Liao and Chen EURASIP Journal on Image and Video Processing 2011, 2011:5
http://jivp.eurasipjournals.com/content/2011/1/5

® EURASIP Journal on Image and Video Processing

a SpringerOpen Journal

RESEARCH Open Access

A packet-layer video quality assessment model
with spatiotemporal complexity estimation

Ning Liao~ and Zhibo Chen

Abstract

A packet-layer video quality assessment (VQA) model is a lightweight model that predicts the video quality
impacted by network conditions and coding configuration for application scenarios such as video system planning
and in-service video quality monitoring. It is under standardization in ITU-T Study Group (SG) 12. In this article, we
first differentiate the requirements for VOA model from the two application scenarios, and state the argument that
the dataset for evaluating the quality monitoring model should be more challenging than that for system planning
model. Correspondingly, different criteria and approaches are used for constructing the test datasets, for system
planning (dataset-1) and for video quality monitoring (dataset-2), respectively. Further, we propose a novel video

estimation

quality monitoring model by estimating the spatiotemporal complexity of video content. The model takes into
account the interactions among content features, the error concealment effectiveness, and error propagation
effects. Experiment results demonstrate that the proposed model achieves robust performance improvement
compared with the existing peer VOA metrics on both dataset-1 and dataset-2. It is noted that on the more
challenging dataset-2 for video quality monitoring, we obtain a large increase in Pearson correlation from 0.75 to
0.92 and a decrease in the modified RMSE from 041 to 0.19.
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1. Introduction

With the development of video service delivery over IP
networks, there is a growing interest in low-complexity
no-reference video quality assessment (VQA) models for
measuring the impact of transmission losses on the per-
ceived video quality. No-reference VQA model generally
uses only the received video with compression and
transmission impairment as model input to estimate the
video quality. No-reference model fits better with the
real-world situation where customers usually watch
IPTV or streaming video without the original video as
reference.

In ITU-T Study Group (SG) 12, there is a recent study
[1] on the no-reference objective VQA models (e.g., P.
NAMS [2], G. Opinion Model for Video Streaming
(OMVS), P.NBAMS [3]) considering impairment caused
by both transmission and video compression. In litera-
tures, depending on the inputs, the no-reference models
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can be classified as packet-layer model, bitstream-level
model, media-layer model, and hybrid model, as shown
in Figure 1.

A media-layer model employs with pixel signal. Thus,
it can easily obtain content-dependent features that
influence video quality, such as texture-masking effects
and motion-masking effects. However, a media-layer
model usually needs special solutions (e.g., [4]) for locat-
ing the impaired parts in the distorted video because of
the lack of information on packet loss.

A packet-layer model (e.g., PNAMS) utilizes various
packet headers (e.g., RTP header, TS header), network
parameters (e.g., packet loss rate (PLR), delay), and
codec configuration information as input to the model.
Obviously, this type of model can roughly locate the
impaired parts by analyzing the packet headers. How-
ever, how to take the content-dependent features into
account is a big challenge to this model.

A bitstream-level model (e.g., PNBAMS, [5]) uses the
compressed video bitstream in addition to the packet
headers as input. Thus, it is not only aware of the location
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Figure 1 Scope of the four types of VQA models. The columns are four types of input information to the models.

of the loss-impaired parts of video, but also has access to
video-content feature and the detailed encoding para-
meters by parsing the video bitstream. It is supposed to be
more accurate than a packet-layer model at a cost of
slightly higher computational complexity. However, in the
case that video bitstream is encrypted, only packet-layer
model works.

Hybrid model uses the pixel signal in addition to the
bitstream and the packet headers to further improve
video quality prediction accuracy. Because the various
error concealment (EC) artifacts become available only
after decoding video bitstream into pixel signal, in prin-
ciple it can provide the most accurate quality prediction
performance. However, it has much higher computa-
tional complexity.

The packet-layer model, which primarily estimates the
video quality impairment caused by unreliable transmis-
sion, is studied in this article.

Two use cases of packet-layer VQA models have been
identified in ITU-T SG12/Q14: video system planning
and in-service video quality monitoring.

As a video system planning tool, parametric packet-
layer model can help to determine the proper video enco-
der parameters and network quality of service (QoS)
parameters. This can avoid over-engineering the applica-
tions, terminals, and networks while guaranteeing user’s
satisfactory QoE. ITU-T G.OMVS and G.1070 [6] for
videophone service are the examples of the video system
planning model.

For video quality monitoring application, usually opera-
tors or service providers need to ensure video quality ser-
vice level agreement by monitoring and diagnosing video
quality degradation caused by network issues. Since
packet-layer model is computationally lightweight, it can
be deployed in large scale along the media service chain.
The video quality model of ITU-T standard P.NAMS
(Non-intrusive parametric model for the Assessment of

performance of Multimedia Streaming) is specifically
designed for this purpose.

In general, two approaches can be followed in packet-
layer modeling. One is the parameter-based modeling
approach [6-9] and another is the loss-distortion chain-
based modeling approach [5]. The parameter-based
approach estimates perceptual quality by extracting the
parameters of a specific application (e.g., coding bitrate,
frame rate) and transmission packet loss, then building a
relationship between the parameters and the overall video
quality. Obviously, the parametric packet-layer model is in
nature consistent with the requirement of system plan-
ning. However, it predicts the average video quality over
different video contents. The coefficient table of this
model needs to change with the codec type and configura-
tion, the EC strategy of a decoder, the display resolution,
and the video content types. Noticeably, the models in
[6,8,9] were claimed to achieve a very high Pearson corre-
lation above 0.95, and the RMSE lower than 0.3 on the
5-point rating scale or 7 on the 0-100 rating scale, even if
the video content features were not considered in the
models. This motivated us to verify the results and look
into the ways of setting up training and evaluation dataset
on which the model performance directly depends.

Loss-distortion chain-based approach [5] has the merit
of accounting in error propagation, content features, and
EC effectiveness. Since iteration process is generally
involved in, it is suitable for quality monitoring, not for
system planning model. Keeping low computational com-
plexity, which is very important to in-service monitoring,
is one challenge for this approach. Another challenge is
to estimate the video content and compression informa-
tion at packet layer. Our proposed model follows this
approach and deals with the challenges.

The main contributions of this article are in two
aspects. First, we differentiate the requirements for
packet-layer model from two application scenarios: video
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system planning and video quality monitoring. We design
the respective criteria and methods to select the pro-
cessed video sequences (PVSs) for subjective evaluation
when setting up the subjective mean opinion score
(MOS) database. This helps us to explain why the above-
mentioned parametric packet-layer models had a high
performance even if the video content feature was not
taken into consideration. Furthermore, we state the argu-
ment that the dataset for evaluating the video quality
monitoring model should be more challenging than that
for video system planning model.

Second, we propose a novel quality monitoring model,
which has low complexity and fully utilizes the video
spatiotemporal complexity estimation at packet layer. In
contrast to the parametric packet-layer models, it takes
into consideration the interaction among video content
features and EC effect and error propagation effect, thus
improves estimate accuracy.

The rest of the article is organized as follows. In Section
2, we review several literatures that motivated this study.
The novelty of this study is then discussed. In Section 3,
two different criteria and methods are used to set up
respective datasets for monitoring and planning scenarios.
In Section 4, the proposed VQA model is described.
Experimental results are discussed in Section 5. Conclu-
sions and future work are discussed in Section 6.

2. Related work

The recent studies [10-13] are somehow related to the
idea of our proposed model. In [10,11], the contributing
factors to the visibility of artifacts caused by lost packet(s)
were studied; video quality metrics based on the visibility
of packet loss were developed in [12,13].

The factors to the visibility of a single packet loss were
studied in [10] for MPEG-2 compressed video. The top
three most important factors were the magnitude of over-
all motion which is the average across all macroblocks
(MBs) initially affected by loss, the type (I, B, or P) of the
frame (FRAMETYPE) in which packet loss occurred, and
the initial MSE (IMSE) of the error-concealed pixels.
Further, the visibility of multiple packet losses in H.264
video was studied in [11]. Again, the IMSE and the FRA-
METYPE are identified as the most important factors to
the visibility of losses. Besides, it was shown that the IMSE
is very different because of the different concealment stra-
tegies [11]. It can be seen that the accurate detection of
the initial visible artifacts (IVA) and the error propagation
effects are two important aspects to be considered in a
packet-layer VQA model. Furthermore, the different EC
effects should be considered when estimating the annoy-
ance level of IVA.

Yamada et al. [12] developed a no-reference hybrid
video quality metric based on the count of the MBs for
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which the EC algorithm of a decoder is identified as
ineffective. Classifying lost MBs based on the error-
concealment effectiveness can be essentially regarded as
an operation to classify the visibility of the artifacts caused
by packet loss(s). Suresh [13] reported that the simple
metric of mean time between visible artifacts has an aver-
age correlation of 0.94 with subjective video quality.

There are two major novel points in our proposed
model. First, the IVA of a frame suffering from packet loss
and EC is estimated based on the EC effectiveness. Unlike
[12], the EC effectiveness is determined based on the
spatiotemporal complexity estimation with packet-layer
information; and the different EC effects are considered.
Second, the IVA is incorporated into an error propagation
model to predict the overall video quality. The estimate of
spatiotemporal complexity is employed to modulate the
propagation of the IVA in the error propagation model.
The performance gain resulting from the spatiotemporal
complexity-based IVA assessment and from using the
error propagation model is analyzed in the experiment
section.

3. subjective dataset and analysis

As described above, the packet-layer video QoE assess-
ment model has two typical application scenarios, video
system planning and in-service video quality monitoring,
each of which has different requirements. The video
system planning model is for network QoS parameter
planning and video coding parameter planning, given a
target video quality. It predicts average perceptual qual-
ity degradation, ignoring the impact of different distor-
tion and content types on the perceived quality.
Therefore, it should predict well the quality of the loss-
affected sequences with large occurrence probability.
Whereas, the VQA model for monitoring purpose is
expected to give quality degradation alarm with high
accuracy and should be able to estimate as accurate as
possible the quality of each specific video sequence dis-
torted by packet losses. Correspondingly, the respective
subjective dataset for training and evaluating the plan-
ning model and the monitoring model should be built
differently. Further analysis of the PVSs in Sections 3.3
and 3.4 illustrates that the different EC effects and the
different error propagation effects are two of the most
important factors to the perceptual quality of packet-
loss distorted videos.

There are mutual influences between the perception
of coding artifacts and that of transmission artifacts
especially at low coding bitrate [14]. In our subjective
database, visible coding artifact is not considered by set-
ting the quantization parameter (QP) to a certain smal-
ler value. Only the video quality degradation cause by
transmission impairments is discussed in this article.
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3.1 Subjective test

Video QoE is both application-oriented and user-
oriented assessments [15]. Viewer’s individual interests,
quality expectation, and service experience are among
the contributing factors to the perceived quality. To
compensate the subjective variance of these factors,
usually MOS averaged over a number of viewers (called
subjects hereafter) is used as the quality indication of a
video sequence. Moreover, to minimize the variance of
subjects’ opinion caused by these factors, subjective test
should be conducted under well-controlled environ-
ment; subjects should be well instructed about the task
and video application scenario, which influences the
subjects’ expectation to video quality.

The absolute category rating with hidden reference
method specified in ITU-P.910 [16] is adopted in our
experiment. It is a single stimulus method where a pro-
cessed video is present alone. The five scales shown in
Figure 2 are used for evaluating the video quality.
Observers are instructed to focus on watching video
program instead of scrutinizing visual artifacts. Before
the subjective test, observers are required to watch 20
training sequences that evenly cover the five scales, and
to write down their understanding of the verbal scales
in their own words. Interestingly, the most of the
description of the five scales are heavily related to video
content, not merely related to the amount of noticeable
artifacts as described in [17]. The descriptions can be
summarized as follows:

- Imperceptible: “no artifact (or problematic area) can
be perceived during the whole video display period”.

-Perceptible but not annoying: “artifact can be per-
ceived occasionally, but it does not influence the inter-
ested content, or it appears in the background for an
instant moment”.

5: imperceptible

4: perceptible but not annoying

3: slight annoying

2: annoying

1: very annoying
Figure 2 Five point impairment scales of perceptual video
quality.

Page 4 of 13

- Slightly annoying: “the noticeable artifact appearing
in the region of interest (ROI) is identified, or noticeable
artifacts are detected for several instant moments even if
they do not appear in the ROI”.

- Annoying: “noticeable artifact appears in ROI for sev-
eral times or many noticeable artifacts are detected and
last for a long time”.

- Very annoying: “video content cannot be understood
well due to artifacts and the artifacts spread all over the
sequence”.

Twenty-five non-expert observers are asked to rate the
quality of the selected 177 PVSs of 10 s. The scores given
by these subjects are processed to discard subjects who
are suspected to have voted randomly. Then for each
PVS, a subjective MOS and a 95% confidence interval
(CI) are computed using the scores of the valid subjects.
As shown in Figure 3, for PVSs of middle quality, the
subjectivity variation is higher; for sequences of very
good or very bad quality, the subjects tend to reach a
more consistent opinion with high probability. This
observation is similar to the previous report in [14]. Since
the subjective MOS itself has statistical uncertainty
because of the abovementioned subjective factors, it is
reasonable to allow certain prediction error (e.g., less
than Clgs) when evaluating the prediction accuracy of an
objective model. Therefore, the modified RMSE [18]
described later in Equation 8 is used in our experiment.

3.2 Select PVSs for dataset

Six CIF format video contents, which cover a wide range
of spatial complexity (SC) index and temporal complexity
(TC) index [19], are used as original sequences, namely
Foreman, Hall, Mobile, Mother, News, and Paris. The six
sequences are encoded using H.264 encoder with two
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Figure 3 Standard deviations of MOSs; each point corresponds
to the standard deviation of the MOS of a PVS.
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sequence structures, namely, IBBPBB and IPPP. Group of
picture (GOP) size is 15 frames. A proper fixed QP is
used to prevent the compressed video from visible coding
artifacts. Each row of MBs is encoded as an individual
slice, and one slice is encapsulated into an RTP packet.
To simulate transmission error, the loss patterns gener-
ated at five PLRs (0.1, 0.4, 1, 3, and 5%) in [17] are used.
For each nominal PLR, 30 channel realizations are gener-
ated by starting to read the error pattern file at a random
point. Thus, for each original sequence, there are 150
realizations of packet loss corrupted sequences. Before
subjective evaluation test, we must choose some typical
PVSs from the large numbers of realizations.

Owing to the different requirements of planning and
monitoring scenarios, we choose the PVSs for subjective
test according to different criteria:

1. For each video content, select the PVSs that are
representatives of the dominant MOS-PLR distribu-
tion as done in [17];

2. For each video content, select the PVSs that cover
the MOS-PLR distribution widely by including the
PVSs of the best and the poorest quality at a given
PLR level, in addition to those representing the
dominant MOS-PLR distribution.

Actually, when we select the PVSs for the subjective test,
the subjective MOSs of the abovementioned 150
sequences is not available before subjective test. The
objective measurement PSNR is used as substitute of
MOS in the initial selection of PVSs; then the PVSs
selected in the initial round are watched and adjusted if
necessary to make sure that the subjective qualities of the
selected PVSs satisfy the above criteria. The PVSs chosen
by criteria-1 and criteria-2 are collectively named as data-
set-1 and dataset-2, respectively. Figure 4 shows the PLR-
MOS distribution and PSNR-MOS distribution of dataset-
1 and dataset-2. The PLR here is calculated as the ratio of
actually lost packets to the total transmitted packets for a
PVS. It can be seen that the PVSs in dataset-2 present
much more diverse relationship between PLR and subjec-
tive video quality than those in dataset-1. Because the
scales of “annoying” and “very annoying” are equally unac-
ceptable in real-world applications, we selected sequences
mostly of the MOSs ranging from 2 to 5, as shown in
Figure 4a,b. It is noted that, in subjective test, one
sequence with score one point for each video content is
included in each test session to balance the range of rating
scales, although they are not included in the datasets as
drawn in Figure 4.

In Figure 4c, the PLR-PSNR distribution for all the six
video contents spreads away from each other, whereas
in Figure 4a the PLR-MOS distributions for the mostly
video contents are mixed together. This phenomenon
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partially illustrates that the PSNR is not a good objective
measurement of video quality because it fails to take
into consideration the impact of video content feature
on human perception of video quality.

Figure 4b shows that PVSs present very different per-
ceptual qualities in dataset-2 even under the same PLR.
Taking the PLR of 0.86% for an example, the MOSs
vary from Grade 2 to Grade 4. PLR treats all lost data
as equal important to perceived quality, ignoring the
content and compression’s influence on perceived qual-
ity. It may be an effective feature on dataset-1 as shown
in Figure 4a, but is not an effective feature on dataset-2
for quality monitoring applications.

Unlike [6,8,9], our proposed objective model targets at
video quality monitoring application. The objective
model for monitoring purpose should be able to estimate
as accurately as possible the video quality of each specific
sequence distorted by packet loss. Correspondingly, the
dataset for evaluating the model performance should be
more challenging than that for planning model, i.e., the
proposed model should work well not only on dataset-1
but also on dataset-2.

3.3 Impact of EC

Both the duration and the annoyance level of the visible
artifacts contribute to the perceived video quality degrada-
tion. The annoyance level of artifacts produced by packet
loss depends heavily on the EC scheme of a decoder. The
goal of EC is to estimate the missing MBs in a compressed
video bitstream with packet losses, in order to provide a
minimum degree of perceptual quality degradation. EC
methods that have been developed roughly fall into two
categories: spatial EC approach and temporal EC
approach. In the spatial EC class, spatial correlation
between local pixels is exploited; missing MBs are recov-
ered by interpolation from neighbor pixels. In the tem-
poral EC class, both the coherence of motion field and the
spatial smoothness of pixels along edges cross block
boundary are exploited to estimate motion vector (MV) of
a lost MB. In H.264 JM reference decoder, spatial
approach is applied to conceal lost MBs of Intra-coded
frame (I-frame) using bilinear interpolation technique;
temporal approach is applied to conceal lost MBs for
inter-predicted frame (P-frame, B-frame) by estimating
MV of the lost MB based on the neighbor MBs” MVs.
Minimum boundary discontinuity criterion is used to
select the best MV estimate.

Visible artifacts produced by spatial EC scheme and by
temporal EC scheme are very different. In general, spatial
EC approach produces blurred estimates of the lost MB
as shown in Figure 5a, while the temporal EC approach
produces edge artifacts as shown in Figure 5b, if the
guessed MV is not accurate. The effectiveness of spatial
EC scheme is significantly affected by SC of the frame
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Figure 4 The processed sequences selected by criteria-1 and criteria-2.
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with loss, while that of the temporal EC scheme is signifi-
cantly affected by motion complexity around the lost
area. In Figure 5¢, although the fourth row of MBs is lost,
almost no visual quality degradation can be perceived
because of the stationary nature of the lost content.
Whereas, in Figure 5e, slightly noticeable artifacts appear
at the area near the mother’s hand, because of inconsis-
tent motion of the lost MBs and its neighbor MBs. In
Figure 5d, the second row of MBs is lost, but resulting in
hardly noticeable artifacts. This is because the lost con-
tent is of smooth texture.

3.4 Impact of error propagation

The duration of visible artifact depends on the error
propagation effects resulting from the inter-frame pre-
diction technique used in video compression. For the
same encoder configuration and channel conditions,
Figure 6 shows that the error propagation effects vary

significantly depending on different video contents, in
particular, on the SC and the TC of the video content.
For example, the 93th frame, in which four packets are
lost, is a P-frame. Because the head moves largely in the
ensuing frames of sequence foreman, the error in the
P-frame is propagated up to the 120th frame, which cor-
responds to about 1 s. Even if there is a correctly
received I frame at the 105th frame, the error is still
propagated to the 120th frame because of large motion,
two reference frames, and open GOP structure. In con-
trast, for sequence hall and mother having small motion,
propagated artifacts are almost invisible.

In general, an I-frame packet loss results in artifact
duration of GOP length, or even longer if open GOP
structure is used in compression configuration. The
more intra-coded MBs exist in inter-coded frames, the
more easily the video quality recovers from error, and
the shorter the artifact duration is. In general, the
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Figure 5 lllustration of EC effectiveness. (a) Artifacts produced by spatial EC technique; (b) artifacts produced by temporal EC technique in
area with camera pan; (c) no visible artifacts due to the stationary nature of the lost MBs; (d) very slightly noticeable artifacts produced by
spatial EC technique in area with smooth texture; (e) noticeable artifacts only in small area produced by temporal EC technique.

artifact duration caused by P-frame packet loss is less
than that by I-frame packet loss. However, the impact of
a P-frame packet loss can be significant, if large motion
exists in the packet and/or the packets temporally adja-
cent to it. The artifacts caused by a B-packet loss, if
noticeable, look like an instant glitch, because there is
no error propagation from B-frame and the artifacts last
merely for 1/30 s. When the motion in a lost B slice is
low, there are no visible artifacts at all.
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Figure 6 MSE per frame for different video sequences under
the same test condition.
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4. VQA model with spatiotemporal complexity
estimation

Both the effects of EC and the effects of error propaga-
tion have close relationship with the spatiotemporal
complexity of the lost packets and its spatiotemporally
adjacent packets. To improve prediction accuracy of
packet-layer VQA model in the quality monitoring case,
influence from video content property, EC strategy, and
error propagation should be taken into consideration as
much as possible. The proposed objective quality assess-
ment model is based on the video spatiotemporal com-
plexity estimation.

4.1 Spatiotemporal complexity estimation

For a video frame indexed as i, the parameter set ;
including frame size s;, number of total packets N; (otalr
number of lost packets N; ., and the location of lost
packet in the frame is calculated or recorded. The location
of lost packets in a video frame is detected with the assis-
tance of the sequence number field of RTP header. To
identify different frames, the timestamp in RTP header is
used. The frame size includes both lost packet size and
received packet size. For a lost I-frame packet, its size is
estimated as the average of the two spatially adjacent I-
frame packets that are correctly received or equal to the
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size of the spatially adjacent I-frame packet if there is only
one spatially adjacent I-frame packet correctly received.
For a lost P-frame packet, its size is estimated as the aver-
age size of the two temporally adjacent collocated P-frame
packets that are correctly received. Similar method is used
for size estimate of lost B-frame packet.

The SC and the TC of a slice encapsulated in a
packet, which can be roughly reflected by the packet
size variation, are estimated using an adaptive threshold-
ing method as shown in Figure 7. In general, I-frame
size is much larger than P-frame size, and P-frame size
larger than B-frame size. However, when the texture in
an I-frame is very smooth, the size of the I-frame is
small, which depends on QP used. In the extreme case
that the objects in a P-frame are almost stationary, the
size of the P-frame can be as small as that of a B-frame;
in another extreme case where the objects in a P- or B-
frame is rich of texture and diverse motion, the size of
the P- or B-frame can be as large as that of a I-frame.
In our database, each row of MBs is encoded as a slice;
therefore, each detected lost slice is classified with a SC
or TC level using adaptive threshold.

For P- or B-slice, if the slice size is larger than a
threshold Thrd,, then the slice is classified as high-TC
slice; otherwise, if the slice size is larger than a threshold
Thrd,, then the slice is classified as medium-TC slice;
otherwise, the slice is classified as low-TC slice. The two
thresholds are adapted from the empirical equations
[20] below. The variable av_nbytes is the average frame
size in a sliding window. The variant max_iframe is the
maximum I-frame size, and nslices is the number of
slices per frame.

Thrd; = ((max iframe x 0.995/4 + av nbytes x 2)/2) [nslices (1)

Thrdp = (av nbytes x 3/4) /nslices (2)
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For a I slice, if its size is smaller than thrdg, oo, then
the slice is classified as smooth-SC slice; otherwise, as
edged-SC slice. The thrdgyeowm is a function of coding
bitrate. In our experiment, thrdgm,eowm is set to 200 bytes
for CIF format sequences coded with H.264 encoder
and QP equal to 28.

4.2 Objective assessment model

The building block diagram of the proposed model is
shown in Figure 8. The packet information analysis
block uses the RTP/UDP header information to get a
set of parameters ; for each frame. These parameters
and the encoder configuration information are used by
visible artifacts detection module to calculate the level
of visible artifacts (LoVA) for each frame. The encoder
configuration information includes GOP structure,
n