output, Xl(z) and Xh(z), become shift-sensitive

because of the aliasing terms. The shift sensitivity can be
shown in many ways. Here, it is shown in the following
way. Suppose X(z) is delayed by one sample and denoted
as X′(z), i.e., X′(z) = z−1X(z), the low-pass output X′

l(z)
becomes
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A shift-invariant transform F(·) requires that
F(zk1X[ z] ) = zk2F(X[ z] ), where k1, k2 ∈ R are the con-
stants. Therefore, the aliasing terms 1

2X(−z
1
2 )H0(−z

1
2 )

brings out the shift sensitivity in the low-pass analy-
sis output. The shift sensitivity is very troublesome in
many applications. For example, the original signal x(n)

in Figure 2a consists of five pulses (the pulse width is
2-pixel) at different positions (the period is 101-pixels)
with the same magnitudes. It equals to a pulse and
its shifted versions. The low-pass output of first level
DWT are shown in Figure 2b using biorthogonal wavelet
“bior3.9” (the analysis and synthesis filters are 20- and
4-tap, respectively). It shows analysis outputs of these
pulses becomes quite different. Generally, the low-pass
subbands are more insensitive to shift than the high-
pass subbands. Even though for the low-pass subbands,
the shift sensitivity is still unacceptable in some appli-
cations. With wavelet analysis proceeding, the effect of
shift sensitivity may becomes more and more serious. In
the following section, we will propose a new scheme to
reduce the effect of aliasing terms, and thus reduce shift
sensitivity.

The nearly shift-invariant and critically-sampled
DWT
In order to avoid redundancy, the framework of gen-
eral DWT, Figure 1, is remained in the proposed DWT
except the wavelet filters are designed to satisfy some extra
requirements.
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Figure 2 The original signal and the analysis output of first level DWT using wavelet “bior3.9”. (a) The original signal, (b) the low-pass
subband.

The extra requirements on wavelets
In order to reduce the effect of aliasing terms in the low-
pass analysis output, H0(z) in Figure 1 is designed to be
expressed as (4) and satisfy (5).

H0(z) = P(z)
[
F(z2) + z−1G(z2)

]
(4)

where P(z) is a low-pass FIR filter; F(·) and G(·) denotes
two FIR filters satisfy

F(z) ≈ z−1/2G(z) (5)

Table 1 The filter bank (Q(z) and ˜Q(z) are 9- and 3-tap,
k = 11, k̃ = 1)
n F n G

−1 2 −1.620457579834970 −2 2 0.183914612820184

0 1 −14.856833358190139 −1 1 6.521032167975675

0 20.173189134221989

n H0 n ˜H0

−10 9 0.000359208228164 −1 2 −0.334521746568079

−9 8 0.000786334299193 0 1 0.732293701891982

−8 7 −0.002321674814646

−7 6 −0.003720186105568

−6 5 0.017033423809928

−5 4 0.031465370920245

−4 3 −0.020504827773706

−3 2 0.006960043873026

−2 1 0.373526016710723

−1 0 0.853417930379625

Consequently,
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Table 2 The filter bank (Q(z) and ˜Q(z) are 19- and 3-tap,
k = k̃ = 1)
n F n G

−4 5 0.036875746448608 −4 4 0.011220065157315

−3 4 −0.023135612111302 −3 3 0.033448583455217

−2 3 0.117860494348029 −2 2 0.104853324526458

−1 2 0.087646010428631 −1 1 0.302593640841847

0 1 0.710918453811750 0 0.927449000805610

n H0 n ˜H0

−10 9 0.036875746448607 −2 1 −0.445094807808344

−9 8 0.048095811605923 −1 0 0.580522378115357

−8 7 −0.011915546953987

−7 6 0.010312971343915

−6 5 0.151309077803246

−5 4 0.222713818874487

−4 3 0.192499334955090

−3 2 0.390239651270478

−2 1 1.013512094653598

−1 0 1.638367454617361
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Figure 3 The magnitude responds of filters F(z) and G(z) for the filters in Table 2 and “bior3.9”. (a) cos(ω/2)f ′(cosω), g(cosω),
| cos(ω/2)f ′(cosω) + g(cosω)| and | cos(ω/2)f ′(cosω) − g(cosω)| for the filters in Table 2, (b) the corresponding curves for wavelet “bior3.9”.
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Namely, the effect of aliasing terms in the low-pass
subband has been approximately removed. The design
scheme of wavelets that satisfy these extra requirements
will be given in the next. First of all, it is necessary to
review the design of biorthogonal wavelet.

The design of biorthogonal wavelet
Consider H0(z) and H̃0(z) in Figure 1. In order to obtain
smooth wavelet bases, it is always imposed certain num-
bers of zeros at z = −1 for H0(z) and H̃0(z), i.e., the filter
has certain numbers of vanishing moments [14]. Suppose
H0(z) is expressed as H0(z) = 1√

2
( 1+z−1

2 )kQ(z), where
k ∈ Z

+, Q(z) is an odd symmetrical filters of (2l + 1)-
tap (if Q(z) is a symmetric filter of (2l + 2)-tap, it can
be expressed as Q(z) = 1+z−1

2 Q′(z) with Q′(z) a symmet-
ric filter of (2l + 1)-tap). Similarly, H̃0(z) is expressed as
H̃0(z) = 1√

2
( 1+z−1

2 )k̃ Q̃(z), where Q̃(z) is is a symmetric
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Figure 4 The low-pass subband of first level wavelet analysis using the designed wavelets. (a) Using the filters in Table 1, (b) Using the filters
in Table.
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filter of (2l̃ + 1)-tap, k̃ ∈ Z
+. By introducing a suitable

integer translation, Q(z) and Q̃(z) can be expressed as
Q(z) = q(cosω) and Q̃(z) = q̃(cosω), where q(·) and q̃(·)
are two polynomials of real coefficients. According to the
solution in [15], we have

Q(z)Q̃(z) = q(cosω)q̃(cosω) = PN (y) + yNR(0.5 − y)
(7)

where

PN (y) =
N−1∑
k=0

(
N − 1 + k

k

)
yk ,

y = sin2(ω/2), N = (k + k̃)/2 (it means the vanishing
moments of H0(z) and H̃0(z) must be either both odd or
both even); R(·) is an odd polynomial, which is chosen
such that Q(z)Q̃(z) ≥ 0 for all ω ∈[ 0,π ].
We can obtain l + l̃ + 1 constraints about the coeffi-

cients of Q(z), Q̃(z) and R(·)(Though there are 2l + 2l̃ + 2
equations onQ(z) and Q̃(z), only l+ l̃+1 of them are inde-
pendent because of symmetry). It has been shown even
when R(·) = 0, Q(z) and Q̃(z) may be not unique for a
identicalQ(z)Q̃(z). Furthermore, when R(·) �= 0, there are
more choices in designingQ(z) and Q̃(z), so areH0(z) and
H̃0(z). Therefore, it is possible to construct biorthogonal
wavelet filters that satisfy the PR requirement and approx-
imately satisfy (4) and (5). The design scheme is presented
in the following section.

The design of biorthogonal wavelets for the
proposed DWT
First, consider the PR requirement. From the require-
ments (4), we have H0(z) = P(z)

[
F(z2) + z−1G(z2)

]
.

On the other hand, the general expression of H0(z) is
H0(z) = 1√

2
(1 + z−1)kQ(z). Thus, let P(z) = 1√

2
(1 +

z−1)k (it is a low-pass filter), Q(z) = F(z2) + z−1G(z2).
F(z2) + z−1G(z2) can be constructed in the following
way. Suppose F(z) denotes a symmetrical filter of 2l-tap
f , f =[ fl−1, . . . , f0, f0, . . ., fl−1], G(z) denotes a (2l − 1)-
tap symmetrical filter g =[ gl−1, . . . , g0, . . . , gl−1], then
[ fl−1, gl−1, . . . , f0, g0, f0, . . . , gl−1, fl−1] becomes a symmet-
rical filter of (4l − 1)-tap. This filter can be expressed as
F(z2) + z−1G(z2), where F(z) and G(z) are z-transform of
f and g, respectively. Let Q̃(z) be a symmetrical filter of
(2m−1)-tap. After a suitable integer translation and some
manipulations, we have

Q(z)Q̃(z)=(F(z2)+z−1G(z2))Q̃(z)=
2l+m−2∑
n=0

an(z + z−1)n

where an, n = 0, . . . , 2l + m − 2, are the real coefficients
depending on f and g. On the other hand, consider y =

sin2 ω
2 = 1

2 − z−1+z
4 , the right side of (7) can be simplified

as following

Q(z)Q̃(z) =
2l+m−2∑
n=0

bn(z + z−1)n

Therefore, the PR requirement can be expressed as

ai = bi, i = 0, 1, . . . , 2l + m − 2. (8)

(a) (b)

(c) (d)

(e) (f)

Figure 5 The original image, the noisy image, and the LL
subbands of first level analysis using different wavelets. (a) The
original image (238 × 211 pixels), (b) the noisy image, (c) the LL
subband (119 × 96 pixels) decomposed using “bior3.9”, (d) the LL
subband decomposed using the wavelet in Table 1, (e) the pixels in (c)
whose intensities are smaller than 0.4Imax are set as Imin, (f) the pixels
(d) whose intensities are smaller than 0.4Imax are set as Imin, where Imax

and Imin are the maximum and minimum of each image, respectively.
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Second, consider the extra requirements (5). Since
it is even symmetrical, f can be factorized as f =
f ′⊗[ 1/2, 1/2], f ′ =[ f ′

l−1, . . . , f
′
0, . . . , f ′

l−1] is a symmetrical
filter, where ⊗ denotes the convolution operator. It means
F(z) can be expressed as F(z) = z−1/2 cos(ω/2)F ′(z).
After a suitable translation, F ′(z) can be simplified as
f ′(cosω), where f ′(·) a real coefficient polynomial. Simi-
larly, g =[ ql−1, . . . , q0, . . . , ql−1] can be expressed as a real
coefficient polynomial g(cosω). Therefore, if

cos(ω/2)f ′(cosω) ≈ g(cosω) (9)

then

F(z) ≈ z−1/2G(z)

Therefore, the design can be simplified as a constrained
optimization problem. The PR requirement becomes the
constrained conditions certainly. The objective function
can be selected as the integral of the square difference
between | cos(ω/2)f ′(cosω)| and |g(cosω)| for all ω ∈
[ 0,π ]. It results

min
∫ π

−π

(
cos(ω/2)f (cosω) − g(cosω)

)2dω

s.t. ai = bi, i = 0, 1, . . . ,N .
(10)

The design and application examples
In this section, two design examples are presented to
illustrate the design process, and three simulation exam-
ples are employed to demonstrate the performances of
designed wavelets in the applications.

The design examples
Example 1. Two biorthogonal that approximately sat-

isfy (5) are designed. In the first bank, F and G are 5-
and 4-tap, respectively, (Q(z) = F(z) + z−1G(z) becomes
9-tap); Q̃(z) is 3-tap; k = 11, k̃ = 1 (it means R(·) =
0 in Equation (7)). H0 and H̃0 become 20- and 4-tap,
respectively, which are identical with “bior3.9” wavelet fil-
ter banks in structure. The filter coefficients obtained are

given in Table 1. It can be verified that H0 and H̃0 satis-
fies the PR requirement (3) (Let H1(z) = −H̃0(−z) and
H̃1(z) = −H0(−z)). In the second filter bank, H0 and
H̃0 are also 20- and 4-tap, however, we choose R(·) �=
0 to improve the approximation performance. The filter
coefficients are shown in Table 2.

Equation (6) shows that if
[
F(z) − z− 1

2G(z)
] ≈ 0,

Xl(z) ≈ X(z
1
2 )P(z

1
2 )F(z). Therefore,

[
F(z) − z− 1

2G(z)
]

can be treated as the criteria to evaluate the design
results. Consider F(z) = z−1/2 cos(ω/2)f ′(cosω), G(z) =
g(cosω), ∠F(z) − ∠z− 1

2G(z) = 0, i.e., the requirement of
phase offset is satisfied perfectly. The magnitude
responds, cos(ω/2)f ′(cosω), g(cosω), | cos(ω/2)f ′
(cosω) + g(cosω)| and | cos(ω/2)f ′(cosω) − g(cosω)|
of Table 2 are depicted in Figure 3a. The corresponding
magnitude responds of wavelet “bior3.9” is depicted in
Figure 3b. It shows the designed wavelet has a better
approximation performance to (6) than “bior3.9”.

The application examples
Example 2. In a 1D example, the original signal is iden-

tical to that in Figure 2a. The filter banks in Tables 1 and 2
are used in wavelet analysis. The low-pass analysis outputs
are shown in Figure 4a,b. The ratio of the minimum to the
maximum of the five pules in Figure 2b is 0.501, while the
corresponding ratios in Figure 4a,b is 0.719 and 0.809. It
illustrates the effect of shift sensitivity has been reduced
using the designed wavelets.

Example 3. In a 2D example, the original image is a
noise-free image shown in Figure 5a, in where the inten-
sities of pixels range from 0 to 255. It is corrupted with
an additive noise uniformly distributed between 0 and
500, which is shown in Figure 5b. The noisy figure is
decomposed using the wavelet “bior3.9” and the wavelet in
Table 1. The low-low (LL) subbands of first level analysis
are shown in Figure 5c,d.

(a) (b) (c)
Figure 6 LL subbands of first level analysis using different waThe original image and thevelets. (a) The original image (160 × 160 pixels), (b)
the LL subband (80 × 80 pixels) decomposed using “bior3.9”, whose pixel intensities are smaller than 0.55Imax are set as Imin, (c) the LL subband
(80 × 80 pixels) decomposed using the wavelet in Table 1, whose pixel intensities are smaller than 0.55Imax are set as Imin.
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In order to show the intensity difference after 2D
wavelet analysis, the pixels whose intensities are smaller
than a certain percent of Imax have been set as Imin, where
Imax and Imin are the maximum and minimum of the
LL subband coefficients, respectively. This operation is
similar to the feature extraction according to the pixel
intensities automatically. When the pixels in Figure 5c,d
whose intensities are smaller than 0.4Imax are set as Imin,
Figure 5c,d become Figure 5e,f. It also illustrates the effect
of shift sensitivity has been reduced efficiently using the
designed wavelets.

Example 4. In this example, the original image is also
a corrupted image shown in Figure 6a. The figure is
decomposed using the wavelet “bior3.9” and the wavelet
in Table 1. The operations that are similar with Exam-
ple 3 are performed to the two LL subbands: the pixels
whose intensities are smaller than 0.55Imax are set as Imin.
Figure 6b shows the LL subband decomposed using the
wavelet “bior3.9”, and (c) shows the one decomposed using
the wavelet “bior3.9”. It also illustrates the effect of shift
sensitivity has been reduced efficiently using the designed
wavelets.

Conclusion
For the general wavelets, the aliasing terms formed in
analysis process of DWT can be eliminated in the synthe-
sis process by the anti-aliasing properties of filter banks.
However, the aliasing terms remain in the analysis out-
puts. In this article, it shows the aliasing terms cause the
shift sensitivity of DWT. A novel scheme is proposed to
reduce the effect of aliasing terms. Some extra require-
ments on the design of wavelets are proposed. The design
scheme are presented and two biorthogonal wavelets that
approximately satisfy the extra requirements have been
designed. The shift sensitivity of the wavelet analysis has
been reduced effectively by the new wavelets, which is
very favorable for many signal processing applications,
such as image registration, feature extraction and pat-
tern recognition (the process is usually achieved using
the analysis outputs rather than the synthesis results
in these cases). The other superiority of the proposed
wavelet analysis is that the wavelet representation remains
critically-sampled and does not bring out any redundancy.

Competing interest
The authors declare that they have no competing interests.

Acknowledgements
This study had been supported by National Natural Science Foundation of
China (NSFC) under Grant No. 60972156 and Beijing Natural Science
Foundation under Grant No. 4102017.

Received: 20 June 2012 Accepted: 23 August 2012
Published: 7 September 2012

References
1. A Abbate, CM DeCusatis, PK Das,Wavelets and Subbands: Fundamentals
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