Matei et al. EURASIP Journal on Image and Video Processing 2011, 2011:21

http://jivp.eurasipjournals.com/content/2011/1/21

® EURASIP Journal on Image and Video Processing

a SpringerOpen Journal

RESEARCH Open Access

Novel data storage for H.264 motion
compensation: system architecture and hardware

implementation

Flena Matei'", Christophe van Praet', Johan Bauwelinck', Paul Cautereels® and Edith G de Lumley?

Abstract

12623 fps for CIF and QCIF formats.

Quarter-pel (g-pel) motion compensation (MC) is one of the features of H.264/AVC that aids in attaining a much
better compression factor than what was possible in preceding standards. The better performance however also
brings higher requirements for computational complexity and memory access. This article describes a novel data
storage and the associated addressing scheme, together with the system architecture and FPGA implementation of
H.264 g-pel MC. The proposed architecture is not only suitable for any H.264 standard block size, but also for
streams with different image sizes and frame rates. The hardware implementation of a stand alone H.264 g-pel MC
on FPGA has shown speeds between 95.9 fps for HD1080p frames, 229 fps for HD 720p and between 2502 and

Keywords: motion compensation, quarter-pel, address, memory, H.264 decoder, FPGA

1 Introduction

H.264.AVC [1] is one of the latest video coding stan-
dards which can save up to 45% of a stream’s bit-rate
compared with the previous standards. The coding effi-
ciency is mainly the result of two new features: variable
block-size MC and quarter-pel (q-pel) interpolation
accuracy. More precisely, the H.264 standard proposes
several partition sizes for each macroblock (MB is a
group of 16 x 16 pixels). In the inter-prediction
approach, each partitioned block takes as estimation a
block in the reference frame that is positioned at inte-
ger, half or quarter pixel location. This fine granularity
provides better estimations and better residual compres-
sion. Unfortunately, the better performance brings also
higher requirements with respect to computational com-
plexity and memory access. The H.264 decoder is about
four times more complex than the MPEG-2 decoder
and about two times more complex than the MPEG-4
Visual Simple Profile decoder [2]. These higher require-
ments, together with the huge amount of video data
that have to be processed for an HDTV stream, make

* Correspondence: Elena.Matei@intec.ugentbe

1\r\tec_design IMEC Laboratory, Ghent University, Sint Pietersnieuwstraat 41,
9000-Ghent, Belgium

Full list of author information is available at the end of the article

@ Springer

the implementation of a 1080p real-time MC in a H.264
decoder a challenging task.

In a H.264 decoder, there are several modules that
require intensive use of the off-chip memory. Wang [2]
and Yoon [3] concluded that MC requires 75% of all
memory access in a H.264 decoder, in contrast with
only 10% required for storing the frames. This high
memory access ratio of the MC module demands for
highly optimized memory accesses to improve the total
performance of the decoder.

The tree structured MC assumes the use of various
block sizes. In H.264 4:2:0, the 4 x 4 luma block size is
considered to provide the best results with respect to
image quality, but it is also the most demanding with
respect to data accesses for g-pel motion vectors (MV)
[2]. The proposed implementation focuses on this 4 x 4
block size scenario in MC, which is using the highest
amount of data and is computationally the most inten-
sive. This is done to prove the efficiency of the proposed
method. However, the presented addressing scheme and
implementation are not limited to the 4 x 4 block, but
can be used on any H. 264 standard block size.

A linear data mapping approach is a natural raster
scan order image representation in the memory. In this
representation, all neighboring pixels in an image

© 2011 Matei et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

mailto:Elena.Matei@intec.ugent.be
http://creativecommons.org/licenses/by/2.0

Matei et al. EURASIP Journal on Image and Video Processing 2011, 2011:21

http://jivp.eurasipjournals.com/content/2011/1/21

remain neighbors in the memory also. This is the typical
way of saving the reference frame on an external mem-
ory, also used in [3-5].

At the moment, the DDR3 memories are preferred for
such implementations thanks to their fast memory
access, high bandwidth, relatively large storage capabil-
ity, and affordable price. The major bottlenecks of exter-
nal SDRAM memory in a H.264 decoder are numerous
accesses to implement the motion compensation (MC)
and accesses to multiple memory rows to reach columns
of pixels. This last bottleneck, known as cross-row
memory access, is a problem for both access time and
power utilization. The row precharge and row opening
delay for DDR3 SRDAM are memory and clock fre-
quency dependent. For a 64-bit 7-7-7 memory it takes
about three times more time to read a data from an
unopened row than from an already opened one [6].
This, together with the DDR3 optimized burst access
are the facts that drove us to look into a more efficient
memory access for MC.

The already mentioned problems motivate us to pro-
pose a vectorized memory storage scheme and the asso-
ciated addressing scheme, which were both designed for
the specific needs of the g-pel MC algorithm. The pro-
posed method may be used at both the Encoder and the
Decoder sides for performing q-pel H.264 MC. The
most demanding scenario for MC uses the 4 x 4 block
size data and assumes an unpredictable access pattern.
This is why using only a caching mechanism as shown
in [3] or [4] is not very efficient because it does not
minimize the number of external memory row openings.
A caching mechanism is compatible with the proposed
data organization and addressing scheme. The proposed
data vectorization and the specific addressing scheme
presented in this article not only provide a faster access
to all the requested data, hide the overhead produced by
the 6-tap FIR filter, but also minimize the number of
addresses on the address bus and the number of row
precharges and row activations. The proposed system is
able to provide the required data for any q-pel interpo-
lation case with only one or two row opening penalties
and it is suitable for streams with different image sizes
and frame rate. This implementation is optimized for a
64-bit wide memory bus SDRAM, but it can easily be
adapted for other types of memories and supports dif-
ferent image dimensions. Further on in this article the
proposed method is also named the vectorized method.

The practical gq-pel MC implementation was done in
hardware using VHDL for design, simulation, and verifi-
cation. Further on, this implementation is independent
of the platform, being able to map to any available
FPGA. For the proof of concept, a Stratix IV
EP4SGX230KF40C2 has been used. A stand alone H.264
q-pel MC block has achieved speeds between 95.9 fps

Page 2 of 12

for HD1080p frames, 229 fps for HD 720p and between
2502 and 1262 fps for CIF and QCIF formats. These
results are obtained using a single instance of the MC
block, but multiple instances are possible if the
resources allow it.

The rest of this article has the following structure:
Section 2 presents the MC algorithm for H.264. In the
next section, the memory addressing in SDRAM is
briefly presented. Section 4 reveals the problems that a
standard decoder faces with regard to its most demand-
ing algorithm. Section 5 comes with the proposed solu-
tion for the previously presented problems and
describes data mapping, reorganization, and the asso-
ciated address mapping and read patterns. The memory
address generation is also presented in this section. In
Section 6, the system’s architecture and hardware imple-
mentations are described. Next, in Section 7, the
method results and a discussion focused on comparing
the proposed approach to the existing work are pre-
sented. The conclusions section summarizes the con-
ducted research.

2 MC in H.264

The presented implementation handles 4 x 4 luma and
2 x 2 chroma blocks for 4:2:0 Baseline Profile H.264
YUV streams. The efficiency of our method will be
proved for this case, however, the proposed method is
not limited to this specific block dimension but can be
used on any H.264 standard block size.

Each partition in an inter-coded macroblock is pre-
dicted from an area of the reference picture. The MV
between the two areas has sub-pixel resolution. The
luma and chroma samples at sub-pixel positions do not
exist in the reference picture and so it is necessary to
create them using interpolation from nearby image
samples.

For estimating the fractional luma samples, H.264
adopts a two-step interpolation algorithm. The first step
is to estimate the half samples labeled as b, h, m, s, and
j in Figure 1. All pixels labeled with capital letters, from
A to U, represent integer position reference pixels. The
second step is to estimate quarter samples labeled as a,
¢, d, e f g ik n p, q and r, based on the half sample
values.

H.264 employs a 6-tap FIR filter and a bilinear filter
for the first and the second steps, respectively [1].

In H.264, the horizontal or vertical half samples are
calculated by applying a 6-tap filter with the following
coefficients (1, -5, 20, 20, -5, 1)/32 on six adjacent inte-
ger samples as shown in Equation 1. In a similar way,
half-pel positions labeled aa, bb, cc, dd, ee, ff, gg, hh are
calculated. Half samples labeled as j are calculated by
applying the 6-tap filter to the closest previously calcu-
lated half sample positions in either horizontal or

Matei et al. EURASIP Journal on Image and Video Processing 2011, 2011:21

http://jivp.eurasipjournals.com/content/2011/1/21

]
O
o]
(5]
(o]
[]
[]

E\ Gla[b[c[H] \]
dle|f|g

o[T3]k
niplqj|r

[] M [s] 8] (7] [a]

L

[& [[E]

[]

[[] O

Figure 1 Integer and fractional samples’ positions for quarter
sample luma interpolation.

vertical direction.
b=((E—5F+20G+20H —5I+]) +16)/32 (1)

For estimating q-pel positions, first all the half-pel
positions have to be computed. Then, quarter samples
at position e, g, p, and r are generated by averaging
the two nearest half samples, as shown in Equations 2
and 3.

e=(b+h+1)/2 (2)

Samples at positions g, p, and r are generated in the
same way. Quarter samples at positions a, ¢, d, f, i, k, n,
and q are generated by averaging the two nearest integer
or half positions:

a=(G+b+1)/2 3)

Samples at positions ¢, d, f, i, k, n, and q are generated
in the same way.

For calculating the chroma samples, an 8-pel bilinear
interpolation is executed on four of the nearest pixels.

3 Memory addressing in SDRAM

DDR3 SDRAM memories combine the highest data rate
with improved latencies. A key characteristic of SDRAM
memories is their organization in rows, columns, and
banks. The access to several columns of the same row is
very efficient, as it is the access on different banks. The
access of different rows in the same bank however takes
more time, as this new row must first be precharged
and opened. This precharge can happen in advance if

Page 3 of 12

the row is located in another bank but it cannot be hid-
den when the new row is in the same bank. For an effi-
cient data access, the information requested at a read or
given at a write command should have a certain locality
to prevent high delays because of bank opening, row
precharge, and row activation. The access of several
consecutive locations on the same row is also known as
burst-oriented accesses.

Row precharge and row opening delay for DDR3
SDRAM are memory and clock frequency dependent.
For a 64-bit 7-7-7 memory, the delay because of a row
opening and precharging is three times higher than that
of a column access. One feature of the burst accesses is
that the subsequent column access time for consecutive
locations is hidden and the only case where this access
time is influencing the data retrieval delay is for the first
column from the burst.

4 Problem definition

Many application and video providers migrate toward
H.264 for making use of the high quality and lower
datarate that it offers. The difficulty to implement real-
time 1080p H.264 systems relies mainly in the fact that
q-pel inter-prediction is very memory and computing
intensive.

Since the luma 4 x 4 block represents the most
demanding case with respect to memory accesses [3]
and computational intensity for q-pel MC, the focus will
be put on this type of block and its associated opera-
tions to prove the efficiency of the proposed method for
a standard H.264 decoder.

The address to which the MV points in the reference
image may be an integer position, a half-pel, or a q-pel
displacement. H.264 luma MC has several steps to fulfill:
first a relevant block of reference data is retrieved from
the SDRAM memory, second the 6-tap FIR filtering
either horizontal or vertical and third a linear interpola-
tion takes place. In the first phase, the following algo-
rithm is executed: if the MV set points to integer
positions, retrieve one 4 x 4 block; if the MV set points
to a half-pel position, retrieve either a 4 x 9 (rows x col-
umns) block for horizontal displacement, or a 9 x 4 for
vertical, or a 9 x 9 for both half-middle point and q-pel
positions [5].

The main problems that exist when sub-pixel MC is
implemented are because of several causes:

« the 6-tap FIR Fllter increases the memory band-
width because of the overhead of extra pixel fetch
beyond the 4 x 4 block;

« in the linear address translation approach there are
minimum four and maximum nine row opening
actions that are both time and energy consuming
when working with off-chip memories;

Matei et al. EURASIP Journal on Image and Video Processing 2011, 2011:21

http://jivp.eurasipjournals.com/content/2011/1/21

« because of unpredictable access pattern in the
reference image there is a high overhead when
retrieving useful data;

+ increased number of read commands on the
address bus toward the memory.

The vectorized data storage scheme is further
described in next section.

5 Vectorized data storage

The chosen DDR3 memory is a 64-bit memory location
memory and consists of 8 banks. Since the DDR3 mem-
ory access is optimized for bursts, let us take the exam-
ple of a burst length (BL) of 2. When such a read
command is issued, the memory responds with a x4 (for
bus clock multiplier) double data rate x64 bits for a
given clock frequency. This results in returning 8 conse-
cutive memory locations, which represent one line of
data from 16 consecutive 4 x 4 pixel blocks.

Considering the DDR3 64-bit memory location, for a
linear data mapping one could group 8 values together
on one location and use V/8 number of columns from
the physical memory. The linear data mapping without
bank optimization is shown in Figure 2.

To calculate any of the interpolation steps needed, the
maximum reference block is 9 x 9 pixels. So, for acquir-
ing the reference block for a g-pel interpolation using a
linear address mapping the system will issue: nine read
commands for data that is located on nine different
rows. For BL = 1, the memory will return 32 pixels per
row from which only nine are useful. This results in a
large data overhead and a considerable time penalty.

Page 4 of 12

The linear address mapping approach is presented in
Figure 2 without any optimization and in Figure 3 with
a bank optimization technique. With this optimization,
every line of pixels is saved in a different bank. The lin-
ear address mapping is not optimal with respect to phy-
sical memory accesses, suffers from a large data
overhead and does not tackle the problems stated in the
previous section.

In this article, first a different image mapping in the
memory is proposed. This different image mapping also
demands for a different addressing scheme. Both are
described in more depth in the following sections.

5.1 Data mapping and reorganization

As shown in Figures 4 and 5, a different manner is used
to store the data in memory. This approach regroups
the pixels for the filtering phase to reduce the off-chip
memory accesses and the number of read commands on
the memory address bus. Pixels that are statistically
more likely to be requested together are stored on the
same row. Each 4 x 4 luma block is vectorized as a one-
dimensional structure and saved on two consecutive col-
umns on the memory. This allows using one row activa-
tion for accessing all the information from a given 4 x 4
reference block.

The blocks’ order is kept, so consecutive blocks in the
image plane will remain consecutive in the memory
both horizontally and vertically, as shown in Figures 4
and 5. Just the internal arrangement of the 4 x 4 blocks
is changed. Keeping in mind how the physical memory
works, a better result with respect to the row access
time is obtained if the row 0 of image sub-blocks is

Frame O
. O—ANMT O
8-bit o—am<rONO O ...
pixel 9000 Q0AQR0QRRAQ0Aa 0
[GRSHONS IS NSRS NSIS NS NSNS S NS AS NS

col 16
col 31

row 0 7
row 1
row 2
row 3
row 4
row 5
row 6
row 7
row 8
row 9
row 1
row 1
row 1

1

1

1

o

row
row
row

ghwN-

Figure 2 Linear data storage, no bank optimization.

DDR3 SDRAM _
Frame 0 -> Bank O 64-bit memory

location
15¢col 16..31 | J

col 0..15¢col 16..3 !

row 2 ccol 0..15col 16..31 i
row 3 col 0..15¢col 16..3 j
row 4 col 0..15 ol 16..31 }
row 5 col 0..15col 16..31 !
row 6 col 0..15¢col 16..31 |
row 7 [col 0..15col 16..31 }
row 8 icol 0..15col 16..3 3

=

row 0
row 1

col 0..

row 9 col 0..15 col 16..3
row 10col 0..15 [col 16..3
row 11col 0..15 col 16..31
row 12col 0..15col 16..3

row 13col 0..15 col 16..3
row 14col Q..

6.31
row 15/col Q..

15col 1B..
15col 16..

31

Matei et al. EURASIP Journal on Image and Video Processing 2011, 2011:21 Page 5 of 12
http://jivp.eurasipjournals.com/content/2011/1/21
Frame 0
8-bit oMM O 2 L 5 DDR3 SDRAM
pixel D00 0000000000088 8 Q l:> Bank 0 64-bit memory
O0OO00O0OO0VOOOLOLOLLOOL O (&) |ocat|on

row 0] row Olcol 0..15C01 16..31 | 1

Fgwg l row 8|col 0..15c0l 16..3 | |

row 3] | ‘ ‘ ‘

row 4 i 1 ! ! 1

row 5 L

row 6 .

row 7 L

row 8 L

ow' 10 00 Bank 1

row 11 N row 1 [col 0..15¢col 16..31 1 1

row 12 O row 9 |col 0..15¢col 16..31 | !

row 13 (I | | | |

row 14 . ; i | |

row 15 L] ! ! !

Bank 7
row 7 [col 0..15to0l 16..31
row 15col 0..15

Figure 3 Linear data storage with bank optimization.

44O

col 16,31 |

saved in memory on row 0 from bank 0, row 1 of image
on row 0 from bank 1, and so on, as shown in Figure 6.
This is called the bank optimization approach and is
similar with the presented organization from Figure 4
with the difference that the consecutive rows of sub-
macroblocks will be saved in consecutive banks.

Since the MVs point from the current block address
to any other block in the reference frame, the presented
data reorganization has specific requirements for the
addressing method and start address pixel which will be
further explained in the next section.

5.2 Address mapping and read patterns

The presented data mapping and reorganization creates
a different relationship between neighboring blocks. The
following cases are explaining what the changes are to
address the needed data and how the addresses are
generated.

Case 1.0-Integer

Suppose that for the current block the corresponding
set of MVs has integer values. That means that for this
block there will be no interpolation and the output of
the MC operation will be a block similar to the one
that is retrieved from the reference frame. The
addresses where this block is located are given by
composing the current address with the displacement

given by the MV on both directions. This can for
example coincide with the start address of Block 5 (see
Figure 7). In the same image, the memory read pattern
is shown. It can be observed that only one read
request is needed for retrieving a full block of 4 x 4
luma reference. This is however a particular case and
does not represent the majority of the possible types of
requests.

Case 1.1-half-pel horizontal

Taking this assumption one step further, assume that
MC has to perform a horizontal half-pel interpolation
and thus a 4 x 9 block is retrieved. Using linear
address mapping (figured on the left side of Figure 7a),
nine consecutive pixels from four rows need to be
fetched from the memory. Based on the new data
organization, it is easily observable that only one row
of the SDRAM memory needs to be accessed to get all
the requested data. The data are requested from the
off-chip memory issuing a single read request with BL
= 2. The data retrieved from the SDRAM are then
Blocks 4, 5, 6, and 7.

Case 1.2-half-pel vertical

Similar to the previous case, for a vertical displacement
a block of 9 x 4 is requested. Using the proposed new
reordering there are three different rows from different
banks are accessed to provide the MC with the required

Matei et al. EURASIP Journal on Image and Video Processing 2011, 2011:21 Page 6 of 12
http://jivp.eurasipjournals.com/content/2011/1/21
a) b)
_ _ Frame Luma 4x4 block
8-bit luma pixel col . . .
p Neighboring pixels
; are grouped in4x4 | _ o<
r blocks
‘ 1
: 2
= 3
o 4 —>
c) Vectorized luma block
O~ |N| ™| Ww|©
TN T O N O | v~ | v |7 | v v v
1 >
S =
d) DDR3 SDRAM 64-bit memory
bank architecture , __— vectorized blocks _location
row 0/ block O s|blodK1 [block 2 |block 3 &
row 1/ block’4"|block 5 |block 6 |block 7
row 2 block 8 |block 9 |block 10/block 11
row 3 block 12|block 13|block 14|block 15
ro 1 1 | 1
Lumda MB
16x16

Figure 4 Vectorized data storage: (a) Image plane 8-bit pixels; (b) sub-block natural order, (c) vectorized luma 4 x 4 sub-block, (d)

DDR3 SDRAM internal image storage.

J

Frame O
4x4 pixel blocks

block | block
0 1

block
2

block

block
4

block
5

block
6

block
10

block

block
8

block
9

block
11

block
12

block
13

block
14

block
15

row 0
row 1
row 2
row 3
row 4

Figure 5 Vectorized data storage, no bank optimization.
-

DDR3 SDRAM
Frame 0 -> Bank O

¢> vectorized blocks

64-bit memory
location

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

block 8

block 9

block 10

block 11

bIodfk 12

blod?k 13

blodlk 14

bIoQk 15

Matei et al. EURASIP Journal on Image and Video Processing 2011, 2011:21 Page 7 of 12
http://jivp.eurasipjournals.com/content/2011/1/21
Frame 0 oriseg PPRESORAM
4x4 pixel blocks ﬁ > Vectorize -bit memory
P blocks Bank 0 location
block | block | block | block row 0 b'NOd}k 0 |block 1 block 2 b'oﬁk 3.
A L B row2 : : :
3 1 1 1 1
block | block | block | block o ; ; ;
4 5 6 7
block | block | block | block "'Bank 3
8 9 | 10 | 11 row 0 [block 4 |block 5_|block 6 |block 7
block | block | block | block o — | 3 3
12 13 14 15 row 3 | | | |
row 4 | i i |
Bank 2
row O [block 8 |block 9 |block 10 block 11
row 1 | | | |
row 2 | | | |
row 3 | l l |
row 4 | i i |
Bank 3
row 0| block 12/blodk 13|block 14/block 15
row 1 | | | |
row 2 | | | |
row 3 | l l |
row 4 | i i |

Figure 6 Vectorized data storage with bank optimization.

input block. In this case, Blocks 1, 5, and 9 need to be
totally retrieved from the memory and further rear-
ranged. The 6-tap FIR filter receives within 2 clock
cycles (after a memory specific delay) all the data
needed for calculating half-pel interpolation on all 16
pixel positions in the same time (this is the case also for
the half-pel horizontal).

Case 1.3-half-pel middle or g-pel

A more complex step is imposed for these cases and 9 x
9 block is required from the memory. Although a more
complex block is requested the read commands that will
be issued are the same as in the previous case, only
three rows from three different banks are accessed, issu-
ing only one row activation delay when using the vec-
torized method. Similar, all the data is available for the
FIR filter to start working.

Case 16.0-integer with different start point
The MVs are not necessarily multiple of 4. They can
point to any start position for the reference block. Let
us consider the case where the reference address is
located on the last position of Block 5 (see Figure 7a).
This case is similar to the previous ones, but more com-
plex for the memory addressing scheme. For getting the
necessary block, two rows need to be opened from con-
secutive banks, as shown Figure 7b.

With the proposed addressing scheme the method has
a high degree of generality and is able to serve any quar-
ter-pixel interpolation request by only opening one or
maximum three consecutive rows, as shown in Table 1.
When using the data spreading over different banks for
any case of interpolation only one row opening penalty
is associated with the data retrieval, the rest being

Matei et al. EURASIP Journal on Image and Video Processing 2011, 2011:21 Page 8 of 12

http://jivp.eurasipjournals.com/content/2011/1/21

C\S 1C1ase1.0 Case1.16

\
\\ 1
row
0 bl \%F@% eelbidek 2 block 3
row ﬁ-«%’(/
W blodk 4 -iblock 5. tblock B block 7
1 \ | ,
. X L
-
row
)" blodk 8 block 9 plock {0 block 11
NENEEEERY,

a) Frame O b) Addressable points in DDR3
vectorized blocks SDRAM memory
Case1.3 Case1.2
Case1.1

Figure 7 Data mapping and read commands needed for any MC data retrieval: (a) Image plane pixel map and the minimum required
reference pixels for different interpolation types, (b) equivalent vectorized SDRAM read accesses.

C Se1'(§ se1.0 ...

ro ; " ; ~ ; \ }
0 blodko\ block 1/} block 2) block 3

row|,” |

1 f block 4 | block 5 | block 6 § block 7
W block 8 Ebl <9 iblock 10 ok 11
2 \00¢k ® }blogk 9 /block 1) bloc

hidden. The address generation system becomes intui-
tive when looking at the proposed data organization and
is described in the following section.

5.3 Memory address generation

The reference image is saved into memory keeping the
same order. Consecutive blocks in the image will be
consecutive in the memory both horizontally and verti-
cally when using the vectorization method. When add-
ing the bank optimization, consecutive rows of
vectorized blocks will be written in consecutive banks.

It would be of little interest if the addressing scheme
could only serve frames of a given dimension. The pro-
posed approach is designed to overcome this issue and
offers the flexibility of computing MC on any image
dimension up to full HD on the chosen memory. Once
again let us take the worst case scenario to explain how
the addressing scheme works.

The standard H.264 imposes that the image is orga-
nized in uniform blocks of 16 x 16 pixels called MB and
further down to 4 x 4 sub-blocks. Taking a HD image
of 1920 pixels, there are 120 x 68 MBs that are com-
posed from 480 x 272 sub-blocks that have to be saved

in the memory. The address mapping is based on this
partitioning scheme.

Going one step further, a parallel address mapping
between image space and memory space is done. In
image space, every pixel is independent and can be
addressed individually. As already explained, this is not
optimal for a physical memory where the locations are
64 bit. The use of a DDR3 memory not only offers a
high throughput, but also imposes some specific rules
for addressing. One memory location may be addressed
given a certain row-bank-column address. For the col-
umn address, the last significant 2 bits must be dis-
carded when sending the address to the memory
controller and interface block. This means that the
addressing scheme will point to the column addresses
multiple of 4 and that all the data from that location
and the next three locations are available in one clock
cycle for one read command. This is where the addres-
sable columns of DDR3 memory are marked by arrows
on Figure 7b.

For the given image, the total number of occupied
rows in the memory will be equal to the number_sub_-
blocks + 4 and the number of columns will be

Table 1 Comparison between a linear address mapping and the vectorized data mapping for the operations required

by MC
Number of memory rows opening penalty Integer Half-pel horizontal Half-pel vertical/middle g-pel
Linear data storage 4 4 9 9
Vectorized data storage 2 2 3 3
Linear bank optimization 1 1 2 2

1 1 1 1

Vectorized bank optimization

Matei et al. EURASIP Journal on Image and Video Processing 2011, 2011:21

http://jivp.eurasipjournals.com/content/2011/1/21

number_sub_blocks x 2 on horizontal axis because one
vectorized block occupies two physical memory loca-
tions. The chosen DDR3 memory has eight banks avail-
able. When saving consecutive rows of vectorized blocks
on consecutive banks the least significant 3 bits of the
row address represent the bank address. Each bank con-
tains 2'® row addresses and 2'° column addresses, so it
can accommodate images of maximum 128 MBs width
using the same scheme [6].

Equations (4) and (5) show how the physical memory
locations can be addressed, starting from the image
space arrangement. The proposed addressing scheme
treats MBs and sub-blocks individually and allocates
separate address bit ranges for them. For the MB
address, 7 bits are sufficient both horizontally (68 MBs
x2 memory locations column address) and vertically
(120 MBs +8 banks row address). The Sub_blockqqr
and pixelaqq, are fields of 2 bits each, representing the
number of 4 x 4 blocks in a MB and the number of pix-
els in a 4 x 4 block along the two dimensions.

Always, the address vector is padded with ‘0" values on
the most significant bit locations for the case where the
image is saved starting with row 0 in the memory, or
any other displacement can be added to the given
scheme for a different starting points.

Rowaddr = MBaddr&Sub blocksddr&pixeladar (4)

Coladdr = MByaq4r&Sub blockyaqdr&pixel,addr (5)

Being that the proposed design vectorizes the pixels of
a sub-block, this part of the address is only needed
locally for selecting the data when retrieved from the
memory. This takes us to Equations (6) and (7), where a
division by 4 of the address starting from the image
plane address is executed.

Row’addr = Rowaddr + 4 (6)

Col'addr = Coladdr + 4)

At this point it has been established how to generally
address any sub-block from the image space. The mem-
ory row address when saving the reference frame on
one bank is given by Equation (6). If the bank optimiza-
tion is used, the bank address and row address are given
by Equations (8) and (9), respectively.

Row”addr = Row'addr + 8 (8)

Bankagdr = Row'aqqr mod 8 9)

One sub-block is saved on two columns, thus a multi-
plication by a factor of 2 is required. This operation is
shown in Equation (10). This is the full column address

Page 9 of 12

used for pointing to any column in the memory. The
least significant bit is always zero when addressing one
vectorized block.

Col” addr = Col'adar x 2 (10)

As shown in Figure 7 and explained earlier, the mem-
ory controller accepts column addresses in a format
where the two least significant bits of the address are
omitted. So the real column address that has to be put
on the bus has the format shown in Equation (11)

Col” pddr = Col” addr x 2 (11)

Bit 0 of Col”aqqr is zero always for addressing a start
of a vectorized block. Bit 1 of Col”aqq4r together with
the pixel address bits represent a select mechanism for
further pointing to a pixel position in the retrieved data
from the memory.

The same addressing system is kept for the 2 x 2
Chroma blocks. They are saved in an interlaced way in
the memory as used also in [2]. The data are vectorized
using the proposed method in a similar way. Being that
the Chroma blocks contain four times less bits than the
luma and that there are two of them, Cb and Cr, the
same physical memory organization can be used. Of
course, there will be a penalty for using the memory
space inefficiently, but the same addressing scheme can
be reused and only one memory access will provide
both Cb and Cr at the same time.

6 System architecture and hardware
implementation

Further, the Block level architecture that was conceived
for the hardware implementation of q-pel MC using the
vectorized data storage is described.

The system’s architecture is presented in Figure 8. The
MC block is implemented on the FPGA. The inputs to
this block are on the right-hand side of the FPGA input
frame to be interpolated that contains luma and 2
chroma components, MV map, and the request to inter-
predict either a certain area of the image or the full
image. These inputs can be provided from outside the
FPGA. The reference image and the MV map are writ-
ten through the memory controller and interface to the
external SDRAM memory (figured on the left-hand side
of the FPGA). For the proof of concept, the following
inputs have been chosen. A sequence of images that has
the pattern IPPPD... frames, see Table 2. Here, all the P
frames are inter-predicted based on the previous frame,
and the requests are made for a full frame inter-predic-
tion. After inter-predicting, the first P frame, this one
becomes the new reference frame for the next P frame.
Here, there are two possibilities: either output the
obtained inter-predicted frame or feed it back to the

Matei et al. EURASIP Journal on Image and Video Processing 2011, 2011:21 Page 10 of 12
http://jivp.eurasipjournals.com/content/2011/1/21

DDR3 SDRAM
\ Reference Image } -------- '
| MV | \ MV map \
\ Ref frame | ‘ Request + _____ i
New reference frame | d Pl
control
S|gnals Motion Compensation FPGA i1
\/ write: ref image
Memory | LU — W
controller f. P
and <Rd MV Conv. <-|_ Re- b ;
Interface % -% MV Data. (MV &) queSt I T ""E‘ """"")
—= O FIEO [™ scheduling +— FIFO P .
(YCbCr&)| [YCDbCr&
+—RgY [Interp/ MV info
202 <—Rd CbCr — Data Processing H
£ § E g g FIR | found | Fjr [round ter
S<o © _ clipp clipp 1
o |7 Syne FIR [round | FIR [round pred. | i
FIFO FIR round In FIFO E
—| | Demux clipp | values round
o and |/ FIR[round| Int C|ID% Inter | i
§g | Ch |" data [cliop values TR R | |pred.| |
E g» Cr SeIeCt Cb/ Lo
o FIEO Bilinear interpolation Cr
Bilinear interpolation FIFO
Bilinear interpolation
Bilinear interpolation
Figure 8 Block-level architecture for hardware implementation.
Table 2 MC framerate for different image dimensions
Sequence Type Image dimensions pixels MC framerate fps@ 215 MHz Cycle count /MB luma, Cb, Cr
News QCIF 176x144 12623 172
Train QCIF 176x144 8015.5 2709
Bridge CIF 352x288 2187.7 248
Flower CIF 352x288 2502.2 216
Mobcall HD720p 1280x720 2299 2596
Parkrun HD720p 1280x720 2179 274

Riverbed HD1080p 1920x1080 959 2766

Matei et al. EURASIP Journal on Image and Video Processing 2011, 2011:21

http://jivp.eurasipjournals.com/content/2011/1/21

SDRAM memory as the new reference frame. The sec-
ond variant is chosen for this setup. The operation of
writing the new reference frame to the memory does
not add extra delay as the blocks are vectorized by reor-
dering, which on a hardware platform can be performed
without penalties.

The requests are buffered in a FIFO. Then they are
processed one at a time. A read request is sent to the
memory for retrieving the corresponding MV sets for
every MB to be inter-predicted. After that the reference
block start addresses are calculated by composing the
address of the current position and the displacement
introduced by the MV. These raster scan order
addresses are mapped to vectorized addresses using the
mechanism described in Section 5.3. Then the corre-
sponding luma and chroma blocks are retrieved from
the memory.

This design is highly pipelined. It performs simulta-
neously the inter-prediction for luma and 2 chromas.
The luma pipeline has a higher processing delay than
the pipeline serving the 2 chromas. Further on, after
having retrieved from the SDRAM memory all the data
necessary for one block inter-prediction, the filtering
operations are performed according to the standard (FIR
filtering for luma, bi-linear interpolation for chroma).
The MC'’s results are also buffered into FIFOs.

7 Method results and comparison to existing
work

Several YUV sequences of different dimensions were
chosen for the proof of concept. The sequences range
from the small QCIF format up to HD, as shown in
Table 2.

The proposed method has been implemented using
VHDL on a Stratix IV FPGA EP4SGX230KF40C2. The
implementation of the MC block reached a 215-MHz
maximum frequency. The resource usage for Logic utili-
zation is 10% out of which 12988 combinational ALUT's
and 6282 dedicated logic registers. 577 dedicated 18-bit
DSP blocks are used. This is comparable to the resource
usage from [5] The proposed design aimed for speed
performance and that is why dedicated DSP blocks were
used. The operations that are executed on these DSP
blocks do not fully utilize their potential, but offer an
increase in speed. Also, the available area on the chosen
FPGA allows multiple instances of the proposed MC
block to be used. The obtained MC processing speeds
are listed in Table 2. The proposed method and imple-
mentation achieves over 217 fps for HD 720p and up to
95.9 fps when using the full HD 1080p streams. This is
over 50% more than a maximum of 60 fps for HD
frames obtained in [7]. For smaller image formats, the
framerate is considerably higher: between 12623 fps for
QCIF and 2502 fps for CIF format.

Page 11 of 12

The bandwidth toward the memory is visibly
improved by an optimal data arrangement and efficient
retrieval scheme. When compared to a linear address
approach the proposed scheme realizes 2x up to 3x
more efficient retrieval. This is obtained by grouping
together on the same row data that are statistically
more likely to be requested together and using a bank
optimization. The number of read commands on the
address bus is drastically reduced when using the pro-
posed method as compared to a linear addressing
approach. In Table 1, it is shown that the proposed
method achieves the minimum row opening delay possi-
ble for any operation required by the MC algorithm.

In [4,5], the same minimum required data reference
loading scheme are used. This is not enough for making
the requested data retrieval as efficient as possible. In
[4], every MB takes between 492 and 304 clock cycles to
complete, as opposed to our implementation that takes
between 172 and 276.6 clock cycles for both luma and
the 2 chromas. When compared to a similar VLSI
implementation [8], the proposed implementation pro-
cesses one MB of the “flower” movie in 216 cycles, as
opposed to 288 or 247 cycles, respectively. It is also a
noticeable fact that the proposed implementation gives
the full cycle count for a MB with luma, Cb, and Cr
components, and [8] offers results only for luma MC.

Another advantage of the proposed method is that all
the necessary data for a certain interpolation is available
after two or maximum three read actions with only one
row opening penalty for any block dimension. Thus, all
the pixels for one 4 x 4 block are ready to be processed
in the same time. This makes it possible to obtain all 16
output pixels simultaneously and only have the specific
processing delay for one output pixel calculation. This
requires of course a higher hardware usage.

Other articles choose a cache memory approach for
tackling the MC problem in H.264 decoders. The strate-
gies that are proposed in [3,4] offer a good data locality
but the reusage of pixels in MC is quite low and unpre-
dictable. A cache approach does not tackle the external
memory access penalty. The proposed vectorization
method could bring a higher benefit to caches when
used together because the proposed method pays the
minimum row opening penalty possible. The fact that
cache memory is very expensive in a hardware imple-
mentation when compared to SDRAM memories repre-
sents also an issue for some implementations. As
explained in Section 5.3 the proposed new address gen-
eration algorithm is fast and will not bring any extra
delay in a hardware implementation.

The described system is able to perform MC also on
bi-directional (B) slices, with small adjustments toward
the reference list for MV, operations to be performed
and processing order of the frames (for the case where a

Matei et al. EURASIP Journal on Image and Video Processing 2011, 2011:21

http://jivp.eurasipjournals.com/content/2011/1/21

B frame depends on future P frames). The performance
in a system using both P and B frames will be lower
than in a system that only uses P frames. A system that
can perform the proposed method on P and B frames is
reserved for future research.

8 Conclusions

In this article, an innovative data reordering method and
its associated addressing scheme for MC in a H.264
decoder were presented. Also the system’s architecture
and the hardware implementation are presented. The
data vectorization makes the retrieval from the external
memory faster by grouping pixels that are statistically
more likely to be used together on the same memory
row. This also results in fewer commands on the mem-
ory bus, thus energy wise more efficient. The associated
addressing scheme allows the use of this method in a
multitude of systems designed for different image sizes
and formats. The proposed implementation is able to
perform H.264 q-pel MC at speeds between 229.9 fps
HD720p and 95.5 fps for 1080p frames and between
12623 and 2187.7 fps for QCIF and CIF, respectively.
The proposed method is useful in any physical imple-
mentation of a H.264 decoder that aims for improving
the most demanding part of the decoder, the MC block,
making it possible to serve several streams in parallel in
real time.

Acknowledgements

The authors would like to thank the Agency for Innovation by Science and
Technology in Flanders (Agentschap voor Innovatie door Wetenschap en
Technologie in Vlaanderen) for funding the Vampire project and Alcatel
Lucent-Bell (ALV) for financial and technical supports as well as their
cooperation.

Author details

1\ntec_design IMEC Laboratory, Ghent University, Sint Pietersnieuwstraat 41,
9000-Ghent, Belgium “Alcatel Lucent-Bell, Copernicuslaan 50, Antwerpen,
Belgium

Competing interests
The authors declare that they have no competing interests.

Received: 30 March 2011 Accepted: 19 December 2011
Published: 19 December 2011

References

1. Draft ITU-T Recommendation and Final Draft Internationa Standard of
Joint Video Specification (ITU-T Rec. H.264/ISO/IEC14496-10 AVC) 2003.

2. Wang RG, Li JT, Huang CH: Motion compensation memory access
optimization strategies for H.264/AVC decoder. IEEE International
Conference on Acoustics, Speech and Signal Processing 2005, 5:97-100.

3. Yoon S, Chae S-I: Cache optimization for H.264/AVC motion
compensation, ISSN:1745-1361, 0916-8532. IEICE Transactions on
Information and Systems 2008, E91-D(12):2902-2905, (IEICE).

4. LiY,QuY, He Y: Memory cache based motion compensation. 1-4244-
0921-7/07, 9518760. IEEE International Symposium on Circuits and Systems,
ISCAS 2007.

5. Shen D-Y, Tsai T-H: A 4X4-block level pipeline and bandwidth optimized
motion compensation hardware design for H.264/AVC decoder, 978-1-

Page 12 of 12

4244-4291-1/09. IEEE International Conference on Multimedia and Expo, ICME
2009.

DDR3 SDRAM Component Data Sheet: MT41J64M16LA-187E. .

Zhou D, Liu P: A hardware-efficient dual-standard VLSI Architecture for
MC Interpolation in AVS and H.264. 1-4244-0920-9. EEE International
Symposium on Circuits and Systems, ISCAS 2007.

Zhang N-R, Li M, Wu W-C: High performance and efficient bandwidth
motion compensation VLSI design for H.264/AVC decoder, 1-4244-0161-
5/06. 2006, (IEEE).

doi:10.1186/1687-5281-2011-21

Cite this article as: Matei et al. Novel data storage for H.264 motion
compensation: system architecture and hardware implementation.
EURASIP Journal on Image and Video Processing 2011 2011:21.

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

http://www.springeropen.com/
http://www.springeropen.com/

	Abstract
	1 Introduction
	2 MC in H.264
	3 Memory addressing in SDRAM
	4 Problem definition
	5 Vectorized data storage
	5.1 Data mapping and reorganization
	5.2 Address mapping and read patterns
	Case 1.0--Integer
	Case 1.1--half-pel horizontal
	Case 1.2--half-pel vertical
	Case 1.3--half-pel middle or q-pel
	Case 16.0--integer with different start point

	5.3 Memory address generation

	6 System architecture and hardware implementation
	7 Method results and comparison to existing work
	8 Conclusions
	Acknowledgements
	Author details
	Competing interests
	References

