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Abstract

This article addresses the problem of low dynamic range image enhancement for commercial digital cameras. A
novel simultaneous dynamic range compression and local contrast enhancement algorithm (SDRCLCE) is presented
to resolve this problem in a single-stage procedure. The proposed SDRCLCE algorithm is able to combine with
many existent intensity transfer functions, which greatly increases the applicability of the proposed method. An
adaptive intensity transfer function is also proposed to combine with SDRCLCE algorithm that provides the
capability to adjustably control the level of overall lightness and contrast achieved at the enhanced output.
Moreover, the proposed method is amenable to parallel processing implementation that allows us to improve the
processing speed of SDRCLCE algorithm. Experimental results show that the performance of the proposed method
outperforms three state-of-the-art methods in terms of dynamic range compression and local contrast
enhancement.

Keywords: low dynamic range image enhancement, dynamic range compression, local contrast enhancement, sta-
tistics of visual representation, quantitative evaluation.

1. Introduction
In recent years, digital video cameras have been
employed not only for video recording, but also in a
variety of image-based technical applications such as
visual tracking, visual surveillance, and visual servoing.
Although video capture becomes an easy task, the
images taken from a camera usually suffer from certain
defects, such as noises, low dynamic range (LDR), poor
contrast, color distortion, etc. As a result, the study of
image enhancement to improve visual quality has gained
increasing attention and becomes an active area in
image and video processing researches [1,2]. This article
addresses two common defects: LDR and poor contrast.
Several existing methods have provided functions of
dynamic range compression and image contrast
enhancement, but there is always room for improve-
ment, especially in computational efficiency for real-
time video applications.

For dynamic range compression, it is well known that
the human vision system involves several sophisticated
processes and is able to capture a scene with large
dynamic range through various adaptive mechanisms
[3,4]. In contrast, current video cameras without real-
time enhancement processing generally cannot produce
good visual contrast at all ranges of image signal levels.
Local contrast often suffers at both extremes of signal
dynamic range, i.e., image regions where signal averages
are either low or high. Hence, the objective of dynamic
range compression is to improve local contrast at all
regional signal average levels within the 8-bit dynamic
range of most video cameras so that image features and
details are clearly visible in both dark and light zones of
the images. Various dynamic range compression techni-
ques have been proposed, and the reported methods can
be categorized into two groups based on the purpose of
application.
The first group of dynamic range compression meth-

ods aims to reproduce undistorted high-dynamic range
(HDR) still images, which are usually stored in a float-
ing-point format such as the radiance RGBE image
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format [5], on LDR display devices (the so-called HDR
image rendering problem) [6-8]. Reinhard et al. [6]
developed a tone reproduction operator based on the
time-tested techniques of photographic practice to pro-
duce satisfactory results for a wide variety of images.
Meylan and Süsstrunk [7] proposed a spatial adaptive
filter based on center-surround Retinex model to render
HDR images with reduced halo artifacts and chromatic
changes. Recently, Horiuchi and Tominaga [8] devel-
oped a spatially variant tone mapping algorithm to imi-
tate S-potential response in human retina for enhancing
HDR image quality on an LDR display device. The sec-
ond group aims to enhance the visual quality of
degraded LDR images or videos recorded by imaging
devices of limited dynamic range (the so-called LDR
image enhancement problem), and the techniques devel-
oped in first group may not be suitable to deal with this
problem due to different purpose. Traditionally, the pur-
pose of LDR image/video enhancement can be simply
achieved by adopting a global intensity transfer function
that maps a narrow range of dark input values into a
wider range of output values. However, the traditional
method will decrease the visual quality in the bright
region due to a compressed range of bright output
values. This drawback motivates the requirement of
more advanced algorithms to improve LDR image/video
enhancement performance. For instance, to improve the
visual quality of underexposed LDR videos, Bennett and
McMillan [9] proposed a video enhancement algorithm
called per-pixel virtual exposures to adaptively and inde-
pendently vary the exposure at each photoreceptor. The
reported method produces restored video sequences
with significant improvement; however, this method
requires large amount of computation and is not amen-
able to practical real-time processing of video data.
To preserve important visual details, the techniques

developed in second group are usually combined with a
local contrast enhancement algorithm. For local contrast
enhancement, histogram equalization (HE)-based con-
trast enhancement algorithms, such as adaptive HE
(AHE) [10] and contrast-limited AHE [11], are well
established for image enhancement. However, the exis-
tent HE-based methods generally produce strong con-
trast enhancement and may lead to excessive artifacts
when processing color images. To achieve local contrast
enhancement with reduced artifacts, Tao and Asari [12]
proposed an AINDANE algorithm which is comprised of
two separate processes, namely, adaptive luminance and
adaptive contrast enhancements. The adaptive luminance
enhancement is employed to compress the dynamic
range of the image and the adaptive contrast enhance-
ment is applied to restore the contrast after luminance
enhancement. The authors also developed a similar but
efficient nonlinear image enhancement algorithm to

enhance the image quality for improving the perfor-
mance of face detection [13]. However, the common
drawback of these two methods is that the procedure is
separated into two stages and may induce undesired arti-
facts in each stage. Retinex-based algorithms, such as
multi-scale Retinex (MSR) [14] and perceptual color
enhancement [3,4,15], are effective techniques to achieve
dynamic range enhancement, local contrast enhance-
ment, and color consistency based on Retinex theory
[16], which describes a model of the lightness and color
perception of human vision. However, Retinex-based
algorithms are usually computational expensive and
require hardware acceleration to achieve real-time per-
formance. Monobe et al. [17] proposed a spatially variant
dynamic range compression algorithm with local contrast
preservation based on the concept of local contrast range
transform. Although this method performs well for
enhancement of LDR images, the image enhancement
procedure is transformed to operate in logarithmic
domain. This requirement takes high computational
costs with a large memory and leads to an inefficient
algorithm. Recently, Unaldi et al. [18] proposed a fast and
robust wavelet-based dynamic range compression
(WDRC) algorithm with local contrast enhancement.
The authors also extended WDRC algorithm to combine
with a linear color restoration process to cope with color
constancy problem [19]. The main advantage of WDRC
algorithm is that the processing time can be reduced
rapidly since WDRC algorithm fully operates in the
wavelet domain. However, WDRC algorithm empirically
produces weak contrast enhancement and could not pre-
serve visual details for LDR images.
This article addresses the problem of LDR image

enhancement for digital video cameras. From the litera-
ture discussed above, we note that a challenge in the
design of LDR image enhancement is to develop an effi-
cient spatially variant algorithm for both dynamic range
compression and local contrast enhancement. This pro-
blem motivates us to derive a new simultaneous
dynamic range compression and local contrast enhance-
ment (SDRCLCE) algorithm to resolve LDR image
enhancement problem in spatial domain efficiently. To
do so, we first propose a novel general form of
SDRCLCE algorithm whose use is compatible with any
monotonically increasing and continuously differentiable
intensity transfer function. Based on this general form,
an adaptive intensity transfer function is then proposed
to select a proper intensity mapping curve for each pixel
depending on the local mean value of the image. The
main difference between the proposed method and
other existent approaches is summarized as follows.

(1) Based on the general form of proposed
SDRCLCE algorithm, the proposed method can
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combine with many existent intensity transfer func-
tions, such as the typical gamma curve, to achieve
the purpose of LDR image enhancement. Thus, the
applicability of the proposed method is greatly
increased.
(2) The proposed SDRCLCE method fully operates
in spatial domain, and the process is amenable to
parallel processing. From the implementation point
of view, this feature allows the proposed method to
be faster on dual core processors and improves the
computational efficiency in practical applications.
(3) The proposed adaptive intensity transfer function
is a spatially variant mapping function associated
with the local statistical characteristics of the image.
Therefore, unlike wavelet-based approaches [18,19],
the proposed method is able to produce satisfactory
contrast enhancement for preserving visual details of
LDR images.
(4) By combining the proposed adaptive intensity
transfer function with SDRCLCE algorithm, the pro-
posed method possesses the adjustability to sepa-
rately control the level of dynamic range
compression and local contrast enhancement. This
advantage improves flexibility of the proposed
method in practical applications.

In the experiments, the performance of the proposed
SDRCLCE method is compared with three state-of-the-
art methods, both quantitatively and visually. Experi-
mental results show that the proposed SDRCLCE
method outperforms all of them in terms of dynamic
range compression and local contrast enhancement.
The rest of this article is organized as follows. Section

2 describes the derivation of the general form of the
proposed SDRCLCE algorithm. Section 3 presents the
design of the proposed method. A novel adaptive inten-
sity transfer function will be proposed. Section 4 devises
a linear color remapping algorithm to preserve the color
information of the original image in the enhancement
process. Experimental results are reported in Section 5.
Extended discussion of several interesting experimental
observations will be presented. Section 6 concludes the
contributions of this article.

2. Derivation of the general form of SDRCLCE
algorithm
This section presents the derivation of the proposed
method to simultaneously enhance image contrast and
dynamic range. A local contrast preserving condition is
first introduced. The general form of SDRCLCE algo-
rithm is then derived based on this condition. Finally,
the framework of SDRCLCE algorithm is presented to
explain the parallelizability of the proposed method.

2.1. Image enhancement with local contrast preservation
Since human vision is very sensitive to spatial frequency,
the visual quality of an image highly depends on the
local image contrast which is commonly defined by
using Michelson or Weber contrast formula [20]. In this
article, the Weber contrast formula is utilized to derive
the condition of local image contrast preservation.
Let Iin(x, y) and Iavg(x, y), respectively, denote the

input luminance level and the corresponding local aver-
age one of each pixel (x, y). The Weber contrast formula
is then given by [20]

ContrastWeber(x, y) = I−1
avg(x, y)[Iin(x, y) − Iavg(x, y)], (1)

where ContrastWeberÎ[-1, +∞) is the local contrast
value of the input luminance image. Based on the
Weber contrast value (1), the local contrast preserving
condition of a general image enhancement processing is
described as follows

g−1
avg(x, y)[gout(x, y)−gavg(x, y)] =

I−1
avg(x, y)[Iin(x, y) − Iavg(x, y)],

(2)

where gout(x, y) and gavg(x, y), respectively, denote the
contrast enhanced output luminance level and the cor-
responding local average one of each pixel (x, y). Oper-
ating on expression (2) by gavg(x, y) gives

gout(x, y) = [I−1
avg(x, y)gavg(x, y)]Iin(x, y), (3)

where gavg(x, y) usually is a function of Iin(x, y). There-
fore, expression (3) presents a basic form in the spatial
domain for image enhancement with local contrast
preservation.

2.2. The general form of SDRCLCE algorithm
In this section, the basic form (3) is applied to the
dynamic range compression with local contrast
enhancement for color images. In traditional dynamic
range compression methods, the remapped luminance
image, denoted by yT (x, y), is usually obtained from a
fundamental intensity transfer function such that

yT(x, y) = T[Iin(x, y)], (4)

where T[•]ÎC1 is an arbitrary monotonically increas-
ing and continuously differentiable intensity mapping
curve. According to expression (4), the output local
average luminance level of each pixel can be approxi-
mated by using the first-order Taylor series expansion
such that (see Appendix)

gavg(x, y) = T[Iin(x, y)]+

T′[Iin(x, y)] × [Iavg(x, y) − Iin(x, y)],
(5)
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where T′[Iin(x, y)] = dT[X]
/
dX

∣∣
X=Iin(x,y). By substituting

(5) into (3), the basic formula of dynamic range com-
pression with local contrast preservation is obtained as
follows.

gout(x, y) = Īin(x, y) × T[Iin(x, y)]+

[1 − Īin(x, y)] × {
T′[Iin(x, y)]Iin(x, y)

}
= Īin(x, y) × yT(x, y)+

[1 − Īin(x, y)] × ylcp(x, y),

(6)

where gout(x, y) denotes the enhanced output lumi-
nance level of each pixel, ylcp (x, y) = T[Iin(x, y)] Iin (x,
y) ≥ 0 is the component of local contrast preservation,
and Īin(x, y) = Iin(x, y)

/
Iavg(x, y) for Iavg (x, y) ≠0 is a

weighting coefficient which ranges from 0 to 256.
Expression (6) shows that when Īin(x, y) ∼= 0 the local
contrast preservation component ylcp (x, y) dominates
the enhanced output gout(x, y). On the other hand, when
Īin(x, y) ∼= 1 the output in (6) is close to the fundamental
intensity mapping result yT (x, y). Otherwise, the
enhanced output gout(x, y) is a linear combination
between the fundamental intensity mapping component
yT (x, y) and the local contrast preservation component
ylcp (x, y).
In order to achieve local contrast enhancement, one of

the common used enhancement schemes is the linear
unsharp masking (LUM) algorithm, which enhances the
local contrast of output image by amplifying high-fre-
quency components such that [21]

yLUM(x, y) = Iin(x, y) + λIhigh(x, y)

= Iin(x, y) + λ[Iin(x, y) − Iavg(x, y)],
(7)

where Ihigh (x, y) = Iin (x, y)- Iavg (x, y) denotes the
high-frequency components of input image, and l is a
nonnegative scaling factor that controls the level of local
contrast enhancement. Based on the concept of LUM
algorithm, we modify the output local average lumi-
nance (5) into an unsharp masking form such that

gavg(x, y) = T[Iin(x, y)] − αT′[Iin(x, y)]Ihigh(x, y), (8)

where a = {-1, 1} is a two-valued parameter that
determines the property of contrast enhancement.
When a = 1, expression (8) is equivalent to (5) that pro-
vides local contrast preservation for the output local
average luminance. In contrast, when a = -1, expression
(8) becomes a LUM equation with l = T’[Iin (x, y)] ≥ 0
to achieve local contrast enhancement of output local
average luminance.
Next, substituting (8) into (3) yields the basic formula

of dynamic range compression with local contrast
enhancement such that

gout(x, y) = Īin(x, y) × yT(x, y)+

α[1 − Īin(x, y)] × ylcp(x, y),
(9)

where the parameters Īin(x, y), ylcp (x, y), and a are
previously defined in equations (6) and (8). According
to expression (9), the general form for SDRCLCE algo-
rithm is then obtained as follows:

gout(x, y) =

{
f−1
n (x, y){Īin(x, y) × yT(x, y)+

[1 − Īin(x, y)] × ylce(x, y)}

} 1

0

, (10a)

fn(x, y) =

{
Īmax
in (x, y) × T(Imax

in )+

[1 − Īmax
in (x, y)] × [αT′(Imax

in )Imax
in ]

}1

ε

,(10b)

ylce(x, y) = α × ylcp(x, y)
= αT′[Iin(x, y)]Iin(x, y)

for α = {−1, 1} (10c)

where ylce (x, y) denotes the component of local con-
trast enhancement for each pixel, Imax

in is the maximum

value of the luminance signal, Īmax
in (x, y) = Imax

in I−1
avg(x, y)

for Iavg (x, y) ≠0 is the weighting coefficient with respect
to the maximum luminance value, fn Î [ε, 1] denotes a
normalization factor to normalize the output, and ε is a
small positive value to avoid dividing by zero. The
operator {x} b

a means that the value of x is bounded to
the range [a, b]. In expression (10c), the parameter a is
set to 1.0 for the purpose of local contrast preservation
and is set to -1.0 for the purpose of local contrast
enhancement. Therefore, expression (10), referred to as
the general form of SDRCLCE algorithm, provides the
capability to achieve dynamic range compression and
local contrast enhancement simultaneously.
Figure 1 illustrates the framework of the proposed

SDRCLCE algorithm. Since the proposed method pro-
cesses only on the luminance channel, the captured
RGB image is first converted to a luminance-chromi-
nance color space such as HSV or YCbCr color spaces.
Next, the intensity remapped luminance image and the
local contrast enhancement component are calculated
by using expressions (4) and (10c), respectively. It is
noted that the fundamental intensity transfer function T
[Iin(x, y)] can be determined by any monotonically
increasing curve according to the purpose of application.
In the meantime, the local average of the input lumi-
nance image is obtained by utilizing a spatial low-pass
filter such as Gaussian low-pass filter. According to
expressions (10a) and (10b), the output luminance
image is then calculated by normalizing the result of
weighted linear combination between the remapped
luminance image and the local contrast enhancement
component. Finally, combining the output luminance
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image with the original chrominance component, the
enhanced image is obtained through an inverse color
space transform or a linear color remapping process
which will be presented in next section. As can be seen
in Figure 1, the computations of the remapped lumi-
nance image, the local contrast enhancement, and the
local average luminance image can be performed indivi-
dually. This implies that the proposed SDRCLCE algo-
rithm is amenable to parallel processing implementation
and could be faster on dual core processors. This feature
will be validated in the experiments.

3. The proposed algorithm
As discussed in the previous section, once any intensity
transfer function T[Iin(x, y)] defined in (4) is determined,
the proposed SDRCLCE equation (10) can be applied to
the intensity transfer function and realize the function
of SDRCLCE. This implies that the enhanced output of
the proposed SDRCLCE algorithm is characterized by
the selected intensity transfer function. Therefore, the
selection of a suitable intensity transfer function is an
important task before applying SDRCLCE algorithm. In
this section, a novel intensity transfer function is first
presented. The proposed algorithm is then derived
based on SDRCLCE equation (10).

3.1. Adaptive intensity transfer function
The intensity transfer function realized in the proposed
algorithm is a tunable nonlinear transfer function for
providing dynamic range adjustment adaptively. To
achieve this, a hyperbolic tangent function is adopted
for satisfying the condition of monotonically increasing
and continuously differentiable. Moreover, another
advantage of the hyperbolic tangent function is that the
output value ranges from 0 to 1 for any positive input
value, which guarantees that the output always lies
within a desired range of value.

The proposed intensity transfer function is an adaptive
hyperbolic tangent function based on the local statistical
characteristics of the image. This function aims to
enhance the low intensity pixels while preserving the
stronger pixels as defined by

ytanh(x, y) = T[Iin(x, y)] = tanh
(
Iin(x, y)m−1(x, y)

)
,(11)

where the parameter m(x, y) controls the curvature of
the hyperbolic transfer function and is calculated based
on the local statistical characteristics of the image. Since
the simplest local statistical measure of the image is the
local mean in a local window, the parameter m(x, y) is
defined as a linear function associated with the local
mean of the image such that

m(x, y) = Iavg(x, y) × S +mmin, (12)

where S = (Imax
in )−1(mmax − mmin) is a scale factor, and

(mmin, mmax) are two nonzero positive parameters satis-
fying 0 <mmin <mmax. Iavg(x, y) = Iin (x, y) ⊗ FLPF (x, y)
is the local average of the image, where the operator ⊗
denotes the 2D convolution operation, and FLPF (x, y)
denotes a spatial low-pass filter kernel function and is
subject to the condition∫∫

FLPF(x, y)dxdy = 1. (13)

Expression (12) implies that the value of m(x, y) is
bounded to the range [mmin, mmax], and thus the curva-
ture of (11) can be determined by the two parameters
mmin and mmax.
Figure 2a, shows the plot of intensity mapping curve

processed by expressions (11) and (12) for the two para-
meters mmin and mmax set as (100/255, 150/255) and
(10/255, 250/255), respectively. These figures illustrate
how the curvature of the intensity transfer function (11)
changes as for various values of m(x, y). It is clear in
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Figure 1 Framework of the proposed SDRCLCE algorithm.
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both figures that the curvature of the processed intensity
mapping curve changes for each pixel depending on the
local mean value m(x, y). More specifically, when the
local mean value of the input pixel is small, the pro-
posed intensity transfer function (11) inclines to provide
an intensity mapping curve with large curvature for
enhancing the intensity of the input pixel. In contrast, a
pixel with large local mean value leads an intensity map-
ping curve with small curvature in this process for pre-
serving the intensity as much the same as the original
one.
Moreover, comparing Figure 2a with 2a, one can see

that the two parameters mmin and mmax determine the
maximum and minimum curvatures of the processed
intensity mapping curve, respectively. In other words, a
smaller value of mmin leads to a steeper tonal curve pro-
viding more LDR compression, and a larger value of
mmax leads to a flatter tonal curve providing more
dynamic range preservation. However, one problem
shown in Figure 2 is that the maximum value of ytanh
(x, y) obtained from (11) will be less than the maximum
value of Iin (x, y) when increasing the value of mmax.
This problem can be resolved by normalizing (11) such
that

ynormal
tanh (x, y) = T−1(Imax

in ) tanh
(
Iin(x, y)m−1(x, y)

)
, (14)

where T(Imax
in ) = tanh

(
Imax
in m−1(x, y)

)
is a normalizing

factor to ensure that ynormal
tanh (x, y) = 1 when

Iin(x, y) = Imax
in . Although the intensity transfer function

(14) satisfies the condition of monotonically increasing
and continuously differentiable, the derivative of (14)

becomes relatively complex since m(x, y) is a function of
Iin (x, y). In the remainder of this article, therefore, the
adaptive intensity transfer function (11) is utilized to
combine with the proposed SDRCLCE algorithm, which
also resolves the problem mentioned above.

3.2. Application of SDRCLCE algorithm into the adaptive
intensity transfer function
Since the adaptive intensity transfer function (11) is
continuously differentiable, the proposed SDRCLCE
equation (10) can be applied to this function accord-
ingly. First of all, the differential function of the adaptive
intensity transfer function (11) is given by

T′[Iin(x, y)] =
[
1 − tanh2 (

Iin(x, y)m−1(x, y)
)]×

[m(x, y) − SwmaxIin(x, y)]m−2(x, y),
(15)

where wmax denotes the maximum value of the
coefficients in the low-pass filter mask. Next, the nor-
malization factor fn is calculated according to the
expression (10b) such that

fn(x, y) =

{
Īmax
in (x,y) × tanh

(
Iin(x, y)m−1(x, y)

)
+

[1 − Īmax
in (x, y)] × [αT′(Imax

in )Imax
in ]

}1

ε

, (16)

T′(Imax
in ) =

[
1 − tanh2 (

Imax
in m−1(x, y)

)] ×
[m(x, y) − SwmaxImax

in ]m−2(x, y),

where the parameters a, Imax
in , and Īmax

in (x, y) are pre-
viously defined in Equation 10b. Finally, substituting

(a)          (b)
Figure 2 The intensity mapping curve processed by expression (15) for the two parameters mmin and mmax set as (a) (mmin, mmax) =
(100/255, 150/255), and (b) (mmin, mmax) = (10/255, 250/255).
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(11), (15), and (16) into (10a) yields the SDRCLCE out-
put such that

gtanh(x, y) =

{
f−1
n (x, y)

{
Īin(x,y) × ytanh(x, y)+

[1 − Īin(x, y)] × ylce(x, y)

}}1

0

, (17)

where Īin(x, y) and ylce (x, y) denote the weighting
coefficient and the local contrast enhancement compo-
nent previously defined in Equations 6 and 10c,
respectively.
Figures 3 and 4, respectively, illustrate the intensity

mapping curve processed by expression (17) for a = 1
and a = -1 with tweaking the parameter m(x, y). Since
the value of m(x, y) depends on the two parameters

mmin and mmax, these figures show how the parameters
(mmin, mmax) affect the results of the processed inten-
sity mapping curve. In Figure 3a, b, the parameters
(mmin, mmax) are set as (100/255, 150/255) and (10/
255, 250/255), respectively. Comparing Figure 3a with
3b, one can see that the parameter mmin determines
the LDR compression capability in the dark part of the
image. For instance, decreasing mmin would increase
the slope of the tonal curve thereby enhancing the
intensity of the darker pixel. On the other hand, the
parameter mmax determines the contrast preservation
capability in the light part of the image. Increasing
mmax would decrease the slope of the tonal curve that
preserves the intensity of the brighter pixel, for

(a)          (b)
Figure 3 The intensity mapping curve processed by expression (20) for a = 1 with (a) (mmin, mmax) = (100/255, 150/255), and (b)
(mmin, mmax) = (10/255, 250/255).

(a)          (b)
Figure 4 The intensity mapping curve processed by expression (20) for a = -1 with (a) (mmin, mmax) = (100/255, 150/255), and (b)
(mmin, mmax) = (10/255, 250/255).
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example. This means that the amount of lighting and
contrast preservation for the overall enhancement can
be controlled by adjusting the parameters (mmin,
mmax). Figure 4 shows a similar result; however, the
processed intensity mapping curve provides the con-
trast stretching capability to enhance the local contrast
of the image. The amount of lighting and contrast
stretching for overall enhancement can also be con-
trolled by tailoring the parameters (mmin, mmax). In
Section 5, the properties of the proposed adaptive
intensity transfer function discussed above will be vali-
dated in the experiments.

4. SDRCLCE algorithm with linear color
remapping
An issue in the proposed SDRCLCE algorithm presented in
the previous section is that the process only consists of
luminance component without chrominance ones. This
may result the color distortion problem in the enhance-
ment process. In this section, the proposed SDRCLCE algo-
rithm is extended to combine with a linear color remapping
algorithm, which is able to preserve the color information
of the original image in the enhancement process.

4.1. Linear remapping in RGB color space
In order to recover the enhanced color image without
color distortion, a common method is to use the modi-
fied luminance while preserving hue and saturation if
HSV color space is used. However, if RGB coordinates
are required, a simplified multiplicative model based on
the chromatic information of the original image can be
applied to recover the enhanced color image with mini-
mum color distortion.

It PRGB
in =

[
Rin Gin Bin

]T and PRGB
out =

[
Rout Gout Bout

]T
denote the input and output color values of each pixel
in RGB color space, respectively, then, the multiplicative
model of linear color remapping in RGB color space is
expressed as:

PRGB
out (x, y) = β(x, y) × PRGB

in (x, y), (18)

where b(x, y) ≥ 0 is a nonnegative mapping ratio for
each color pixel (x, y), and it is usually determined by
the luminance ratio such that

β(x, y) = gout(x, y)I
−1
in (x, y), (19)

where Iin(x, y) and gout(x, y) are the input and output
luminance values corresponding to the color pixel
PRGB
in (x, y) and PRGB

out (x, y), respectively. Therefore, substi-
tuting (17) and (19) into (18), the proposed SDRCLCE
method is able to preserve hue and saturation of the ori-
ginal image in the enhanced image.

4.2. Linear remapping in YCbCr color space
Although the linear RGB color remapping method (18)
provides an efficient way to preserve the color informa-
tion of the input color, YCbCr is the most commonly
used color space to render video stream in digital video
standards. Most video enhancement methods are pro-
cessing in YCbCr color space; however, they usually
result with less saturated colors due to only enhancing
Y component while leaving Cb, Cr components
unchanged. This problem motives us to perform the lin-
ear color remapping method in YCbCr color space to
minimize color distortion during video enhancement
process.

Let PYCbCr
in =

[
Yin Cb

in Cr
in

]T and

PYCbCr
out =

[
Yout Cb

out C
r
out

]T denote the input and output

color values of each pixel in YCbCr color space, respec-
tively. According to the ITU-R BT.601 standard [22],
the color space conversion between RGB and YCbCr for
digital video signals is recommended as:

PRGB
in (x, y) = A[PYCbCr

in (x, y) − D], (20)

PYCbCr
out (x, y) = A−1PRGB

out (x, y) +D, (21)

where the transformation matrices A and A-1 and the
translation vector D are given by

A =

⎡
⎣1.164 0 1.596
1.164 −0.391 −0.813
1.164 2.018 0

⎤
⎦ ,

A−1 =

⎡
⎣ 0.2570 0.5044 0.0977

−0.1482 −0.2910 0.4392
0.4392 −0.3679 −0.0713

⎤
⎦ ,

D =

⎡
⎣ 16
128
128

⎤
⎦ .

Substituting (20) into (17) yields

PRGB
out (x, y) = β(x, y) × A[PYCbCr

in (x, y) − D]. (22)

Then, the linear YCbCr color remapping method is
obtained by substituting (22) into (21) so that

PYCbCr
out (x, y) = β(x, y) × [PYCbCr

in (x, y) − D] +D
= β(x, y) × PYCbCr

in (x, y)+
[1 − β(x, y)] × D,

(23)

More specifically, the remapping of luminance and
chrominance (or colour-difference) components of each
pixel are, respectively, given by

Yout(x, y) = β(x, y) × Yin(x, y)+

16 × [1 − β(x, y)],
(24)
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Ci
out(x, y) = β(x, y) × Ci

in(x, y)+

128 × [1 − β(x, y)],
(25)

where Y denotes the luminance component, and Ci =
{Cb, Cr} denotes the chrominance one. Observing
expressions (24) and (25), it shows that the linear color
remapping in YCbCr color space requires an extra trans-
lation determined by a scalar 1- b(x, y) and two fixed
constants: 16 for luminance and 128 for chrominance.
This is the main difference between RGB and YCbCr

color remapping methods.
Figure 5 illustrates the framework of the proposed

SDRCLCE algorithm combined with linear YCbCr color
remapping method. In Figure 5, the SDRCLCE proces-
sing block performs the proposed SDRCLCE algorithm
as Figure 1 indicated to calculate the enhanced output
luminance image. The luminance mapping ratio is then
determined according to expression (19). Finally, the
remapping of luminance and chrominance components
is computed based on expressions (24) and (25), respec-
tively. Figure 5 shows that the proposed method is able
to directly operate on YCbCr signals without color space
conversion, which greatly improves the computational
efficiency during video processing.

5. Experimental results
In this section, we focus on four issues, which include a
detailed examination of the properties of the proposed
method, the quantitative comparison with three state-of-
the-art enhancement approaches, the visual comparison
with the results produced by these methods, and com-
putational speed evaluation.

5.1. Properties of the proposed method
In the property evaluation of the proposed method, the
parameter a defined in (10c) is set to -1.0 for the pur-
pose of local contrast enhancement. In order for the

proposed method to compute the local average of the
image Iavg(x, y) defined in (12), a spatial low-pass filter
that satisfies the condition (13) is required. In the
experiments, a Gaussian filter is utilized as a low-pass
filter given by

FLPF(x, y) = Ke
−(x2+y2)

/
(Sigma)2

, (26)

where K is a scalar to normalize the sum of filter coef-
ficients to 1, and Sigma denotes the standard deviation
of Gaussian kernel. Based on the expressions (12) and
(26), the proposed method controls the level of image
enhancement depending on three parameters: mmin,
mmax, and Sigma. Since the value of these three para-
meters may drastically influence enhancement perfor-
mance, it is interesting to study how they affect the
enhancement results of the proposed method. In the fol-
lowing, a study on the experiment of tweaking para-
meters mmin, mmax, and Sigma is presented to achieve
this purpose.
The parameter tweaking experiment consists of three

experiments listed below:
(1) tweaking mmin with fixed mmax and Sigma;
(2) tweaking mmin with fixed mmax and Sigma; and
(3) tweaking Sigma with fixed mmin and mmax.
In these experiments, a quantitative method to quantify

the performance of image enhancement approaches
depending on the statistics of visual representation [23] is
introduced to investigate the influence of tweaking para-
meters on enhancement performance. Figure 6 illustrates
the concept of the statistics of visual representation,
which is comprised of the global mean of the image and
the global mean of regional standard deviation of the
image. This quantitative method is an efficient way to
quantitatively evaluate the image quality after image
enhancement in a 2D contrast-lightness map, in which
the contrast and lightness of the image are measured by

YCbCr Color 
Image

),( yxIin
),( yxgout

Enhanced
YCbCr Color 

Image

SDRCLCE
Processing

Y Channel

Cb Channel

Cr Channel

Linear
Mapping

Ratio

),( yx
),(1 yx

x
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x
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x
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128
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Figure 5 Framework of the proposed SDRCLCE method with linear color remapping in YCbCr color space.

Tsai and Chou EURASIP Journal on Image and Video Processing 2011, 2011:6
http://jivp.eurasipjournals.com/content/2011/1/6

Page 9 of 19



the mean of standard deviation and the mean of image,
respectively. In [23], the authors found that the visually
optimized images do converge to a range of approxi-
mately 40-80 for global mean of regional standard devia-
tion and 100-200 for global mean of the image, and they
termed this range as the visually optimal (VO) region of
visual representation. More specifically, if the statistics
point of an image falls in the rectangular VO region
defined above, the image can generally be considered to
have satisfactory luminance and local contrast. The inter-
ested reader is referred to [23] for more technical details.
Figures 7, 8, and 9 show the results of experiments

(1), (2), and (3), respectively. Figure 7a, b shows the evo-
lution of the statistics point of enhanced image as para-
meter mmin increasing from 40 to 100 with fixed
parameters (Sigma, mmax) = (16, 150) and (Sigma, mmax)
= (16, 250), respectively. In Figure 7a, b, it is clear that
the parameter mmin has significant influence on the
image lightness after enhancement processing. A smaller
(larger) value of mmin leads to a larger (smaller) value of
overall lightness. Figure 7c, d shows the resulting images
of the experiment in Figure 7a, b, respectively. Next,
Figure 8a, b illustrates the statistics point evolution as
parameter mmax increasing from 150 to 250 with fixed
parameters (Sigma, mmin) = (16, 50) and (Sigma, mmin)
= (16, 100), respectively. Figure 8c, d shows the resulting
images obtained from the experiment in Figure 8a, b,
respectively. It can also be seen in Figure 8 that the
parameter mmax has great influence on the image light-
ness after enhancement processing. Similar to the influ-
ence of mmin on lightness, a smaller (larger) value of
mmax also leads to a larger (smaller) value of overall
lightness. Therefore, the parameters mmin and mmax are

useful for the proposed method to control the overall
lightness of the enhanced output.
Figure 9a, b represents the statistics point evolution as

parameter Sigma increasing from 2 to 32 with fixed
parameters (mmin, mmax) = (50, 250) and (mmin, mmax) =
(100, 120), respectively. Figure 9c, d shows the resulting
images of the experiment in Figure 9a, b, respectively.
In Figure 9a, b, we can see that the parameter Sigma
significantly influences the image contrast after enhance-
ment processing. A smaller (larger) value of Sigma leads
to a smaller (larger) value of overall contrast; hence, the
parameter Sigma is useful to control the overall contrast
of the enhanced output.
Summarizing the parameter tweaking experiment, we

have the following observations.
(1) In the proposed method, the parameters mmin and

mmax control the overall lightness of the enhanced
output.
(2) In contrast to observation (1), the parameter Sigma

controls the overall contrast of the enhanced output.
(3) Based on the observations (1) and (2), the pro-

posed method thus provides capability to simultaneously
and adjustably enhance the overall lightness and con-
trast of the enhanced output.

5.2. Quantitative comparison with other methods
In this section, the performance of the proposed algo-
rithm was tested by employing 30 test images, which
include insufficient lightness and contrast images. The
quantitative method presented in [23], which had been
used in previous studies [12,15,24], is employed in the
experiments to quantitatively evaluate the performance
of the proposed method and three state-of-the-art meth-
ods: MSR [14], adaptive and integrated neighborhood-
dependent approach for nonlinear enhancement (AIN-
DANE) [12], and WDRC [18]. Table 1 tabulates the
parameter setting for each compared method used in
the experiments. For the proposed method, the values of
parameters mmin and mmax are set as 50 and 250,
respectively. The value of parameter Sigma is tweaked
from 4 to 16, which empirically generates satisfactory
local contrast enhancement results.
Table 2 records the quantitative measure of the

enhanced results obtained by the proposed method
together with those from other methods for comparison.
In Table 2, the symbols Ī and σ̄ denote the mean of image
and the mean of regional standard deviation, respectively.
Furthermore, the values in bolditalic font in Table 2 indi-
cate that the quantitative measure falls in the VO region
defined in Figure 6. From Table 2, it is clear that the pro-
posed SDRCLCE method with Sigma 16 achieves good
enhancement on image lightness and local contrast in
most of the test images. Moreover, when one compares
the average quantitative measure of all 30 test images, the

Visually
Optimal

40 80

Mean of 
Image

Mean of Standard
Deviation

100

200

Insufficient
Contrast

and
Lightness

Insufficient
Lightness

Insufficient
Contrast

Figure 6 Concept of the statistics of visual representation. The
VO region approximately ranges from 40 to 80 for the mean of
regional standard deviation and from 100 to 200 for the image
mean.
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MSR method, WDRC method, and the proposed
SDRCLCE method with Sigma 8 and Sigma 16 generate
the average quantitative measures satisfying good visual
representation condition defined from the VO region. By
comparing the gap of average quantitative measure
between the original images and the enhanced ones, the
improvement of the proposed SDRCLCE method can pro-
vide significant enhancement on both image lightness and
local contrast when increasing the value of parameter
Sigma. This can also be seen from Table 2 that the total
number of quantitative measures falling in the VO region
for the proposed method is increased when increasing
Sigma from 4 to 16. Moreover, the proposed SDRCLCE
method with Sigma 16 provides the maximum number of
quantitative measures falling in the VO region compared
with the other methods. This implies that the proposed

SDRCLCE method not only provides a significantly
improvement on the enhanced results, but also possesses
the adjustability to control the level of enhancement
achieved at the output.
Remark 1
It is difficult to find the global optimal values of the
parameters of the proposed method since the visual
quality of an image depends not only on the nature of
the image, but also on the displaying equipment and
user preference. However, the quantitative evaluation
method based on the VO region provides a possible way
to find the suboptimal settings for the proposed method.
Hence, the results shown in Table 2 indicate that the
suboptimal values of the parameters of the proposed
method could be mmin = 50, mmax = 250, and Sigma =
16 for the employed test images.

 

 
(a) 

 
(b) 

    (c) 
Original 40min 4m  60min 6m  80min 8m  100min 1m  
 

    (d) 
Figure 7 Experiment results of tweaking mmin from 40 to 100 with fixed Sigma = 16 and (a) mmax = 150; (b) mmax = 250; (c) resulting
images of experiment (a); (d) Resulting images of experiment (b).
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Remark 2
Although increasing the value of parameter Sigma is
able to increase the local contrast enhancement capabil-
ity of the proposed method, it may introduce unwanted
artifacts, such as image noise and halo effects [6], in the
enhanced output. This problem can be resolved by com-
bining a Gaussian-pyramid-based adaptive scale selec-
tion method [6] or a multi-scale convolution method
[12] with the proposed method; however, this design
usually requires lots of computations and decreases the
computational efficiency of the entire enhancement pro-
cess. Therefore, if real-time processing is required, such
as real-time video enhancement, visual tracking, visual
servoing, etc., the proposed method with a fixed and
suitable Sigma value provides a high throughput
enhancement process with acceptable results.

Empirically, the value of Sigma can be set from 2 to 16
that provide a satisfactory result with fewer artifacts.

5.3. Visual comparison with other methods
Figures 10a and 11a show the test images no. 29 and 30,
respectively. Both images represent with insufficient
lightness and contrast as indicated in Table 2. Figure
10b-d is the enhanced results obtained from MSR
method, AINDANE method, and WDRC method,
respectively. From visual comparison, it is clear that
each compared method preserves the contrast between
different regions of the image to produce a significant
improvement on the visual appearance. However, these
methods may not enhance the fine details in dark area
surrounded by bright area in the resulting images, such
as the words on the signboard in Figure 10, due to

 

 
(a) 

 
(b) 

    (c) 
Original 150max 1m  190max 1m  210max 2m 250max 2m  
 

    (d) 
Figure 8 Experiment results of tweaking mmax from 150 to 250 with fixed Sigma = 16 and (a) mmin = 50; (b) mmin = 100; (c) resulting
images of experiment (a); (d) Resulting images of experiment (b).
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preserving the difference between regional brightness in
different regions of the image.
In contrast, the proposed method may deteriorate

visual appearance of the enhanced images since the
resulting images of the proposed method have a com-
pressed dynamic range with high local contrast that
might cause an unnatural image appearance. However,
the proposed method performs better in fine details
restoration in dark regions and local contrast

enhancement in bright regions of the image. Figure 10e
shows the enhancement result obtained from the pro-
posed adaptive intensity transfer function (11) with
Sigma 16. In Figure 10e, it is clear that the proposed
intensity transfer function restores the fine details in
dark regions but decreases the local contrast in bright
regions in the resulting image. Figure 10f illustrates the
enhanced results obtained by the proposed SDRCLCE
method (17) with a = 1 (local contrast preservation)

 

 
(a) 

 
(b) 

    (c) 
Original 22Sigma  88Sigma  161Sigma  323Sigma  
 

    (d) 
Fi 9

Figure 9 Experiment results of tweaking Sigma from 2 to 32 with (a) fixed mmin = 50 and mmax = 250; (b) fixed mmin = 100 and mmax

= 120; (c) resulting images of experiment (a); (d) Resulting images of experiment (b).

Table 1 Parameter setting for each compared method used in the experiments

Compared method Parameter setting

MSR [14] N = 3, c1 = 15, c2 = 80, c3 = 250, G = 200, b = 135, wn = 1/3

AINDANE [12] Single scale with Sigma = 64

WDRC [18] Fourth-order Daubechies wavelet, d = 2.0 for contrast enhancement

Proposed method mmin = 50, mmax = 250, Sigma = {4, 8, 16}
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and Sigma 16. It can be seen in Figure 10f that the pro-
posed SDRCLCE method simultaneously restores the
fine details in dark regions and preserves the local con-
trast in bright regions in the resulting image. Further-
more, Figure 10g-i is the enhanced results obtained by
the proposed method (17) with a = -1 (local contrast
enhancement) and Sigma 4, Sigma 8, and Sigma 16,
respectively. The resulting images show that the overall
fine details and local contrast of the image are enhanced
accordingly as the value of Sigma increases. Therefore,
the proposed SDRCLCE method is able to produce a
significant improvement on the visual quality of LDR

images, which can also be seen from Figure 11. In Fig-
ure 11, each compared method produces unnatural
image appearance, which is caused by over-enhancing
the dark regions while preserving the regional brightness
difference between dark and bright areas in the image.
On the other hand, the proposed SDRCLCE algorithm
with the adaptive intensity transfer function produces a
satisfactory enhancement result that not only restores
the fine details, but also enhances the local contrast of
the object with fewer artifacts. Therefore, these experi-
mental results validate that the proposed method satis-
factorily enhances the visual quality of LDR images in

Table 2 Quantitative measure of enhanced images

Image no Method State-of-the-art methods SDRCLCE method with adaptive intensity transfer function for
mmin = 50 and mmax = 250

Original image MSR [14] AINDANE [12] WDRC
[18]

Sigma 4 Sigma 8 Sigma 16

σ̄ Ī σ̄ Ī σ̄ Ī σ̄ Ī σ̄ Ī σ̄ Ī σ̄ Ī
1 17.9 159.2 27.0 153.4 25.9 186.0 25.9 180.6 23.2 182.2 27.0 182.0 30.5 181.9

2 29.5 121.2 52.3 141.6 39.0 159.2 47.9 160.1 53.5 168.8 60.4 168.8 64.4 168.5

3 21.4 142.9 40.5 147.4 34.2 231.0 33.6 175.2 26.0 178.4 31.6 178.3 38.3 178.4

4 22.2 118.6 32.6 146.6 27.9 167.0 34.6 155.8 24.9 169.2 29.8 168.9 36.0 168.1

5 21.5 132.3 35.1 148.5 28.2 197.6 32.8 168.9 25.5 175.1 31.2 175.0 36.9 174.9

6 39.8 95.4 73.5 135.5 57.3 147.0 65.1 136.9 61.5 151.6 71.2 149.8 79.2 147.2

7 24.7 142.1 37.7 133.7 33.5 165.7 39.9 172.7 41.5 178.4 47.3 177.6 51.9 176.8

8 28.1 119.8 49.1 141.2 37.8 158.9 46.1 157.9 35.1 167.6 45.5 167.1 54.3 166.3

9 27.2 58.5 71.2 104.6 55.4 119.4 59.5 96.4 60.0 109.9 69.2 110.5 75.7 110.1

10 21.1 138.4 28.3 138.3 28.8 156.7 32.8 171.3 27.8 175.4 33.3 175.4 38.5 175.6

11 22.3 127.5 30.8 136.9 30.4 148.4 34.1 165.6 28.3 172.0 34.5 171.7 40.5 171.4

12 27.0 104.6 46.6 133.7 38.9 154.4 44.6 148.1 41.5 157.8 47.6 156.7 54.1 155.3

13 23.3 171.2 26.4 135.0 29.2 180.7 31.6 184.8 24.7 185.7 29.4 185.2 35.2 184.7

14 37.0 115.4 59.5 130.8 43.8 157.2 54.9 148.3 59.2 162.2 65.7 160.0 70.9 157.9

15 31.0 108.7 58.6 141.2 43.3 157.9 52.7 143.2 47.2 157.2 55.6 156.4 63.0 155.6

16 31.9 130.4 49.4 129.9 44.0 177.4 47.2 153.3 38.3 169.7 44.9 168.8 52.3 166.9

17 18.3 108.9 34.5 134.7 24.2 157.2 35.3 156.3 35.6 163.2 39.8 162.9 44.2 162.5

18 24.6 84.0 53.4 121.6 38.3 141.2 47.7 129.6 36.5 141.9 45.0 141.5 54.2 140.8

19 28.7 83.6 56.6 141.5 43.0 147.3 51.9 133.0 50.3 146.1 59.2 145.4 66.0 144.3

20 24.0 126.4 36.1 135.2 31.0 161.4 37.2 160.8 34.5 170.6 39.9 169.6 44.5 168.8

21 24.4 105.3 54.9 110.7 49.9 150.8 45.7 127.9 45.2 125.6 50.1 125.6 54.2 125.4

22 25.7 129.8 40.3 135.7 33.1 166.7 38.7 162.6 38.1 170.9 43.6 169.8 48.2 168.4

23 22.6 125.9 35.9 143.5 29.4 160.2 35.7 162.3 33.1 172.4 39.0 171.8 43.5 170.9

24 24.3 133.3 31.0 152.1 30.3 176.8 35.1 159.7 22.8 174.4 27.1 174.0 31.9 173.1

25 30.5 115.9 49.2 132.3 36.8 155.4 48.3 149.8 43.0 166.7 50.7 165.4 57.6 163.5

26 21.8 116.0 36.1 133.3 29.4 172.5 37.7 156.0 27.8 165.7 34.5 164.9 41.2 164.0

27 19.7 98.9 42.5 136.9 27.7 162.3 36.2 150.1 27.6 161.8 35.4 161.4 42.7 160.6

28 10.0 104.8 27.3 132.0 17.1 158.7 23.3 156.9 24.5 158.3 27.8 158.4 30.6 158.4

29 30.0 76.3 64.6 110.2 56.1 134.9 55.8 110.6 48.7 116.1 56.8 115.3 63.9 114.7

30 14.2 27.6 51.3 89.3 44.0 109.0 37.2 63.9 26.0 61.0 29.9 61.0 34.8 61.1

Avg 24.8 114.1 44.4 133.6 36.3 160.6 41.6 150.0 37.1 158.5 43.4 158.0 49.3 157.2

Avg gap 19.6 19.5 11.5 46.5 16.8 35.9 12.3 44.4 18.6 43.9 24.5 43.1

Number in VO region 16 9 13 11 15 21

The bold-italic font denotes the quantitative measures falling in the VO region defined in Figure 6.
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terms of dynamic range compression and local contrast
enhancement as we expected.
Figure 12 shows the resulting images obtained from

the proposed method with linear RGB and YCbCr color
remapping approaches presented in Section 4. Figure

12a illustrates the test image no. 9, which also repre-
sents with insufficient lightness and contrast as indi-
cated in Table 2. Figure 12b presents the resulting
image obtained from the proposed method with linear
RGB color remapping. In order to evaluate the

(a)        (b)       (c)

(d)        (e)       (f)

(g)        (h)       (i)
Figure 10 Enhancement results of test image No. 29. (a) Original picture; enhanced by (b) MSR method, (c) AINDANE method, (d) WDRC
method, (e) the proposed adaptive intensity transfer function with Sigma 16, the proposed SDRCLCE method with (f) a = 1 (local contrast
preservation) and Sigma 16, the proposed method with a = -1 (local contrast enhancement) and (g) Sigma 4, (h) Sigma 8, (i) Sigma 16.
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performance of the proposed linear YCbCr color remap-
ping method, the original image is first transformed into
YCbCr color space, and the proposed SDRCLCE method
is then applied to the Y component only. Figure 12c
shows the result obtained by only enhancing Y compo-
nent while preserving Cb, Cr components. It can be
observed in Figure 12c that resulting image represents
with less saturated colors because of leaving chromi-
nance components unchanged. To overcome this pro-
blem, the proposed linear YCbCr color remapping
method is applied to the enhanced YCbCr color image,
and Figure 12d shows the resulting image after trans-
forming from YCbCr into RGB color space. As can be
seen by visually comparing Figure 12d with b, the result-
ing images of the proposed method with linear YCbCr

color remapping approach are similar to, but not the
same as, the results obtained with linear RGB color
remapping. This problem is caused by that it is

suggested to use HSV intensity value in the RGB color
image enhancement to achieve color consistency [25];
however, the enhancement process in YCbCr color space
is difficult to obtain the HSV intensity value since
YCbCr color image uses NTSC intensity value as the
luminance component based on NTSC standard. There-
fore, the proposed YCbCr color remapping approach is
helpful to speed up the process of video signal enhance-
ment, but it may result inconsistent colors, like the blue
colors in Figure 12, in the enhanced image.
Remark 3
Color constancy is an important issue in the topic of
color image enhancement. In the current design, the
proposed method cannot handle color constancy pro-
blem and fails to produce color constant results for the
images with color cast or color shift. However, this pro-
blem can be resolved by combining a color restoration
algorithm, such as white-patch algorithm [26] or color

(a)       (b)       (c)

(d)       (e)       (f)

(g)       (h)       (i)
Figure 11 Enhancement results of test image No. 30. (a) Original picture; enhanced by (b) MSR method, (c) AINDANE method, (d) WDRC
method, (e) the proposed adaptive intensity transfer function with Sigma 16, the proposed SDRCLCE method with (f) a = 1 (local contrast
preservation) and Sigma 16, the proposed method with a = -1 (local contrast enhancement) and (g) Sigma 4, (h) Sigma 8, (i) Sigma 16.
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correction algorithm [27], with the proposed method to
remove color cast from the enhanced results. In this
article, we do not cover the color restoration problem
and only focus the topic on dynamic range compression
with local contrast enhancement problem.

5.4. Computational speed
The proposed method had been implemented in C++
in Windows XP environment on a PC with Intel Core
2 processor, which is running at 2.4 GHz with 2GB of
memory. In our implementation, a fast Gaussian filter

was employed to improve the computing performance
for the proposed method. Moreover, the process of
the proposed SDRCLCE method was implemented
using parallel programming with OpenMP to improve
the computational efficiency. The processing time
required for the proposed method is compared with
AINDANE and MSR methods, which are also imple-
mented in C++. Furthermore, the process of MSR
method was accelerated by using Intel OpenCV
library. Table 3 tabulates the processing time required
for each method to process images with various sizes.

(a)          (b)

(c)          (d)
Figure 12 Validation of the proposed linear YCbCr color remapping method. (a) Original picture; enhanced by the proposed method with
(b) linear RGB color remapping, (c) only enhancing Y component while preserving Cb, Cr components, and (d) linear YCbCr color remapping.

Table 3 Processing time comparison for RGB image enhancement

RGB image size (pixel) State-of-the-art methods Processing time by SDRCLCE method

Processing time by MSR (ms) Processing time by AINDANE (ms) Sigma 4 (ms) Sigma 8 (ms) Sigma 16 (ms)

320 × 240 49.4829 158.0348 4.9578 6.3952 9.0608

640 × 480 184.8582 348.5715 20.8365 26.2822 35.4939

1280 × 1024 453.8085 1039.0391 107.8380 125.8824 157.7201
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From Table 3, it is obviously that the parallelized
SDRCLCE method requires less processing time, fol-
lowed by OpenCV accelerated MSR method and sin-
gle-scale AINDANE method. The process of
AINDANE method is difficult to parallelize efficiently
since it was developed based on a sequential process
framework. Although the process of MSR method
could also be parallelized, it requires processing all
three color bands and performs weighted sum of sev-
eral different scale outputs in the logarithmic domain,
which is done with floating point operations and thus
decreases the computational efficiency. From the
experimental results, the processing time of SDRCLCE
method takes less than 40 ms in average for a full
color image with size 640 × 480 pixels that is suitable
for many real-time applications.

6. Conclusion and future work
This article proposed a novel image enhancement
algorithm which simultaneously accomplishes
dynamic range compression and local contrast
enhancement. One merit of the proposed method is
that the proposed SDRCLCE algorithm can combine
with any monotonically increasing and continuously
differentiable intensity transfer function, such as the
typical gamma curve, to achieve dynamic range com-
pression with local contrast preservation/enhance-
ment for LDR images. Moreover, a novel intensity
transfer function is proposed to adaptively control the
curvature of the processed intensity mapping curve
for each pixel depending on the local mean value. By
combining the proposed intensity transfer function
with SDRCLCE algorithm, the proposed method pos-
sesses the adjustability to separately control the level
of enhancement on the overall lightness and contrast
achieved at the output. The proposed method is also
extended to combine with a linear RGB/YCbCr color
remapping algorithm that preserves color information
of the original image during image/video enhance-
ment process. Therefore, the proposed method pro-
vides a useful lightness-contrast enhancement
solution for the applications of image/video proces-
sing because of the flexible adjustability with image
color preserving. The performance of the proposed
SDRCLCE method has been compared with three
state-of-the-art methods, both quantitatively and
visually. Experimental results show that the proposed
SDRCLCE method not only outperforms all of them
in terms of dynamic range compression and local
contrast enhancement, but also provides good visual
representation in visual comparison. Moreover, the
proposed method is amenable to parallel processing,
which improves the processing speed of SDRCLCE
method to satisfy the requirement of real-time

applications. The combination with a color restora-
tion algorithm is left to our future study.

Appendix
This appendix presents the derivation of Equation 5
from (4). Let Ωxy denote a neighborhood of specified
size, centered at (x, y). The value of output local average
luminance of the pixels in Ωxy can be calculated by the
expression

gavg(x, y) =
∑

(i,j)∈�xy

wi,jyT(x + i, y + j), (A1)

where wi,j for (i, j) Î Ωxy are the weights satisfying∑
(i,j)∈�xy

wi,j = 1. Substituting (4) into (A1), we have

gavg(x, y) =
∑

(i,j)∈�xy

wi,jT[Iin(x + i, y + j)], (A2)

where the term T[Iin(x+i, y+j)] can be approximated
by a first-order Taylor series expansion such that

T[Iin(x + i, y + j)] ∼= T[Iin(x, y)] +
dT(X)
dX

∣∣∣∣
X=Iin(x,y)

× [
Iin(x + i, y + j) − Iin(x, y)

]
.(A3)

Substituting (A3) into (A2) yields

gavg(x, y) ∼= T[Iin(x, y)] +
dT(X)
dX

∣∣∣∣
X=Iin(x,y)

×
⎡
⎣ ∑

(i,j)∈�xy

wi,jIin(x + i, y + j) − Iin(x, y)

⎤
⎦ , (A4)

where
∑

(i,j)∈Sxy
wi,jIin(x + i, y + j) = Iavg(x, y), and thus

the derivation of (5) is completed.
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