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Abstract

This article proposes a technique for speckle reduction in medical ultrasound (US) imaging which preserves the
point and linear features with the added advantage of energy condensation regulator. Whatever be the post
processing task on US image, the image should undergo a preprocessing step called despeckling. Nowadays,
though the US machines are available with built-in speckle reduction facility, they are suffered by many practical
limitations such as limited dynamic range of the display, limited number of unique directions that an US beam scan
follow to average an image and limited size of transducer, etc. The proposed diffusion model can be used as a
visual enhancement tool for interpretation as well as a preprocessing task for further diagnosis. This method
incorporates two terms: diffusion and regulator. The anisotropic diffusion preserves and enhances edges and local
details. The regularization enables the correction of feature broadening distortion which is the common problem in
second-order diffusion-based methods. In this scheme, the diffusion matrix is designed using local coordinate
transformation and the feature broadening correction term is derived from energy function. Performance of the
proposed method has been illustrated using synthetic and real US data. Experiments indicate better speckle
reduction and effective preservation of edges and local details.
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Introduction
For more than two decades, ultrasonography has been
considered as one of the most powerful techniques for
imaging organs and soft tissue structures in the human
body. Today, it is being used at an ever-increasing rate
in the field of medical diagnostic technology. Ultrason-
ography is often preferred over other medical imaging
modalities because it is non-invasive, portable, versatile,
does not use ionizing radiations, and also relatively of
low-cost. The images produced by commercial ultra-
sound (US) systems are usually optimized for visual in-
terpretation because of its real-time usage. However, the
usefulness of medical ultrasonography is degraded by
signal-dependent noise called ‘speckle’ which is multi-
plicative in nature.
Imaging speckle is a phenomenon that occurs when a

coherent source and a non-coherent detector are used
to interrogate a medium, which is rough on the scale of
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the wavelength. In medical images, noise suppression is
particularly a delicate and difficult task. A tradeoff be-
tween noise reduction and the preservation of actual
image features has to be made in a way that enhances
the diagnostically relevant image content. Speckle reduc-
tion is needed for two main reasons: first is to improve
the human interpretation, i.e., for visual enhancement
and secondly, despeckling is the preprocessing step for
many image processing tasks. Importance of despeckling
is depicted in Figure 1.
Many filters have been developed to cope up with

speckle, with differences lying in the assumptions about
the speckle model [1]. The methods described by Lee [2],
Frost et al. [3], and Kuan et al. [4,5] are based on multi-
plicative model and simple logarithmic operation con-
verts the speckle into additive noise. Filtering based on
anisotropic diffusion (AD) was introduced by Perona and
Malik [6] who had constituted a powerful tool for signal
and image enhancement. When AD is introduced for
first time an undesirable effect called “pin hole effect”
may result and this is addressed by Monteil and Beghdadi
[7] through optical flow technique. Later, Yu and Acton
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Figure 1 Importance of despeckling.
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[8] have proposed a novel filtering scheme based on the
filters first described by Lee and Frost. The authors find a
relation between the former and the AD equation and
give rise to a speckle removal filter, which they call
speckle reducing anisotropic diffusion (SRAD). This filter
has shown very good performance with different levels of
speckle. However, SRAD tends to broaden thin linear
features and point features. These features carry useful
information for diagnosis and the problem need to be
corrected.
To overcome the feature broadening problem, a method

has been proposed by Acton [9]. This method combines
the strength of SRAD and deconvolution restoration. This
technique assumed that feature distortion is caused by the
convolution of the point spread function of the imaging
system with the underlying feature. Hence, deconvolution
sharpens features, while SRAD removes the speckle. This
method showed promising results on synthesized US data,
although no results were reported for real data. A generic
framework to find the matrix-valued counterparts of the
Perona–Malik PDE with various diffusivity functions is
proposed by Burgeth et al. [10].
Fourth-order partial differential equation (PDE)-based

despeckling method has been proposed in [11]. This can
reduces the speckle and also able to keep the image edge
better, but this method requires more number of itera-
tions to converge.
Regularization methods have been used in real-valued

image restoration [12,13], as well as image reconstruc-
tion problems such as medical tomography [14,15] to
obtain improved image estimates in the face of data deg-
radation. The simplest and the most common approach
is to use quadratic functions of the unknown quantities.
These methods lead to computationally straightforward
optimization problems, but they suppress useful features
in the resulting imagery, such as edges. Recently, consid-
erable effort has been spent in designing alternative,
non-quadratic constraints which preserve such features.
Methods based on these non-quadratic constraints have
successfully been used in edge-preserving regularization
in image restoration [12] and computer-assisted tomog-
raphy [13-16].
In this article, a new method has been proposed to re-

duce speckle in US images by incorporating a non-
quadratic regularization into nonlinear coherent diffu-
sion to preserve and enhance edges, local details, and to
correct the feature broadening distortion. The proposed
model carries two terms: the first is coherent diffusion
term that reduces the speckle by nonlinear coherent dif-
fusion, which utilizes the diffusion tensor derived from
coordinate transformation. The second term is called
regulator, which enhance the performance of coherent
diffusion as well as it enables the correction of feature
broadening distortion. Therefore, our model performs
simultaneous speckle reduction, structure enhancement,
and feature broadening correction with minimum com-
putational cost.

Background of diffusion
The basic idea in the use of PDEs in image processing is
to deform an image, a curve, or a surface in a PDE
framework and to approach the expected result as a so-
lution to this equation.
Let I:Ω ! ℜ be a scalar-valued image (gray level

image) with Ω ⊂ ℜp. Gradient of the image characterizes
the difference in gray value. In Biomedical imaging, be-
sides noise also edges result in a large gradient at fine
scales. The direct approach to reduce variations in the
image I would be to reduce the gradient of the image
globally.
Calculus of variations is a mathematical tool with the

help of which we can find the extrema of functionals.

min
I:Ω!ℜ

EðIÞ ¼
Z
Ω

Fðx; y; Iðx; yÞ; Ixðx; yÞ; Iyðx; yÞÞdΩ

ð1Þ
Euler–Lagrange equation gives a necessary condition

that must be verified by I to reach minimum of E(I).
And also one can use gradient descent an iterative
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approach to reach such a minimum, starting from an
initial image. Equation (1) can be reduced as

EðIÞ ¼
Z
Ω

Fðx; y; Iðx; yÞ;rIðx; yÞÞdΩ ð2Þ

where I(x, y) is 2D image by

@F
@I

� @

@x
@F
@Ix

� @

@y
@F
@Iy

forðx; yÞ 2 Ω;

rI:n ¼ 0 forðx; yÞ 2 @Ω

8<
: ð3Þ

where @Ω is boundary of Ω and n is normal vector of
boundary. Euler–Lagrange equation makes the link be-
tween PDEs evolution and gradient descent for continual
minimization.
Diffusion is a physical process that equilibrates con-

centration differences without creating or destroying
mass. This physical observation is mathematically
expressed by Flick’s law as

j ¼ �D:rI ð4Þ
This equation states that a concentration gradient rI

causes a flux j which aims to compensate for this gradi-
ent [17]. The relation between rI and j is described by
the diffusion tensor D , a positive definite symmetric
matrix. The case where j and rI are parallel is called
isotropic. Then we may replace the diffusion tensor by a
positive scalar-valued diffusivity g. In general, for aniso-
tropic case, j and rI are not parallel. Thus the diffusion
only transports mass without destroying it or creating
new mass. This observation is expressed by the continu-
ity equation as

@tI ¼ �div j ð5Þ

where t denotes the time. If we plug in Flick’s law into
the continuity equation we end up with the diffusion
equation

@tI ¼ divðD:rIÞ ð6Þ

This equation appears in many physical transport pro-
cesses. In the context of heat transfer, it is called heat equa-
tion. In image processing, we may identify the concentration
with the grey value at a certain location. If the diffusion ten-
sor is constant over the whole image domain, one speaks of
homogeneous diffusion whereas a space-dependent filtering
is called inhomogeneous. Often the diffusion tensor is a
function of the differential structure of the evolving image
itself. Such a feedback leads to nonlinear diffusion filters.
Diffusion which does not depend on the evolving
image is called linear. Sometimes the computer vision
literature deviates from the preceding notations, i.e.,
the homogeneous filtering is named isotropic and
inhomogeneous blurring is called anisotropic, even if it uses
a scalar-valued diffusivity instead of a diffusion tensor.

Anisotropic diffusion
A general expression of the AD equation can be written
as

@I
@t

¼ I x; 0ð Þ ¼ I0
div Fð Þ þ β I0 � Ið Þ

�
ð7Þ

where F is the diffusion and β is a data attachment coef-
ficient. If β = 0, particular cases of this equation are (1)
the heat diffusion equation F = rI, which is equivalent
to a Gaussian convolution. (2) The Perona and Malik
equation [6] with F ¼ gðrIÞrI , where g is diffusion
function. This function has the effect of reducing the dif-
fusion for “high” gradients, based on the threshold β on
the norm of the gradient. (3) The matrix diffusion pro-
posed in [16] uses a diffusion matrix noted D with a flux
F = D.rI. The matrix D can be expressed in a diagonal
form with eigenvectors (v0; v1; v2) and eigen values λ0,
λ1, λ2. Then the flux can be expressed as

F ¼ D:rI ¼
X2

i¼0
λiIvi vi ð8Þ

where Ivi ¼ rIvi is the first-order derivative of the inten-
sity in the direction of vi. In 1990, Perona and Malik [6]
proposed a PDE-based diffusion method for denoising.
Their work made a great influence in this field and the
diffusion equation can be expressed as

@I
@t

¼ r:½cðqÞ:rI� ð9Þ

With initial condition: Iðx; y; 0Þ ¼ I0; Iðx; y; 0Þ;ℜ2 ¼
ℜþ is an image in the continuous domain, where (x,y)
specifies the spatial position; t is an artificial time par-
ameter; с is the diffusion constant, and rI is the image
gradient. The с value is suggested to provide backward
diffusion around intensity transitions and forward diffu-
sion in smooth areas in favor of edge sharpening and
noise removal. Edges and local details are the most inter-
esting parts in diagnostic imaging for clinicians. There-
fore, enhancement and preservation of edges and local
details on denoising are very important. In Equation (9),
с is a scalar function and rI serves only as an edge de-
tector rather than providing smoothing.

Nonlinear coherent diffusion
The diffusion coefficient is represented in tensor form by
Abd-Elmoniem et.al. [18] to measure local coherence of
structures. This made the diffusion process more direc-
tional in both the gradient and the contour directions as
an alternative of scalar parameter-based diffusion coeffi-
cient [6-15]. Hence, the coherent diffusion model takes



Shanmugam and RSD EURASIP Journal on Image and Video Processing 2012, 2012:12 Page 4 of 17
http://jivp.eurasipjournals.com/content/2012/1/12
the form @Iðx;y; tÞ=@t ¼ divðDrIÞ , where D 2 ℜ2X2 is a
symmetric positive semi-definite diffusion tensor repre-
senting the required diffusion in both gradient and con-
tour directions. There are two tensors widely used to
detect the local coherence, namely, the structure tensor
(also called scatter matrix or windowed second moment
tensor) and the Hessian tensor, which represents the
second-order derivatives. These can be expressed as
follows

I2x IxIy
IxIy I2y

� �
︸STRUCTURE MATRIX

;
Ixx Ixy
Ixy Iyy

� �
︸

COVARIANCE MATRIX

ð10Þ

The Hessian matrix is more sensitive to noise; there-
fore, the structure tensor is favored. The following diffu-
sion tensor is proposed in nonlinear coherent diffusion
(NCD) model [18] to obtain selective smoothing along
the gradient and contour direction.

JðIÞ ¼ ω1 ω2ð Þ μ1 0
0 μ2

� �
ωT
1

ωT
2

� �
ð11Þ

where the eigen vectors ω1 and ω2 represent the direc-
tions of maximum and minimum variations and the
eigen values μ1 and μ2 correspond to the strength of
these variations, respectively. However, the diffusion ten-
sor used in the nonlinear coherent diffusion model was
actually depending on local statistics which are isotropic
in nature, and also on the tensor provided by Gaussian
smoothed image which may not effectively suppress the
spatially correlated speckle noise.

Proposed technique
Condensed anisotropic diffusion
An image I can be anisotropically smoothed, i.e.,
denoised with preservation of discontinuities by minim-
izing

Ediff ðIÞ ¼
Z
Ω

α

2
I � I0

2 þ φ rIð Þ
h i

dΩ ð12Þ

where is vector gradient norm that measures norm and
orientation, i.e., global vector variation α ℜ is fixed par-
ameter that prevents the final solution at convergence to
be too different from the original image. The function φ:
ℜ ! ℜ is a diffusion function that controls the
regularization behavior. To minimize the functional Ediff
(I), calculate the corresponding vector Lagrangian
L Ediff Ið Þð Þ 2 ℜn

rI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

rIi2
s

ð13Þ
By using a vector gradient descent: @I@t ¼ �LðEdiff ðIÞÞ;
Iðt ¼ 0Þ ¼ I0
@Ii
@t

¼ αðIi0 � IiÞ þ div
φ0 rIð Þ
rI

rIi

� �8<
: ð14Þ

For many years, image regularization with discontinu-
ities (edges) preservation has been studied in the com-
puter vision community. Image regularization with PDE is
again based on a measure of local parameter variations. In
Equation (14), the first term is regularization term α
coupled with data attachment or fidelity term (Ii0 − Ii).
By introducing orthonormal constraints in the mi-

nimization functionals equation (12) leads to the uncon-
strained minimization of,

E Ið Þ ¼ E0 Ið Þ þ β

Z
Ω

I
Ic= Þγd !x

� ð15Þ

The solution of (15) in the space of equal energy func-
tion is restricted to

R
Ω Iγ d !x ¼ RΩ Iγ0 d !x in order to

avoid trivial solution of all zeros. The condensed aniso-
tropic diffusion (CAD) model is derived by minimizing
the energy function equations (14) and (15) as

@Iðx; y; tÞ
@t

¼ r:ðD:rIÞ þ βγðIcÞγIγ�1ð !x; tÞ ð16Þ

To make the diffusion process more directional in gra-
dient and contour direction, the diffusion coefficient can
be put in tensor form [18,19]. And the tensor should be
chosen such that to make the model progress from iso-
tropic diffusion to AD. An isotropic diffusion is required
in homogeneous domain and AD is needed in the
domains of edges and local details. This means diffusion
do occur only along the tangent direction of edges and
does not across the edges. Diffusion tensor or covariance
matrix D is symmetric and semi-positive definite n × n
matrix

Semi Positivity : 8k 2 ½1; n�; λk≥0;
Orthogonality ðReal&SymmetricÞ : 8k; l 2 ½1; n�;

uk;l ¼ δkl;

δkl ¼ 1; if k ¼ l
0; if k 6¼ l

�

D can be expressed with eigen values λk and its corre-
sponding eigen vectors uk. The meaningful information
contained in D can be retrieved from its spectral decom-
position

D ¼
Xn
k¼1

λkuku
T
k ¼ UAUT ð17Þ

U ¼ ðu1;u2; . . . ; unÞ is the n × n orthogonal matrix of
the unit eigen vector columns uk, forming an orthonormal
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vector basis. A ¼ diagðλ1;λ2; . . . ; λnÞ is the corresponding
diagonal matrix of the positive eigen vectors. The spectral
decomposition separates the orientation features and dif-
fusivity features A of tensor D.
For instance, to remove the noise effectively and to

avoid the vision of undesired image structures, isotropic
smoothing is preferred in homogeneous regions. Followed
by, in order to preserve the vector edges while removing
the noise, the diffusion should occur along the vector
edges. And diffusion rate should be decreased in order to
prevent the corner erosion. These conditions can be satis-
fied through the use of local coordinate transformation in
the design of diffusion tensor. As shown in Figure 2, at the
edge point o, for t ?n,

!n;
!
t are unit normal and unit tan-

gent vectors, !n ¼ rI
rIj j ,

!
t ¼ rI?

rIj j.
Where t is tangent to the contours in the image every-

where and the set ð !n;
!
tÞ is a moving orthonormal basis

& configuration depends on the current coordinate
(x,y). Using local coordinate transformation, the rela-
tionship between ð !n;

!
tÞ and (x,y) is given as

n
t

� �
¼ 1

rIj jRθ
x
y

� �
ð18Þ

where Rθ is rotation matrix, for 2D image Equation (18)
can be written as

@n
@t

� �
¼ 1

rIj j
Ix Iy
�Iy Ix

� �T
@x
@y

� �
ð19Þ

From local coordinate transformation, the diffusion
tensor becomes
Figure 2 Decomposition of directional derivative on image
edge.
D ¼ 1

rIj j2
Ix Iy
�Iy Ix

T
λ1 0
0 λ2

Ix Iy
�Iy Ix

ð20Þ

where λ1 and λ2 are diffusion coefficients along the direc-
tion of normal and tangent directions. In the NCD
model [18], λ1 and λ2 are related to eigen value corres-
pond to strength of maximum and minimum variations.

λ1 ¼ α 1� A
s

� �2
 !

; if A ¼ ðμ1 � μ2Þ≤s2

0; else

; λ2 ¼ α

8><
>:

ð21Þ
In the constant regions, μ1 � μ2 � 0and λ1 � λ2 � α ,

which gives D � αId where, Id is identity matrix. Thus, in
the constant (homogeneous) region, there is no preferred
diffusion direction and the diffusion tensor is isotropic.
For image contours, μ1 >> μ2 >> 0and λ2 > λ1 > 0, dif-
fusion tensor is anisotropic and mainly directed by the
tangent vector of the image.
In (21), λ1 is related to anisotropy of the image, i.e., A ¼

μ1 � μ2, which is a monotonically decreasing function and
resembles Tukey’s bi-weight robust estimator. This func-
tion preserves sharp boundaries and improves automatic
stopping of diffusion in the gradient direction. s2 is the
stopping level measured from the imaging system with re-
spect to fully structured region and can be manually set.
To avoid the energy loss in the image boundary during the
diffusion process, the Neumann boundary condition is ap-
plied to the image border

Iðx; y; 0Þ ¼ I0;
@nI ¼ 0;
and Ic ¼ medianðIÞ

ð22Þ

The proposed CAD model is composed of two compo-
nents: the nonlinear coherent diffusion component and
the energy condensation component. The former
accounts for speckle removal and the latter reduces the
broadening distortion of point and linear features.
According to the number of scatterers per resolution
cell, the nature of speckle pattern is classified into three
categories: Fully formed speckle (FFS) pattern [20], non-
randomly distributed with long range order [21,22], and
non-randomly distributed with short range order [23].
The region corresponds to FFS carries less tissue infor-
mation, i.e., small gradient variations and the diffusion
must become isotropic along all directions, i.e., λ1 � λ2.
This condition can be accomplished by setting the local
coherence measured by μ1 − μ2 close to zero. On the
other hand, the areas of edges and local details corre-
sponding to structured tissue carries rich information
about the imaged texture, i.e., big gradient variations.
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Therefore, the AD is needed in domains of edges and local
details, which diffuse along the tangent direction of edges
and not across the edges. In Equation (21), λ1 is related to
big gradient variation through Tukey’s bi-weight robust es-
timator [18] and ðλ1 � λ2Þ > s2 is related to fully struc-
tured region and diffusion occurs only in contour direction
that is along t. The stopping level s2 can be set manually.
To emphasize thin linear and point features in US

image, which bear useful information for diagnosis, an
energy condensation component is included in the pro-
posed model. In Equation (16), Ic is threshold value,
which is set as mean of the image function I(x,y). The
weight factor β is positive and it determines the amount
of speckle smoothing, point and linear feature preserva-
tion. With γ < < 1, the proposed condenser performs the
following operation: First, the bright regions correspond
to I ≥ Ic gets fat during the diffusion process and
increases the total energy rapidly. Second, the majorities
of darker regions corresponding to I < Ic, undergo NCD

as I
Ic

� �γ
! 0. Thus, the condenser prevents the fattening

of bright and linear structures without affecting the dif-
fusion performed by the first term in Equation (16).
In the implementation of CAD model α ¼ 1; s ¼

70; β ¼ 0:05; γ ¼ 0:75; Ic ¼ Ih i are chosen. After the it-
eration, the energy of the updated I is rescaled by a fac-

tor of I0h i
I0h i , where hi is mean value. Thus, the processed

image has same energy as the input I0.

Discretization scheme
The CAD is numerically implemented using finite dif-
ference scheme because of its easy implementation
for 2D digital image. The CAD model can be
expressed as

@Iðx; y; tÞ
@t

¼ r:ðD:rIÞ þ βγI�γ
c Iγ�1ð !x; tÞ ð23Þ

In discrete form the first AD term can be expressed as

@Iðx; y; tÞ
@t

¼
a b
c d

� �
Ix
Iy

� �
Diffussivity MatrixD Gradient Vector

2
4

3
5

ð24Þ

Using semi-implicit scheme, the CAD model can be
expressed as

Inþ1
i;j � Ini;j

τ
¼ DNðrNI

n
i;jÞ þ DSðrSI

n
i;jÞ þ DEðrEI

n
i;jÞ

þDW ðrWIni;jÞ þ βγðInci;jÞγðIni;jÞγ�1

ð25Þ
where

rNIni;j ¼ Ini�1;j � Ini;j
rSIni;j ¼ Iniþ1;j � Ini;j
rEIni;j ¼ Ini;jþ1 � Ini;j
rWIni;j ¼ Ini;j�1 � Ini;j

ð26Þ

The spatial distance between two neighboring pixels is
one, i.e., h = 1 for image and τ is the time interval be-
tween the consecutive iterations. Ini;j refers to present

pixel value at location (i,j) at time n, Inþ1
i;j is the pixel

value at the same location at time n + 1. The diffusion
coefficients DN, DS, DE, DW are calculated from formulae
(14) to (16). Inci;j is median of Ini;j . The γ value is chosen
empirically as 0.75 (for γ << 1;β ¼ 0Þ. After every iter-

ation the energy is rescaled by a factor of I0h i
Ih i , where hi

denotes the mean value. Therefore, the processed image
remains in the same energy as the input I0. The time

step is set to 0.25 such that 0≤γ≤ h2
4 . As a result,

Inþ1
i;j ¼ Ini;j þ

DN rNIni;j
� �

þ DS rSIni;j
� �

þ DE rEIni;j
� �

þ DW rWIni;j
� �

4
þβγ Inci;j

� �γ
Ini;j
� �γ�1

ð27Þ

When β = 0, the image region undergoes nonlinear
coherent diffusion. The β value should be chosen
such that it prevents the fattening of bright structures
without affecting normal non linear coherent diffusion
in dominant image regions. The technique in [20] can
be used to find the value of β.
As the diffusion process is iterative, the important

task lies in deciding the stopping criteria. Several
automatic optimal stopping time estimation criteria
are available in the literature [24-26]. In our simula-
tion, we preferred the mean absolute error (MAE)
between two adjacent steps [27] to stop the itera-
tions.

MAE ¼ 1
MN

XM
i¼1

XN
j¼1

ðIni;j � In�1
i;j Þ

			 			 ð28Þ

where M, N are number of columns and rows in the
processed image. By setting a threshold for MAE
value, the diffusion process can be stopped. This
threshold value can be adjusted by clinicians accord-
ing to the purpose of speckle reduction. When the
despeckling method is used as a visual aid to im-
prove the interpretation, a small diffusion time is
enough to remove the speckle. On the other hand, if
the method is applied as a preprocessing step, a
longer diffusion time can be adopted.
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Proposed algorithm
An iteration k of the proposed algorithm consists of the
following steps:

Step 1: For each point (x, y) belongs to 2D space of all
real numbers ðx;yÞ 2 ℜ2 , calculate the gradient
in x and y directions and estimate the absolute
gradient magnitude rIj j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2x þ I2y

q
for local

window of size w × w.
Step 2: Evaluate the diffusivity from Equation (20) and

the principal components from Equations (21)
and (11).

Step 3: Calculate the median of I for each coordinate.
Step 4: Solve the diffusion equation in (27) to update

Inþ1
i;j from Ini;j and the calculated matrices at step
n using the semi implicit scheme.

Step 5: Complete all the pixels in the image and check
for stopping criteria as in (28) as a function of
n. Loop until the stopping a criterion is satisfied
for time step τ = 0.25.

Experiments and results
The performance of the proposed method is evaluated
using artificial image, simulated phantom, and real US
image. In each study, the performance of the proposed
CAD is compared with Perona and Malik diffusion (PM),
adaptive weighted median filter (AWMF) [28], SRAD [8],
nonlinear coherent diffusion (NCD) [18], median boosted
anisotropic diffusion (MBAD) [29], and Laplacian pyramid-
based nonlinear diffusion (LPND) [27].
The performance of our method is quantified using

quality assessment metrics. The edge preservation ability
is measured using figure-of-merit (FOM) [30,31] and is
based on three things: detection, localization, and spuri-
ous response.
Figure 3 MSE value versus number of iterations.
FOM ¼ 1

max N̂ ;Nideal

 �XN

i¼1

1
1þ d2

i λ
ð29Þ

where N and Nideal are the numbers of detected and
original edge pixels, respectively; di is the Euclidean
distance between the ith is a constant typically set to
1/9. Dynamic range of detected edge pixel and the
nearest original edge pixel; λ FOM is based on all
edges being found, all being placed in the correct lo-
cation and no false alarms. The value is between the
processed image and the ideal image. We used the
canny edge detector [32] to find the edge in all pro-
cessed results.
Second metric is mean square error in this metric,

the smaller the MSE value, the better is the denoising
process. The convergence rate of MSE value is
depicted in Figure 3 for CAD algorithm with respect
to number of iterations.

MSE ¼ 1
MN

XM
i¼1

XN
j¼1

ðIoriginalði; jÞ � Idenoisedði; jÞÞ2

ð30Þ
Third, the quality of the image is measured using

signal-to-noise ratio (SNR) [32]

SNR ¼ 10: log10
σ2g
σ2e

 !
ð31Þ

where σg
2, σe

2 are the variances of the noise free reference
image, the error between the original and denoised
image, respectively.
Fourth, the structural similarity index (SSIM) is pre-

ferred as a quality assessment factor [32] that charac-
terizes the luminance, contrast, and structural
changes,



Table 1 Execution time of compared algorithms

Number of iterations Execution time (s)

PM 300 73.65

AWMF – 62.95

SRAD 300 12.08

NCD 300 18.06

MBAD 300 26.82

LPND 300 20.68

CAD 300 10.34

Figure 4 Simulated B mode image and its filtered results. (a) Echogen
SRAD, NCD, MBAD, LPND, and CAD.
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SSIMðx; yÞ ¼ ð2μxμy þ C1Þð2σxy þ C2Þ
ðμ2x þ μ2y þ C1Þðσ2x þ σ2y þ C2Þ ð32Þ

where the standard deviation σx ¼ 1
N�1

P
i¼1

N ðxi � μxÞ2
� �1=2

and the mean intensityμx ¼ 1
N

P
i¼1

N
xi , covariance σxy ¼

1
N�1

P
i¼1

N ðxi � μxÞðyi � μyÞ are calculated using local sta-

tistics within a total of N windows. Constants C1,C2

< < 1 to ensure stability and N is chosen as 32. The
eity map. (b) Speckled image. (c– i) Images filtered by PM, AWMF,



Figure 5 Image profile along 89th column of simulated B mode image.

Shanmugam and RSD EURASIP Journal on Image and Video Processing 2012, 2012:12 Page 9 of 17
http://jivp.eurasipjournals.com/content/2012/1/12
SSIM has values in the 0 to 1 range, with unity
representing structurally identical images. The SSIM
values are calculated only for simulated images for
which the original is available for comparison.
For real US data set a contrast image measure is esti-

mated as

Cðx; yÞ ¼ Imaxðx; yÞ � Iminðx; yÞ
Imaxðx; yÞ þ Iminðx; yÞ ð33Þ

In the above measure, Imaxðx;yÞ; Iminðx;yÞ are the max-
imum and minimum values of the pixels in the 2n + 1
selected neighborhood. The performance of CAD model
can be measured by

C ¼

P
x;y2Ω

Cðx; yÞ

N
ð34Þ

where Ω is image region, N is pixel no. in the region.
For good diffusion model, the homogeneous region in
the image exhibits less contrast after diffusion than com-
pared to the original one.



Figure 6 Simulated foetus image and its filtered results. (a) Noisy image. (b) Speckled image. (c–i) Images filtered by PM, AWMF, SRAD, NCD,
MBAD, LPND, and CAD.

Table 2 Performance measures

Method Simulated B mode image Field II simulated foetus image Real US image

SNR MSE FOM SNR MSE FOM SNR FOM

Noisy 15.867 100.56 0.0969 25.538 121.69 0.0907 23.718 0.0976

PM 19.486 88.64 0.1092 28.937 84.85 0.1762 25.645 0.1792

AWMF 20.097 92.63 0.2206 29.427 91.02 0.2009 27.097 0.2461

SRAD 24.468 51.84 0.3325 32.618 58.69 0.3786 29.678 0.3357

NCD 28.093 76.92 0.3768 34.936 78.09 0.3868 31.493 0.3668

MBAD 32.386 58.89 0.3976 35.227 62.56 0.3902 32.386 0.4462

LPND 36.753 45.63 0.4186 38. 538 58.63 0.4409 37.789 0.4798

CAD 41.923 16.246 0.5032 44.419 19.56 0.5156 44.087 0.5332
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Figure 7 Image profile along 151st row of simulated Field II foetus image.
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The proposed CAD model and various state-of-the-art
methods are applied on artificially simulated image with
speckle noise of standard deviation 0.5, Field II software
generated cyst and real US pediatric brain image. In this
study, for PM and SRAD implementation, the time step
Δt = 0.05 is chosen and 300 iterations are used. For
LPND, 4 pyramid layers, 7 × 7 binomial filter for RE-
DUCE and EXPAND operator, the Gaussian filter of σ =
0.1, Δt = 0.2, and MAE = 0.1 are set. For NCD Δt = 3, α
= 1, s = 70, and β = 0.05 are selected for MBAD and
AWMF, the filter mask of 5 × 5, median filter with σ = 2
and Δt = 0.2 are utilized. The execution time for each al-
gorithm for 300 iterations is listed in Table 1.
The artificially simulated image carries intersected hori-

zontal and vertical rectangular target, three small cysts of
varying intensities and five point targets embedded in the
background of varying gray levels. The results on artificial
image are shown in Figure 4a–i. The original image of size
200 × 200 is artificially corrupted by speckle noise using
MATLAB command (> > imnoise). The original and noisy
images are shown in Figure 4a,b. The processed results of
different schemes are shown in Figure 4c–i. In this



Figure 8 Real US pediatric image and its filtered results. (a) Noisy image. (b–h) Images filtered by PM, AWMF, SRAD, NCD, MBAD, LPND,
and CAD.
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example, our proposed CAD comparatively provides bet-
ter visual enhancement, point feature preservation and
also avoids blocky effects and feature broadening problem.
The performance of our method is also quantified using
image profile measured along 89th column of the test
image as shown in Figure 5. In each case, the profiles of
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filtered images are compared with profile of the original
image. In this study, the CAD gives satisfied improvement
over other techniques in terms of speckle reduction and
edge enhancement. The three performance metrics SNR,
FOM, and MSE are computed for all the methods and
listed in Table 2. The CAD that carries larger SNR value
corresponds to good quality. The FOM value indicates
that the CAD is better than other methods in terms of
edge preserving ability.
The performance of proposed method and other

approaches on Field II software generated cyst are
shown in Figure 6a–h. The foetus phantom is an 8-bit
Figure 9 Image profile along 240th column of real US image.
image of size 352 × 353 pixels. The image profile along
151st row of foetus image for CAD and other filtered
results are shown in Figure 7a–h. The performance
metrics were also calculated and listed in Table 2. All
the experiments prove that our CAD gives improved re-
sult in terms of feature preservation, speckle reduction,
and edge enhancement. An US image of pediatric brain
of size 460 × 312 is used to test the performance of the
proposed technique for real-time application. The results
are displayed in Figure 8a–h.
This study depicts that LPND shows sharper but

jagged edges and gives a relatively low contrast. AWMF



Table 3 SSIM value for the compared algorithms

Method SSIM value

Simulated B mode image Field II simulated foetus image

Noisy 0.3512 0.2289

PM 0.6584 0.5709

AWMF 0.6987 0.5987

SRAD 0.7529 0.7297

NCD 0.8028 0.7832

MBAD 0.8163 0.8652

LPND 0.8209 0.8704

CAD 0.9567 0.9643
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does not give satisfactory speckle suppression. NCD
enhances edges, but it does not keep correct edge loca-
tions. PM and SRAD dilate bright regions and erode dark
regions. With the SRAD, the boundaries of bright regions
are broadened and those of dark regions are shrunk.
MBAD enhances the edge coherence but cannot suppress
enough noise. The profile along 240th column of the real
US image is shown in Figure 9. The image profile of
Figure 10 Simulated phantom, Field II generated foetus, and Real US
original noisy image and filtered result of CAD are com-
pared. The performance metrics for Field II simulated
image and real US data are listed in Table 2. The experi-
mental results show that our proposed CAD method pro-
vides better speckle reduction, edge enhancement, and
feature preservation. It also avoids blocky effects and
point/linear feature broadening problems.
SSIM values for different algorithms are calculated by

using the constant values as referred in [32] for simulated
phantom and Field II generated image for which the ori-
ginal images are accessible. The values are listed in Table 3.
In this comparison, the proposed CAD exhibits compara-
tively high SSIM value for both the cases. For US image,
the original noise-free image is not available and in this
case, the contrast to noise ratio is calculated for two
homogeneous regions in each case as shown in Figure 10.
Contrast value of the homogeneous region should de-
crease after diffusion depending upon the quality of diffu-
sion. Measured values of contrast for all three images for
two different regions are listed in Table 3. In this study
also our proposed CAD provides lower value of CNR
compared to other state of the art algorithms (Table 4).
image with two selected regions for contrast measure.



Table 4 CNR value for the compared algorithms

Simulated B mode image Field II simulated foetus image Real US image

Region 1 Region 2 Region 1 Region 2 Region 1 Region 2

Original (Noisy) 0.7862 0.7382 0.6489 0.6821 0.5656 0.5365

PM 0.5289 0.4987 0.5332 0.5903 0.4087 0.4008

AWMF 0.6032 0.5037 0.5123 0.5952 0.4239 0.4107

SRAD 0.3185 0.3065 0.4165 0.4360 0.3543 0.3365

NCD 0.2568 0.2167 0.3085 0.2987 0.2987 0.2754

MBAD 0.2367 0.1754 0.2234 0.2145 0.1967 0.1965

LPND 0.0938 0.0838 0.1045 0.1467 0.1245 0.1376

CAD 0.0023 0.0021 0.0043 0.0035 0.0024 0.0032

Figure 11 Performance comparisons of various methods in terms of (a) SNR (b) FOM.
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The performance of PM, AWMF, SRAD, NCD, MBAD,
LPND, and CAD methods are compared in terms of SNR,
SSIM, and FOM. Comparative results are shown in
Figure 11 that clearly indicates that our proposed model
gives superior result over the above-mentioned state-of-
the-art methods. In terms of SNR criterion, our proposed
CAD model gives about 23, 22, 17, 14, 9, and 5 dB im-
provement over PM, AWMF, SRAD, NCD, MBAD, LPND,
respectively, for artificially simulated image with speckle of
σ = 0.5, about 15, 12, 9, and 5 dB improvement over PM,
AWMF, SRAD, NCD, MBAD, LPND, respectively, for Field
II simulated image, about 15, 12, 9, and 6 dB improvement
over PM, AWMF, SRAD, NCD, MBAD, and LPND, re-
spectively, for real US image. Our proposed model gives
360, 128, 51, 33.5, 26.5, and 20% improvement for artifi-
cially simulated image, 192, 156, 36, 33, 32, and 17% im-
provement for Field II simulated image, 197, 117, 59, 45,
19.5, and 11% improvement for real US image over PM,
AWMF, SRAD, NCD, MBAD, and LPND, respectively.

Conclusions
In this article, we propose a new diffusion model called
CAD that reduces speckle, preserves information carrying
features and also avoids blocking effects, point, and linear
feature broadening problems. The new CAD model carries
two terms: one is coherent diffusion term for speckle re-
duction and for structured region, organ surface preserva-
tion. The second term is a regulator term that condenses
the diffusion and emphasizes thin linear and point features.
In this scheme, the diffusion matrix is designed using local
coordinate transformation and the feature broadening cor-
rection term is derived from energy function. The median
filter is used as a smoothing operator. In CAD, the struc-
tured tissues which carry rich of information undergo AD
and the speckle pattern undergo isotropic diffusion; this
flow can be controlled by setting the local coherence value
close to zero. The energy condensation component is
included to emphasize the information carrying point/lin-
ear features, which controls the feature fattening, effectively
for bright regions. In the implementation, we have used.
The MAE value is set to 0.1 for artificial and simulated data
and 0.2 for real US image. The simulation takes � 300
iterations to converge to a stationary solution. Thus, the
proposed method can be implemented practically to en-
hance the visual interpretation ability of radiologist with
minimum cost and this method can also be used as a pre
processing tool for many image processing task such as seg-
mentation, feature extraction, etc.
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