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Abstract

Many vision applications require high-accuracy dense disparity maps in real time. Due to the complexity of the
matching process, most real-time stereo applications rely on local algorithms in the disparity computation. These
local algorithms generally suffer from matching ambiguities as it is difficult to find appropriate support for each
pixel. Recent research shows that algorithms using adaptive cost aggregation approach greatly improve the quality
of disparity map. Unfortunately, although these improvements are excellent, they are obtained at the expense of
high computational. This article presents a hardware implementation for speeding up these methods. With
hardware friendly approximation, we demonstrate the feasibility of implementing this expensive computational
task on hardware to achieve real-time performance. The entire stereo vision system, includes rectification, stereo
matching, and disparity refinement, is realized using a single field programmable gate array. The highly parallelized
pipeline structure makes system be capable to achieve 51 frames per second for 640 x 480 stereo images. Finally,
the success of accuracy improvement is demonstrated on the Middlebury dataset, as well as tests on real scene.
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1 Introduction

Stereo vision has traditionally been and continues to be
one of the most extensively investigated topics in com-
puter vision. Since stereo can provide depth informa-
tion, it has potential uses in many visual domains such
as autonomous navigation, 3D reconstruction, object
recognition, and surveillance systems. Especially, it is
probably the most widely used for robot navigation in
which accurate 3D information is crucial for the reliabil-
ity of navigation. Compared with other range sensors
such as laser scanner or time-of-flight, stereo vision is a
technology that can deliver the sufficient description of
the surrounding environment. Moreover, it is purely
passive technology and thus offers low cost and high
reliability solutions for many applications.

Stereo matching algorithms are computationally inten-
sive for finding reliable matches and extracting dense
map. As a result, sparse feature matching methods for
stereo correspondence were widely used at first, due to
their efficiency. A wide variety of approaches were
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proposed and greatly improved the accuracy of the
stereo matching results over the last decade. However,
real-time dense stereo is still difficult to be achieved
with general purpose processors. For real-time require-
ments of most applications, the specific algorithms were
often implemented using dedicated hardware, like digital
signal processors (DSPs), graphics processing units
(GPUs), application specific integrated circuits (ASICs),
and field programmable gate arrays (FPGAs). In the last
few years, the GPUs have become more and more popu-
lar. Using GPUs for stereo acceleration can directly be a
solution for PC-oriented applications. However, the high
power consumption limits their applications. FPGAs
have already shown their high performance capacity for
image processing tasks especially for embedded systems.
An FPGA consists of an array of programmable logic
blocks and represents an efficient solution to do parallel
processing. Comparing with ASICs, FPGAs are re-pro-
grammable and have a relatively short design cycle. This
makes the FPGAs offer great flexibility in manipulating
the algorithm.

A lot of work has been carried out on hardware
implementation of stereo algorithms. However, they dif-
fer considerably in their basic design principles.
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Integrating specific algorithm in an embedded system is
a delicate task, as it faces the factors of limited resources
and different scales. At present, few high-performance
implementations of stereo vision algorithms exist. The
key challenge in realizing a reliable embedded real-time
stereo vision system is keeping the balance of execution
time and the quality of the matching results.

To solve these issues, a real-time stereo vision system
is designed in this article to produce depth information
both fast and accurate. All the modules are completely
implemented inside a single chip of state-of-art FPGA.
Our study is motivated by the following observation
that: with carefully selecting the support region, the
adaptive support weight (AW) approach [1] leads to a
dramatic improvement in performance of the matching
quality. Unfortunately, this advantage does not come for
free. Since for each pixel many weight factors have to be
computed, it is obtained at the expense of high compu-
tational requirements. This is very crucial, since it can-
cels out the biggest advantage over other complicated
methods, the fast computation time. Being aware of
hardware features, we propose a stereo system on FPGA
with adaptive support weight approach. Currently, the
only solution incorporating AW algorithm was proposed
by Chang et al. [2] recently. Their proposed architecture
was only evaluated by standard ASIC cell library.
According to the implementation of a system, improve-
ments are still needed in regard to the limited resources
consumption, frame rate and integration of pre- and
post-processing. Our contribution goes one step further,
the entire stereo vision process, includes rectification,
stereo matching, and post-processing, is designed using
a single FPGA. The AW algorithm consists of multipli-
cation and division operations which are difficult to
implement on FPGA. As a consequence, original algo-
rithm is modified in an essential way to eliminate the
computational bottleneck and makes it hardware
friendly. This design concept is realized as highly paral-
lelized pipeline structure with good resource utilization.
The implemented system can generate disparity images
of 640 x 480 resolution at a frame-rate of 51 fps.

There are two main contributions in this article. First,
the design of a complete stereo vision system is a combi-
nation of process including rectification, stereo matching,
and post-processing. We keep the high data parallel struc-
ture in algorithm design, such that the architecture can
efficiently exploit the capabilities of an FPGA with pipeline
and process parallelism. Second, the AW approach is
modified by introducing hardware-friendly approximation.
The total design concept aims at balancing the functional
performance, the computational burden, and the usage of
the device resources. To the best of the authors” knowl-
edge, it is the first solution to implement AW algorithm in
a complete FPGA-based system.
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The remainder of this article is organized as follows:
Section 2 introduces background of stereo vision and
related works on real-time implementations, and Section
3 describes the adaptive support weights cost aggrega-
tion method with corresponding hardware-friendly
approximation. Then, we present our system design as
well as detailed description about the implementation in
Section 4. Section 5 evaluates the experimental results.
In the end, Section 6 presents final conclusions.

2 Background and related works

A stereo matching algorithm tries to solve the corre-
spondence problem for projected scene points and
results in disparity map. Scharstein and Szeliski [3] have
provided an excellent survey of stereo algorithms and a
taxonomy was given based on matching cost, aggrega-
tion, and optimization. In general, two main categories
can be distinguished: local algorithms and global algo-
rithms. The local algorithms estimate the disparity value
at a given point only based on the intensity values
within a support region around the point. Global algo-
rithms, such as dynamic programming [4,5], graph cuts
[6], and belief propagation [7], make explicit smoothness
assumptions of the disparity map to improve estimated
results. Typically, these algorithms solve for the disparity
map by minimizing a pre-defined global cost function.
The smoothness constraint improves the stereo quality
in textureless areas and pixel-based photo-consistency
term reduces the blurring effect in object border
regions. Recently, another kind of method called semi-
global matching (SGM) was proposed [8]. It performs
an optimization through multiple paths across the entire
image to approximate the global optimization.

Most top-ranked dense stereo algorithms rely on glo-
bal optimization methods. However, the algorithms
usually did not depend on the specific global method
alone. As indicated by Li and Zuker [9], the smoothness
priors used implicitly encourage the frontal parallel
plane which will poorly capture the real scene by impro-
perly splitting a slanted or curved surface. As a result,
the most successful variants related class of “segment-
based” methods [10,11], and the optimization is usually
complex and extremely computation intensive. To
include processing time in the evaluation, only few algo-
rithms declared capable of near real-time. And the origi-
nal algorithm is constructed via a iterative and
sequential procedure which is difficult to utilize hard-
ware parallelism. In order to achieve real-time, recent
advances exploit the parallel computational power
within GPUs [12,13]. With some necessary modifica-
tions, some global methods also implemented in the
very large scale integration circuit [14,15] at the expense
of considerable high consumption of logic source, mem-
ory and bandwidth.
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Take account of the balance between the resource
consumption and performance, we still focus on the
local algorithms. Local algorithms can be efficient but
they are sensitive to local ambiguities and noise. Early
research mostly studied the work of different similarity
measure or used the combination of different pre and
post-processing methods to improve the matching qual-
ity. Here we do it another way: our research is concern
with the improvement on the essence of the algorithm.
More specifically, we improve the way to aggregate sup-
port during correlation. Local algorithms rely on sup-
port windows. The major challenge in local algorithms
is to find a well-suited size for the typically square sup-
port window. Large support windows give sufficient
intensity variation to reduce ambiguities, but result
blurred object borders and lose of detail. Small support
windows reduce the problem, but increase the influence
of local ambiguities, which leads to a decrease of correct
matches. To handle these areas, the variable window
[16] algorithm was proposed at first. Later, Bobick et al.
[17] and Fusiello et al. [18] proposed shiftable-window
approaches which consider multiple windows located at
different positions and select the one with smallest cost.
Hirschmiiller et al. [19] proposed another extension
which picks several sub-windows from multiple win-
dows configuration.

The methods mentioned above are still restricted to
limited sizes and shapes. Understanding that, several
adaptive-window approaches [20,21] have been pro-
posed, which could model non-rectangular support win-
dows. Instead of finding an optimal support window
with arbitrary shape and size, Yoon et al. [1] proposed
the adaptive support weight algorithm that adjusts the
support-weight of each pixel in a given support window.
Tombari et al. [22] and Gong et al. [23] have evaluated
many cost aggregation methods in a Winner-Takes-All
framework, considering both matching accuracy and
execution speed. In their evaluation results, adaptive
support weight (AW) approach is the leading method in
terms of accuracy. It is even comparable to many global
optimization based algorithms. However, the aggregation
process becomes computationally expensive. As reported
in [1], it took about one minute to produce a small
depth map.

2.1 Related studies

Due to the computational complexity of stereo algo-
rithm, a number of attempts have been made to realize
real-time performance. The works in [24,25] tried to
implement real-time stereo matching on general pur-
pose process, however the limited computing power
restricts the frame rates. The DSPs have more computa-
tion power than general purpose processors. An early
system was introduced by Kanade et al. [26], a hybrid
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system based on a custom hardware with C40 DSP
array. Later, Konolige [27] introduced the SRI stereo
vision system performing rectification and area correla-
tion. It is one of the most famous DSP solutions. How-
ever, the DSPs still have the limitation of their
sequential operation. Another powerful solution is the
use of GPUs. The GPU is a massively parallel comput-
ing device. Using GPUs for stereo matching was first
investigated by Yang and Pollefeys [28]. They used the
sum-of-square difference (SSD) dissimilarity measures
for windows of different sizes. With the advantage of
compatibility and flexibility, the GPUs solutions could
implement complex global optimizing algorithms
[29-31]. But, GPUs are generally too expensive in power
consumption for embedded applications.

Regarding the hardware, FPGAs remains the most
popular choice because of its inherent parallelism archi-
tecture and high computational power. The original
study was begun by Woodfill and Von Herzen [32], the
PARTS reconfigurable computer which consists of 4 x 4
mesh connected FPGAs was used to implement stereo
matching. Keeping this research line, a number of real-
time stereo systems were presented in the literature in
recent years.

For the Sum of Absolute Differences (SAD) algorithm,
Miyajima and Maruyama [33] proposed a stereo vision
system which connects the personal computers using
PCI cards. The system can process images with a size of
640 x 480 at a frame rate of 20 fps. The processing time
is closely related to the window size, as it was men-
tioned, the performance becomes worse as the window
size gets larger. Perri et al. [34] proposed an stereo
matching circuit processing 512 x 512 images using a
disparity range of 255 pixels. This study shows the
advantage in terms of large disparity range, but the 5 x
5 of window size is not considered as sufficiently
enough for correlation. MingXiang and Yunde [35] pro-
posed a stereo vision system on programmable chip. It
performs 320 x 240 pixels dense disparity mapping in
32 disparity levels, achieving video rate. Recently, Cal-
deron et al. [36] presented a solution with two step pro-
cessing algorithm. The hardware accelerator works
within five pipeline stages could achieve 142 fps for CIF
format image, at a frequency of 174.5 MHz.

Another popular algorithm for hardware implementa-
tion is census-based matching method. Woodfill et al.
[37] described an ASIC design called DeepSea which
enables the processing of 512 x 480 at a disparity range
of 52 pixels, a block size of 7 x 7, and a high frame rate
of 200 fps. The technique for implementing a flexible
block size, disparity range and frame rate was proposed
n [38]. The impact of using different similarity mea-
sures as SAD, rank, and census transform was also pre-
sented. Another census-based approach has been
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introduced by Murphy et al. [39]. Here, Xilinx Spartan-3
FPGA was used and a frame rate of 150 fps could be
achieved for 320 x 240 pixel images.

The phase-based computational model provided
another alternative to correlation methods [40,41]. Diaz
et al. [42] developed a phase-based stereo vision design
which generates about 20 stereo disparities using 1280 x
960 pixel images. As the number of phase correlation
units directly related to the disparity range, the resource
limitation on the FPGA limits the range of disparity. In
order to handle this problem, Masrani and MacLean
[43] took the advantage of the temporal information to
extend disparity range without large resource
consumption.

In recent years, Ambrosch and Kubinger [44] pro-
posed a stereo matching implementation that extends
the Census Transform to gradient image and prepared
to offer as an IP core for embedded real-time system.
Another recent implementations was proposed by Jin et
al. [45], who designed a stereo matching system based
on a Xilinx Virtex-4 FPGA, processing 640 x 480
images with block size 15 x 15 and a disparity range of
64 pixels. Although all these implementations men-
tioned above exhibit good real-time behavior, these two
studies also present a complete discussion of the accu-
racy of the algorithm on the Middlebury stereo datasets.

3 Adaptive support weight approach

Local algorithms reduce ambiguity by aggregating
matching costs over a correlation window. The correla-
tion window also refers to local support region implicitly
implies that the depth is equal for all pixels inside. And
this intrinsic assumption will lead to numerous errors
especially at the region of depth discontinuities. When
doing cost aggregation, the support from a neighboring
pixel is valid only if such pixel has same disparity. The
way to select appropriate support is a key factor of the
correlation method. For this purpose, adaptive support
weight (AW) algorithm was proposed to perform aggre-
gation on the appropriate support. The idea of adaptive
support weight approach originated from a edge-preser-
ving image smoothing technique called bilateral filtering
[46]. It combines gray levels or colors based on both
their geometric closeness and their photometric similar-
ity, and prefers near values to distant values in both
domain and range. This idea was extended to the cost
aggregation in stereo matching. The similarity and
proximity are two main visual cues which can help us to
pre-estimate the support weight of every pixel. The
mechanism relies on the assumption that neighboring
pixels with similar color and closer range to the central
pixel p are likely from the same object. This is the main
idea behind adaptive support weight generation. Based
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on these gestalt principles, the support weight of a pixel
can be written as

w(p, q) = fe(Acpq) - fo(A8pq) (1)

where Ac,, , represents the color difference and Ag, ,
represents the spatial distance between the pixel p and
q- The f; and f, represent the two weighting functions,
respectively, assign weight value by color similarity and
geometric proximity.

Typically, the weights are assigned by Gaussian func-
tion. Assuming the p is the pixel under consideration and
q is a certain point in its neighbor N(p) (support region
centered in p). The function f{) implements this by

f(p.q) = exp (— Ay”") )

with choice of gaussian variance value y tunes up the
strength of the resulting weights.

Once the support weights are know, they are exploited
to aggregate pixel dissimilarities within the support win-
dow. In AW approach, the final matching cost between
two corresponding pixels is measured by normalized
weighted costs. The original algorithm takes into
account both target and reference image to calculate
support weights. The matching cost between pixel p,
and p,, C(p,, p,), can be expressed as

X gieN . aeno) W (P de) w (pr, av) e (40, ar)

(3)
2N, dreN(p) W (P ac) w (pr ar)

C(Pt,' Pr) =

The function e(q;, q,) computes the pixel dissimilarity
between a pixel p, of the reference image and a pixel p,
of the target image. Here, we chosen truncated absolute
differences (TAD) to implement £), the values exceeding
const are truncated.

e (d:,4r) = min{L; (¢:) — Ir (dr)) |, const} “

This mechanism reduces the influence of occluded
pixels.

3.1 Hardware-friendly approximation
In spite of the dramatic improvement of accuracy
brought by adaptive support weight approach, it pays
the cost of high computational complexity which makes
it not only time-consuming but also resource-intensive.
While designing with FPGAs is faster than designing
ASICs, it suffers from the problem of fixed resources.
Thus, approximations must be introduced to provide
trade-off between best overall performance and
resources consumption.

As it is well known that multiplication and division
operations on FPGAs are computationally expensive in
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terms of the number of logic elements required.
Although the advanced FPGAs typically support tens of
digital signal processing elements to form wide variety
of math functions, it is far below the required amount
in many cases. Especially if the operation is being repli-
cated many times to take the advantage of parallel
mechanism. Therefore, careful design is needed to avoid
these operations. The consumption of on-chip memory
is another fact to be considered. In implementation of
stereo vision, a fully paralleled design needs to estimate
the matching cost of all the disparity candidates simulta-
neously. Suppose we use n x n support region size with
disparity range of d, Table 1 illustrates the number of
arithmetic operations required to calculate cost aggrega-
tion value for one pixel. Obviously, directly implementa-
tion of original algorithm is not realistic considering the
resource constraint. As a result, we have modified the
original AW algorithm to make it more hardware
friendly.

We use the gray-scale image instead of CIELab color
space originally adopted. This is not only due to bene-
fit of two-thirds reduction in temporary memory, but
also the compatibility with most existing stereo cam-
eras. In addition to this, three simplifications are pro-
posed to reduce the computational complexity. First,
in order to get rid of division operation, the weight
generation only refers to the target image. Hence, we
can eliminate the normalization operation as different
disparity hypotheses of every pixel share the same sum
of weights. As a result, the aggregated costs were sim-
plified as,

C(pupr) =

Z w (pe. qr) e (qu. dr) (5)

q:eN(p.)

The second simplification is to approximate the cost
aggregation by means of dimensional separation. A one-
dimensional cost aggregation is applied to the vertical
direction at first and the intermediate result is aggre-
gated again in horizontal direction. This two-pass
approximation brings significant savings in computation.
The complexity per disparity of the separable implemen-
tation is just O(2n) compared to O(n?) for a whole sup-
port region aggregation, where # is the size of support
window. Based on above simplifications, the aggregated

Page 5 of 19

costs in our approach can mathematically be repre-
sented as follows:

Cret (Ptr pr) = Z

rE€Nyer (pt)r qr€Nyer (Pt)

C(pupr) = >

q €Nhor (pt)r qrENhor (Pr)

w (e, qc) e (de. 4v)

(6)
w (i, 4) Cvet (qu: dr)

where N, is a notion of neighborhood in vertical
direction and Ny, represents neighborhood in horizon-
tal direction, respectively.

Third, we use shift operation instead of multiplication
through the truncated approximation of the weight
function. One essential step of hardware implementation
is to convert the float-point to fixed-point, the weight
value of exponential function is first scaled up and
round to fixed word length in binary mode. As men-
tioned above, multiplication in FPGAs would be an
expensive operation. The tens of multiplier elements are
not able to meet the requirements for parallel comput-
ing (number of multipliers required is proportional to
the product of support size and disparity range). To
solve this problem, we truncate the fixed-point number
that leaves only one non-zero most significant bit
(MSB). With only one non-zero bit in weight, the multi-
plication between the weight and dissimilarity cost can
be achieved simply by the shift operation. The final
quantized coefficients depends on the word length N of
the input data, the word length W of the coefficient and
the parameter 7. Based on our experimental data, the
weight coefficients are quantized in 9-bit word length
which means the weight is quantized to the 9 quantiza-
tion level. The comparison of color similarity weight
function is shown in Figure 1 for N = 8 bit and 7, =
14.0. The geometric proximity weight function is trun-
cated and scaled in the same way, shown in Figure 2.
The analysis of quantization level is given in detail in
the following section.

3.2 Evaluation

In this section, the modified algorithm we present was
evaluated. After those hardware-friendly approximation,
the disparity maps we generated were not as good as
those reported in the original article [1]. To find the
good trade-off, the terms of matching quality and

Table 1 Number of operations required of AW cost aggregation for every pixel, when using n x n support region size

and d disparity range

Multiplication Division Addition Shift
Original algorithm 3(n° x d) d 200% - 1) 0
Omit weights of reference image 2(n* x d) 0 n? -1 0
+Dimensional separation 4(n X d) 0 2(n-1) 0
+Truncation of weight value 0 0 2(n-1) 4(n x d)




Ding et al. EURASIP Journal on Image and Video Processing 2011, 2011:20

http://jivp.eurasipjournals.com/content/2011/1/20

Comparison of color weight coefficients

0.9 exponential function
0.8 truncated-line function
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o
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Color distance

Figure 1 A comparison of weight function based on color
similarity.

\

hardware efficiency were mainly considered. As refer-
ence for the matching quality, four stereo image sets
from the Middlebury benchmark datasets are used.
These are the Tsukuba, venus, Teddy, and Cones data-
sets. As evaluation criterion for the matching quality, we
use the average error rate which is average percent of
bad pixels of all four benchmark datasets.

First, we evaluate the influence of using gray-scale
intensity instead of original CIELab color representation.
As mentioned above, the original adaptive support
weight algorithm came from the idea of bilateral filters.
The choice of CIELab color space in bilateral filters
mainly because it strongly correlate with human color
discrimination and has perceptually meaningful measure
of color similarity [46]. Thus, in a sense, it is an open
issue if the CIELab color space still has such benefits in
stereo matching. Therefore, we evaluate two color
spaces which are CIELab and YUV as well as gray-scale.
Figure 3 shows the average error rate of matching
results using different photometric information. It is
observed that the accuracy difference between using
CIELab and YUV color space is insignificant. On the
other hand, the gray-scale color reflects a lower accu-
racy as missing color information in photometric cue.
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Although using color space seems to be more accurate,
the input of gray-scale images makes our system be sui-
table for standard HDR, infrared cameras and most
existing stereo cameras.

Next, the influence of the separable aggregation strat-
egy is evaluated in the same way. Original cost aggrega-
tion strategy is computationally expensive because the
adaptive kernel has to be recomputed at every pixel.
The separable implementation greatly reduces the
redundant and only needs a fraction of computation.
Effectiveness of this simplification was verified in bilat-
eral filter [47] as it is not only fast but it also approxi-
mates the true bilateral filter reasonably well. Figure 4,
comparing the accuracy curves of different aggregation
strategies, shows that separable aggregation closely fol-
lows the original implementation in most cases. This is
mainly due to the fact that the separable aggregation
operates along the sampling axes, so the proposed
method approximates the original aggregation strategy
well for image patches whose dominant orientation
aligns with the sampling grid.

Lastly, we evaluate the proposed scale-and-truncate
method. Figure 5 shows the matching accuracy for vary-
ing number of the quantization level. It is observed that
the accuracy improves with the number of the quantiza-
tion level, but improvement gets very marginal after the
quantization level exceeds 9. This is the main reason for
choosing word length of coefficients.

After applying the proposed approximation, we modi-
fied the original algorithm in a hardware-friendly way
and made it possible to exploit data parallelism at imple-
mentation below. Figure 6 shows two weight masks for
different pixels in the Tsukuba image. In most cases, our
approximation mask is very similar to the original mask.
In all masks, pixels assigned high weights close to the
center in terms of both photometric and geometric dis-
tance. It results disparity maps of similar quality.

To illustrate the effects of the support region size, Fig-
ure 7 plots the overall error rate of disparity maps

feteti sty
OGS
GOSN
35 20

(a)

(b) Scaled and truncated weight function.

Figure 2 A comparison of weight function based on geometric proximity. (a) Geometric proximity weight assigned by Gaussian function.

(b)
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Figure 3 The disparity error rate of using different color
spaces.

generated by our modified AW algorithm. The following
can be observed that, in general, the error rate decrease
as the regions get larger. This is reasonable as small
support regions cannot be effectively distinguished.
More importantly, the matching quality seems stable
after increasing the support window size over a thresh-
old. It means the parameter of region size is less sensi-
tive for changes in real scenarios. This is mainly because
the outliers in the larger support region may be
excluded in the cost aggregation or may have very small
weights. The necessary of large support region again
confirms the requirement of algorithm approximation.
In the following sections, we will show that our experi-
mental results still have good performance in accuracy.

4 System design

In this section, we first describe the overview of our sys-
tem briefly. Then, we discuss the implementation of
each processing module in details.

20

—+— Full kernel
—A— Separable kernel

Error Percentage

10 15 20 25 30 35 40 45 50
Window Size

Figure 4 Performance comparisons between using different

aggregation strategies.
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Window Size
Figure 5 The error rates of disparity maps generated by
different quantization levels.

4.1 System overview

The system is implemented on our new-designed
FPGA-center platform (see Figure 8). The processing
core of the system is Virtex-5 XC5VLX155T with
24,320 slices. The system interfaces two stereo cameras
through high-speed LVDS links which can deliver the
full 1.28 Gbps payload in each direction. The platform
contains 128 MB of Nand flash memory used to main-
tain the rectification data. After system startup, the con-
trol module loads those data into Dram memory in
order to maximize data throughput. The FPGA commu-
nicates with a host PC through one gigabit Ethernet.
This port is used for disparity output and receiving
instructions from high-level control module.

4.2 Hardware implementation

To achieve real-time performance, we designed a dedi-
cated hardware architecture implemented in an FPGA.
The architecture of the stereo-vision system is illustrated
in Figure 9 which is mainly divided into three modules
as follows: rectification, stereo matching, and post-pro-
cessing. With the aid of the presented design concept
the stereo process based on AW algorithm can be rea-
lized as highly parallelized pipeline structure with good
resource utilization. All of the processing modules and
dataflow are controlled by a controller module.

4.2.1 Rectification module

Image rectification is an important component of stereo
vision process. It makes epipolar lines aligned with coor-
dinate axis and parallel [48]. The pixels corresponding
to same 3D point will lie on the same horizontal scan-
line of the rectified image pair and differ only in hori-
zontal displacement which is called disparity in usual. It
benefits real-time stereo matching by reducing the cor-
respondence problem from the 2D search to just 1D
search. The image rectification is kind of 2D projective
transform, or homography, to each image. The
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(a)

algorithm. (c) Our modified support weights.

Figure 6 Support weight for selected windows of the Tsukuba image. The pixels marked by a plus sign are the pixels under consideration.
The brighter intensity represents larger support weights. (a) Image crops. (b) Support weights computed by the original adaptive weight

()

homography H provides a planar mapping m’'~ Hm
between points m = (u, v) in original image and points
m’ = (u, v)) in rectified images. So, the rectification can
be implemented using a simple memory look-up tables
that indicates the coordinates of source pixel for each
rectified pixel. The camera calibration is done off-line to
get the mapping relationship (&', v') < (4, v). A 2 x 2
pixel neighborhoods around the mapped pixel are used
to perform bilinear interpolation and compute the pixel
values at the fractional mapping coordinate.

4

I'(u',v) = Zai - I (ui, vy) (7)

i=1

I and I represent rectified and original images, respec-
tively. For each rectified pixel, we need to round the
reverse mapping coordinate (u, v) to nearest-neighbor
integers (u; v;) and a; are the corresponding weights
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Figure 7 The error rate of disparity maps generated under
different support region size.

used for interpolation. Figure 10 illustrates the storage
format of rectification parameters. In order to synchro-
nize the rectification for both left and right images, the
parameters of these two images are mixed to form
memory data. We reserve 20-bit width to represent top-
left integer coordinate and all the four 10-bit weights a;
are encoded as rectification parameters for every pixel.
The other neighboring coordinates are automatically
calculated by offset.

Figure 11 shows the rectification procedure of left-
image pixel. The dataflow is designed in a streaming
fashion without any reliance on external memory. After
initial latency, the first parameter data is read from the
dram port and encoded to top-left address of reference
image. In the next step, we can get the reference image
data and its corresponding weight from second para-
meter data simultaneously. These two data are multi-
plied and then accumulated by DSP48E slices. During
the process, the pixel coordinate of source image is
incremental changed by offset. After four clock cycles
the DSP48E outputs the rectified image data to the
stereo matching module.

4.2.2 Stereo matching module

The stereo matching module is the core element of the
whole system. It can be roughly divided into three
stages: rectified image data input, adaptive support
weighted cost aggregation and disparity search, seen in
Figure 12. The first stage is the input stage that buffers
the image data from rectification module. The buffers
ensure that there are sufficient image data for the corre-
lation support. Here, each image line is stored in a sepa-
rate memory block. These memory blocks are serial-
connected that the read-out data are written back to the
next line buffers. The main advantage of this configura-
tion is that it enables the data of the different lines to
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Figure 8 The new-designed FPGA-center platform. (a) Physical prototype of our FPGA-center platform. On the left above, two pairs of LVDS
link for image input. At the bottom, gigabit Ethernet for communication with host PC. (b) Block diagram of the system components.
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(b)

be read out in parallel. We use a 35 x 35 size of support
region, thus there are 35 scan line buffers for both left
image and right image. The output of different scan line
buffers convert pixels into a column vector of the sup-
port window.

As we mentioned above, the corresponding pixels in
rectified images only differ in horizontal displacement.
Here we use the shift registers to make the correlation
under different disparity candidates. The disparity search
range is currently set to 0-59 pixels. The column vector
of image pixels as a whole unit walks through the delay
network one after another. Since the delay network con-
sists of shift registers, it guarantees the correlated data
under different disparity hypotheses be accessed in par-
allel. Multiple cost aggregation modules are used for cal-
culating the final cost of every disparity candidate. This
mechanism gives us the opportunity to estimate dispar-
ity synchronized with column data input.

The significant differences between AW and other
aggregation methods is that the sliding window cannot
be applied, as the adaptive weight has to be recomputed
at every pixel. Therefore, cost aggregation has to be per-
formed in an exhaustive manner and the computational
requirements are directly depending on the size of
matching window. This is particularly bad, as we found
the AW approach usually require larger window to get
good quality result. Thus, we had to reduce the compu-
tation’s complexity and make it again suitable for real-
time implementations. Figure 12 shows block diagrams
of our aggregation strategy. Instead of directly aggre-
gates cost of whole support size n x 1, we use a two
pass approach that first pass aggregates cost along verti-
cal direction, followed by a pass aggregating cost along
horizontal direction. This reduces the arithmetic com-
plexity form O(n?) to O(2n). It is also worth observing
that the weight term obtained only using the target
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I
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Figure 9 High-level hardware architecture of the proposed stereo vision system.
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Figure 10 Storage format of the rectification parameters.
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image in our weight generation strategy and the corre-
lated blocks shares the same weights under the different
disparity hypotheses. Consequently, we omit the weights
accumulation operation as well as the normalization
operation module. The weight of every pixel is a combi-
nation of the similarity and proximity measurements.
Thus those two kinds of weights component have to be
calculated in each aggregation pass.

Figure 13 shows the implementation of vertical aggre-
gation. The COMP unit measures the dissimilarity
between two pixels, which we use TAD as the cost func-
tion. The subtract unit (SUB) calculates the absolute
intensity differences between the center and the neigh-
bor pixel. The parallel input of the same column data
allows the computation between the vertical center pixel
and the remaining pixels at the same time. Instead of
calculating the exponential function which is expensive
in hardware, a look up table (LUTs) is used to store the
pre-calculated function values corresponding to the dif-
ference. For an 8-bit gray scale image the LUTs contains
maximum of 256 values. The intensity difference itself is
directly taken as address of the LUTSs to output the cor-
responding similarity weight coefficient. The coefficients
are stored in the LUTs in the initialization phase. Dur-
ing read out of the weight coefficient, the related raw
cost value is registered for synchronicity. The quantized

coefficients are scaled into multiple levels that only one
non-zero MSB is kept for every coefficients.

It simplifies the weighted action through using the
shift operation instead of multiplication. The intensity
difference of center pixel is shifted by the highest coeffi-
cient C_0. In the next stage, the outputs of the shift
modules are provided to the subsequent geometric
proximity weighting module. Here we exploit the sym-
metry of the weighting function of the geometric com-
ponent. The top and bottom pixels in the column share
the same geometric coefficient P_0, so those two costs
are summed at first then shifted as a group. The cost of
pixel in the center of the column is not belong to any
pair and is directly done with shift. Once the costs are
proximity weighted, the weighted values are summed up
by the adder tree to one row value. The intensities of
vertical center pixels are also transmitted out for calcu-
lating the color similarity in horizontal aggregation.

After the vertical aggregation stage, the support win-
dow is reduced to one row and then we move forward
to the horizontal aggregation stage. And little memory
overhead is required since the output image can be writ-
ten direct onto the input’s memory. Figure 14 illustrates
how the horizontal module works. There is little differ-
ence between those two stages. Two shift register arrays
are used to buffer the input data of different columns so
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Figure 11 Flowchart of pixel rectification process.
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that the whole support window can be constructed. The
remaining parts are similar to the processing described
in the vertical aggregation module.

Once the horizontal aggregation finished, the costs of
all possible matches are forwarded to the final stage.
The disparity which produces the smallest matching
cost Cy,) is selected as the optical disparity d,, of each
pixel p in the target view, which is so-called Winner-
Takes-All (WTA) strategy:

dy = argmin Cq (p) (8)
where D represents the set of all disparity hypotheses.
The WTA algorithm is implemented in the parallel-cas-
caded form, which is shown in Figure 15.
4.2.3 Post processing module
The post processing module contains three sub-modules
as follows: sub-pixel estimation, uniqueness check, and

median filter. They can be divided into two categories:
(a) the sub-pixel estimation improves the resolution of
final results, (b) the other two sub-modules used to
detect unreliable matches and improve the accuracy of
the depth measurement.

Stereo matching module only reconstructs discrete
layers of disparity. This stepwise disparity variation will
result stair-step effects in reconstruction. In order to get
the continuous depth estimation, the sub-pixel interpo-
lation is used based on parabola fitting. Even if there
exist more accurate techniques for the sub-pixel estima-
tion [49], they are computationally too expensive for
real-time stereo vision. The parabola fitting works over
three points at discrete disparity candidate: d, d_, and d
+» with their similarity measures. d is the selected dis-
parity, d_ and d, are the closest disparity at one pixel
deviation. Optimal disparity d° is solved by finding the
maximum of the quadratic function which we use the
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following relation, where p(d) is the similarity value at
disparity d.

p(d-) —p(d.)

d°=d
T 2p () —4p (d) +2p (d.)

)

The parabola fitting in Equation 9 contains a division,
which is resource intensive when implemented in hard-
ware. However, fractional part is usually limited to a
value with a dedicated resolution of a few bits. As sug-
gested by Ambrosch and Kubinger [44], the sub-pixel
refinement can be computed by simply calculating the
enumerator as well as the denominator, and comparing
how much smaller the enumerator is compared to the
denominator. Since the number of bits in the result is
limited, it requires only a limited number of compari-
sons. Our approach uses 4 bits data widths to represent
the fractional part which requires only six shift opera-
tions, seven additions/subtractions and four

comparisons. Figure 16 shows the implementation of
the sub-pixel estimation module. After eight cycles of
clock latency, a calculated sub-pixel value is obtained
and synchronized with the pixel clock. The sub-pixel
refinement adds additional accuracy to the disparity
result and extends the disparity resolution to 10 bits.
While doing the sub-pixel refinement, the system uses
uniqueness check on the disparity map for the removal
of occluded or mismatched areas. As far as local match-
ing algorithms are concerned, the mutual consistency
check is widely adopted to detect unreliable matches.
For simple cost aggregation approaches, the mutual con-
sistency check can be accomplished without doing the
correlations more than once because of its symmetry
properties. Unfortunately, this symmetry no longer
holds in adaptive support weights aggregation as the
weights vary between different templates. As a result, we
used a uniqueness check method proposed by Di Ste-
fano et al. [50]. Below, we give a brief description of this

Matching costs of different disparity at the range of [0, 59]
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method. Assume that the left image is chosen as refer-
ence and the disparity candidates range form [0, ...,
dmax]. L(x, y) is one point of left image, the algorithm
searches for the best candidate by minimizing matching
cost C. Suppose now the best match found for L(x - o +
Amax ¥) 18 R(x, y), with matching cost C(x - o + dpao %,
¥). And another point of the left image L(x - B + diax
y) has previously been matched with R(x, y) with cost C
(¢ - B + dmax %, ¥). Based on the uniqueness constraint,
we conclude that at least one of the two matches is
incorrect and only the match with minimum cost is
retained. Thus, if the point L(x - & + da0 ¥) has less
matching cost than L(x - B +d .0 ¥), uniqueness check
will reject the previous match and accept the new one.
This implies that the proposed approach allows for
recovering from previous errors as long as better
matches are found during the search. The procedure is
shown in Figure 17. Each new arriving left point L(x, y)
belongs to the interval [R(x - dipaxs ¥), .- R(x, ¥)] of the
potential matching points in the right image. During the
Implementation stage, we only need to set up dp,.x reg-
isters to keep track of the best match and corresponding
matching cost for right image points in the range of
interval. The match newly created for R(x, y) is com-
pared with previous match, and the one be replaced will
be labeled “incorrect”.

Finally, the median filtering is applied to the disparity
data. The median operation applies a 3 x 3 filter on the
disparity image. It can enhance the disparity results by
cleaning up spurious isolated matches which almost are
false ones. Median filtering is also implemented based
on the window processing architecture and similar scan
line buffers are used to construct filter window as stereo
matching module. For such small kernel, the element in
the middle position can be identified through pipeline
sorting and swapping operations which only consumes
limited system resources [51].

5 Experimental results and discussion

The application of our hardware-based stereo vision sys-
tem is mainly focus on robot navigation. This task
requires the system continuing providing accurate infor-
mation about the environment. Thus, for the analysis of
our system we evaluate the performance of the imple-
mentation both in accuracy and running speed.

The proposed real-time stereo vision system is
designed and successfully implemented on a Virtex-5
LX155T FPGA. This device offers 24,320 slices and up
to 7,632 kbit block RAMs. The implemented system
interfaces two stereo camera and receives an image size
of 640 x 480 pixels. In current architecture, we set 60
pixels as a maximal disparity measure with 35 x 35

Left Image

L(x,y) L(x+n,y)

Figure 17 Matching procedure for the successive points along the scanline.

Right Image

[R(x-diax.y)...R(x.¥)]
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pixels windows size used in cost aggregation. As the
sub-pixel estimation offers 4-bit additional resolution, it
can produce a dense disparity map of size 640 x 480
pixels with 10-bit sub-pixel accuracy disparity result.
With these parameters, our proposed architecture is
synthesized by Xilinx ISE 10.1 development tool. Table
2 shows the resources required in order to implement
our stereo vision algorithms. The number of logic blocks
(slices) is given, along with necessary on-chip memory
(block RAM).

The licensed Ethernet Media Access Controller
(TEMAC) core is used to develop Ethernet communica-
tions. Two DSP48E slices are used to rectify left and
right images, respectively. The results show that the
logic resources consumption are dominated by the
stereo matching module due to its high number of
aggregations, while the rectification and post processing
require slightly less logic. Since the correlation modules
of different disparity hypothesis are processed in parallel,
increasing the range of disparities will proportionally
increases the necessary resources for stereo matching
module. Applying block reusing techniques could opti-
mize resource usage, but on the expense of processing
speed. On the other hand, increasing image resolution
has little effect on the resources consumption, since our
architecture is based on the local pixel processing. The
results also show that vast majority of the FPGA’s block
RAM is consumed by the scan line buffers in the stereo
matching module.

Before to describe disparity image resulted of our sys-
tem, we first analyze the real-time performance of hard-
ware implementation. The distinguishing feature of our
architecture is intensive use of parallelism and pipelin-
ing. As described above, each functional module is repli-
cated and executed in parallel to achieve parallelism. For
example, we place d numbers of the aggregation mod-
ules to get the correlation cost of different disparity

Table 2 Device utilization summary

Used Available Utilization (%)
Utilization summary
Number of Slice Registers 35,020 97,280 36
Number of Slice LUTs 50,585 97,280 52
Number of DSP48Es 2 128 1
Number of TEMACs 1 2 50
Module level utilization
Number of occupied Slices 16,697 69
rectification 201 1
stereo matching 14,835 24,320 61
post processing 1,169 5
Number of BRAM/FIFO 39 18
stereo matching 37 212 17
post processing 2 1
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candidate simultaneously. Moreover, the scan line buffer
structure joint with two pass approach ensure that the
matching module updates support window and calcu-
lates corresponding cost value in every clock cycle. In
order to maximize allowed frequency, some complex
operations like multiple addition and WTA are divided
into a set of pipeline stages. Figure 18 illustrates the
scheduling of disparity estimation. First, 35/2 - 1 = 17
rows rectified image data are needed to initialize scan
line buffers. The rectification module generates rectified
image data once every four clock cycles as it requires
fetching four pixel data to do bilinear interpolation. The
initialization signal (INIT) holds low until the end of
buffer initialization. When the INIT goes high, it indi-
cates that the following module should initialize its pro-
cessing state. All the following stages in our design are
synchronized with the rectified data generation rate.
The components of the stereo matching module are
timed by data enable signal (DAE) indicates that there is
a new rectified data input. After pipeline latency, the
disparity candidates with minimum cost are generated
by WTA module and synchronized with DAE signal. In
order to do the uniqueness check, the 60 most recent
disparity data are collected in the FIFO memory. At the
same time, the final disparity values are calculated
through the sub-pixel estimation and median filter mod-
ules. The output data enable signal (DOE) indicates that
there is final disparity data on the DATA bus. The clock
frequency for the proposed system is 60 MHz. The
highly parallelized pipeline structure enables one dispar-
ity data output of every four clock cycles. A pair of 640
x 480 images are processed at 15 Mpixels/s, which is
equivalent to 51 fps. In the metric of points times dis-
parity per second (PDS), this system achieves a perfor-
mance of 940 x 10° PDS, which is suitable for
demanding applications. We also compare the proposed
system to other stereo vision methods reported. As
shown in Table 3, nearly all the stereo vision systems
use fixed support region during the correlation. Taking
advantage of incremental calculation schemes during
aggregation, the systems like can exploit fully the paral-
lelism and achieve very high speed. While the PDS
metric reflects the density and the speed of the system,
the accuracy of the implemented algorithm is another
factor to be considered. Although our method is slower
than the state-of-art fixed window methods, an impor-
tant feature of our system is its high-performance AW
algorithm and integration due to our efficient
modification.

In order to evaluate the disparity quality of our
approach, the Middlebury stereo evaluation is used. This
evaluation platform provides a huge number of datasets
consisting of the stereo image pair and the appropriate
ground truth image. Each image is divided into different
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regions, namely, non-occlusion regions and discontinuity
regions. We measured the percentage of bad pixels on
the four images of the dataset (Tsukuba, Venus, Teddy,
and Cones). Since the system is built for real-time pro-
cessing of an incoming image, the disparity results for
evaluation were generated through functional simula-
tion. Evaluation results are shown in Figure 19. Each
row of Figure 19 presents the left image of the reference
pair, the ground truth as well as the depth maps pro-
duced by original AW algorithm, and our hardware
implementation for visual comparison. The disparity
maps correspond to the left stereo images and are scaled
by a certain factor.

In Table 3, we have listed a number of hardware sys-
tems based on FPGA. Unfortunately, they are mostly no
adequate discussion on the quality of the output dispar-
ity map. In contrast to our proposed system, we

included the other presented algorithms not only on
FPGA, but also on CPU and GPU. The numerical
accuracies of these disparity maps and those generated
by other related algorithms are listed in Table 4. Com-
pared with original algorithm, our approach performs
reasonable good in area with enough details but not so
well in weakly textured areas. The evaluation engine cal-
culates the percentage of incorrect matching pixels by
pixel-wise comparison with the ground truth over the
whole image. As our work aimed to gain the accuracy
results rather than overall error rate that contains the
occluded regions, all occluded or mismatched areas
removed by our uniqueness check are just labeled
“incorrect” without the process of extrapolation. As a
result, this would pull-down the evaluation performance
of our system. It can be seen that the complicated algo-
rithms implemented on GPU generally get better results.

Table 3 Real time performance of reported stereo vision systems based on FPGA

Image size Matching method Disparity range Rectify fps (60 MHz) PDS(10°)

Ambrosch et al. [44] 750 x 400 SAD 60 No 60 1080
Square Window

Miyajima et al. [33] 640 X 480 SAD 60 Hard-wired 20 3686
Square Window

Mingxiang et al. [35] 320 x 240 SAD 32 No 100 2478
Square Window

Calderon et al. [36] 320 x 240 BSAD 16 No 1422 174.7
Square Window

Perri et al. [34] 512 x 512 SAD 255 No 256 1711.27

Square Window

Murphy et al. [39] 320 x 240 SAD 20 No 150 2304
Square Window

Jin et al. [45] 640 x 480 Census 64 Hard-wired 200 2949.1
Square Window

Diaz et al. [42] 1280 x 960 Phase Correlation 15 Hard-wired 52 975

Darabiha et al. [40] 360 X 256 Phase Correlation 60 No 20 1106

Chang et al. [2] 352 X 288 Census 64 No 26 168.7
Adaptive Weights

Our proposed 640 x 480 TSAD 60 Hard-wired 51 940

Adaptive Weights
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Figure 19 Evaluation result of the proposed system using Middlebury stereo-pairs. (a) left image. (b) Ground truth. (c) Disparity maps
yielded by the original AW algorithm. (d) Our results.
A\

Table 4 The accuracy of disparity maps

Tsukuba Venus Teddy Cones
Nonocc All Disc Nonocc All Disc Nonocc All Disc Nonocc All Disc
Jin et al. [45] 9.97 11.56 20.29 3.59 527 36.82 125 215 3057 7.34 17.58 21.01
(FPGA)
Darabiha et al. [41] 1959 3762 1051 31.52
(FPGA)
Ambrosch et al. [44] 121 134 282 4.06 4.86 259 123 19.7 313 691 14 19.2
(FPGA)
Banz et al. [52] 6.8 4.1 133 4.1
(FPGA)
Veksler et al. [5] 1.99 284 9.96 141 2.10 774 159 239 27.1 100 183 189
(CPU)
Grauer-Gray et al. [29] 3.37 534 136 112 2.06 14.1 122 190 272 6.29 14.2 164
(GPUL)
Gong et al. [30] 1.36 339 725 235 348 122 9.82 16.9 195 129 199 19.7
(GPV)
Yang et al. [31] 149 340 7.87 0.77 1.90 9.00 8.72 132 172 461 11.6 124
(GPUL)
Adapt. Weights [1] 138 1.85 6.90 0.71 1.19 6.13 7.88 133 186 3.97 9.79 826
(original)

Our proposed 373 5.65 103 1.59 346 104 135 206 209 10.8 18.2 190
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However, the high power consumption makes them not
suitable for embedded applications. The authors of
[44,45] have presented the state-of-art systems based on
FPGAs. Even though our simplified implementation
does not perform as good as the original algorithm, it is
already comparable with the state-of-art systems.
Furthermore, it is important to mention that it is diffi-
cult to pick a good parameter for fix-size support region
approaches as it is highly depends on the input datasets.
As shown in [44], the optimum block size has to be
selected before the final evaluation could be performed.
The final optimum parameter is a compromise between
four datasets as one may favor small window size while
others favor large window size. The above problem is
not as important for our algorithm. Actually, our algo-
rithm shows a rather balanced accuracy over all four
images. Our results are slightly worse in Teddy and
Cones and much better in case of Tsukuba and Venus.
This feature will make our system more robust to the
scale changes of the actual scene.
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Finally, it must be acknowledged that our algorithm is
not among the top performance in the comparative
results. The global algorithm generally performs better
than correlation-based algorithm. However, the iterative,
sequential operations of global algorithm still make it
difficult to implement in median-scale FPGA. SGM is
another interesting algorithm which performs an optimi-
zation through multiple paths across the entire image to
approximate the global optimization. Recent advance-
ments in FPGA technology have made it possible to
implement SGM algorithm with necessary modifications
[52,53]. Although it still needs to consume excessive
memory to store the temporary cost of different aggre-
gation path, it still have the potential to affect the trends
in Hardware implementation due to its high accuracy
results.

In addition to the evaluation presented above, our
stereo system was used to test on real scenes. Figure 20
shows the disparity maps produced by our system. The
red line in Figure 20c represents the Canny edge

(b)

Figure 20 Experimental results on real scenes. (a) Left camera image. (b) Disparity map. (c) Overlay canny edge onto disparity map.
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detection results of left image. The overlap view of
Canny edge and disparity map shows the scene struc-
ture and object borders have been well detected.

6 Conclusion

In this article, we have proposed a high performance
FPGA-based stereo vision system. Our system exploits
a novel cost aggregation approach called adaptive sup-
port weights method. This approach has shown to be
remarkably effective. It essentially similar to “segment-
based” algorithm while avoids the difficult problem of
image segmentation. However, this aggregation scheme
is very expensive in terms of computation. As the
weighting mask varies from pixel to pixel, it cannot be
computed by means of incremental calculation
schemes. Also it suffers from complex arithmetic
operations like multiplication and division. Our analy-
sis shown the necessity of trade-offs between the accu-
racy and efficient hardware implementation. With
hardware friendly approximation, we demonstrate the
feasibility of implementing this expensive computa-
tional task on hardware to achieve frame-rate perfor-
mance. Evaluation results have shown that our
implementation is among one of the best performing
local algorithms in terms of quality. In addition, the
highly parallelized pipeline structure makes system be
capable to handle 640 x 480 pixels image at over 51
fps. The adaptive cost aggregation units of this system
can also be reused as bilateral filter for noise reduction
in other vision systems.

In the future, the proposed system will be used for
higher level vision applications such as autonomous
vehicle navigation. Some improvements still could be
extended. It is expected that the accuracy performance
can be improved using the pre-processing step to reject
the matches belonging to poorly textured areas. More-
over, with the fast evolvement of FPGA technology, it is
possible to include soft processor core within an FPGA
device. This customization enables the integrated design
for higher-level control tasks.
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