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Abstract

This article presents a new method for background subtraction (BGS) and object detection for a real-time video
application using a combination of frame differencing and a scale-invariant feature detector. This method takes the
benefits of background modelling and the invariant feature detector to improve the accuracy in various
environments. The proposed method consists of three main modules, namely, modelling, matching and
subtraction modules. The comparison study of the proposed method with a popular Gaussian mixture model
proved that the improvement in correct classification can be increased up to 98% with a reduction of false
negative and true positive rates. Beside that the proposed method has shown great potential to overcome the
drawback of the traditional BGS in handling challenges like shadow effect and lighting fluctuation.

1. Introduction
Today, every state-of-the-art security system must include
smart video systems that act as remote eyes and ensure the
security and safety of the environment. One of the main
challenges in any visual surveillance systems is to identify
objects of interest from the background. Background sub-
traction (BGS) is the most widely used technique for object
detection in real-time video application [1,2].
There are various approaches in BGS modelling. Run-

ning Gaussian average (RGA) [3], Gaussian mixture model
(GMM) [4,5], kernel density estimation [6] and median
filtering [7,8] are the most common methods due to their
reasonable accuracy and speed. Although all these techni-
ques work moderately well under simple conditions,
because they treat each pixel independently without con-
sidering its neighbouring area, their performance depends
strongly on environmental variation like illumination
change.
Recently, affine region detectors have been used in quite

varied applications that deal with extracting the natural
features of objects. These detectors identify similar regions
in different images regardless of their scaling, rotation or
illumination. In this article, we propose a new method by

combining the affine detector with a simple BGS model to
detect moving-object for real-time video surveillance.
The rest of this article is organized as follows: Section 2

reviews some previous work on BGS and affine region
detectors; Section 3 describes our approaches for key-
point modelling; Section 4 compares GMM with our pro-
posed model and discusses the final result; and, finally,
Section 5 concludes and provides recommendations
based on the results.

2. Background
2.1 Background subtracting methods
For the past decades, various BGS approaches have been
introduced by researchers for different challenging condi-
tions [1]. Frame differencing is the most basic method in
BGS. This method subtracts a frame at (t - 1) from a
frame at time (t) to locate the foreground object. Median
modelling [7] is another simple and popular approach in
which the background is extracted based on the median
value of the pixel sequence. In a complement to median
filtering, McFarlane and Schofield [9] use a recursive fil-
ter to estimate median filtering to overcome the draw-
back of the previous model. The famous RGA was
proposed later in [3]. This recursive technique modelled
colour distribution of each pixel as a single Gaussian and
updated the background model with the aim of adaptive
filtering (Equation 1).

μt+1 =∝ Ft + (1− ∝)μt (1)
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where μ is mean and a is variance and F is pixel at
time t.
Owing to the simplicity and reasonable accuracy of a

single Gaussian, Stauffer and Grimson [5] proposed one
of the most reliable BGS modelling techniques [10], the
GMM. This method clusters each uniform object into k
different Gaussian distributions (Equation 2).

P(xt) =
∑K

i=1
ωi,t · η(u;μi,t, σi,t) (2)

In Equation 2, h(u; μi, t i, t si, t) is the ith Gaussian com-
ponent, si, t is the standard deviation and ωi, t is the
weight of each distribution and u is the distribution
model. The parameter K is the number of the distribution.

2.2 Scale invariant feature detectors
Regarding scale-invariant feature detectors, recently there
have been several approaches proposed in various pieces
of literature, but undoubtedly, most of today’s state-of-
the-art detectors rely on the Harris detector, which was
introduced by Harris and Stephens [11]. As an enhanced
feature detector, the popular scale-invariant feature
transform (SIFT) algorithm [12] combines the Harris
operator with a staged filtering approach to extract the
scale-invariant feature. The scale-invariant feature is con-
stant with respect to image translation, scaling and rota-
tion, and partially invariant to illumination. The main
drawback of SIFT is that it suffers from high computa-
tional time. Two related methods, the Hessian-affine
detector and the Harris-affine detector, were proposed by
Mikolajczyk et al. [13,14], and are another well-known
set of algorithms that rely on the Harris measurement.
As a matter of fact, the Hessian- and the Harris-affine
detectors are identical in most cases because both detect
points of interest in scale-space and use Laplacian opera-
tors for scale selection. In addition, they use the second
moment of the matrix for describing the local image
structure.
The second moment matrix describes the gradient dis-

tribution on a local neighbourhood of each feature and the
eigenvalues of this matrix represent the signal changes
neighbouring the point. Therefore, the extracted points
are more stable in arbitrary lighting changes and pixel
variations.
Another common technique is the speed up robust

feature (SURF) [15], which is inspired by the SIFT
detector and is based on the determinant Hessian
matrix.
The most important feature of this detector is the

computational time. An almost real-time computation
can be gained without any loss in performance [15].
This computation improvement is caused using integral
images [16], which drastically reduce the number of
operations in the filtering step (Figure 1). Agrawal et al.

[17] introduced scale-invariant centre-surround detec-
tors CenSurE, which are the newest scale-space detec-
tors. These detectors give almost the same accuracy as
SURF and SIFT detectors, but are even faster computa-
tionally than SURF. To achieve this performance,
CenSurE computes all features at all scales and selects
the extremes across each scale using a bi-level kernel as
the centre-surround filter. In addition, CenSurE achieves
full spatial resolution at every scale. It also uses the
Harris operator for edge filtering and takes advantage of
an approximation to the Laplace operators for better
scale selection.
Features from an image which is independent from

scale, rotation and lighting invariants in the scene
extracted from information around a keypoint are called
descriptors. Once the keypoint is found, neighbouring
information of the keypoint can be extracted to uniquely
identify each keypoint with respect to the local image
patch. These descriptors are highly distinctive, and they
are resistant to illumination change and pixel variation.
Basically, the descriptors show how do the intensities are
distributed around the neighbouring of each keypoint.
The SIFT and SURF are two well-known methods used
for extracting the descriptors. In the SIFT, local image
gradients are measured at different selected scales in a
region around each keypoint to extract the descriptors
[18].
The SURF uses a similar approach to the SIFT, but

instead of gradients, integral image with Haar wavelets fil-
ter are used. It is to speed up the extraction time and
improve its robustness. The Haar wavelets act as simple
filters to find gradient in the x and y directions, as illu-
strated in Figure 1a. On the other hand, the integral image
will significantly decrease computational time of the gradi-
ents in which only four memory accesses and four sum-
mation operations involve (Figure 1b).
To determine the orientation of each feature, the Haar

wavelets responses within certain radius area of each key-
points are calculated. Then, x and y responses of each area
are summed to form a new vector in which the longest
vector will show the orientation of each interest point.
The descriptor components are extracted based on a
square window built around the interest point. This win-
dow is then divided into 4 × 4 sub-windows in which each
sub-window has four features from Haar wavelet calcu-
lated as dx, dy , |dx| and |dy|. In total, 64 features 4 × 4 ×
4 are extracted for each keypoint where each feature is
invariant to rotation, scale, brightness.

3. Our Approach
As mentioned previously, pixel independence is the main
drawback in almost all BGS techniques because BGS
algorithm does not consider the neighbouring pixels in
the modelling stage. Obviously, they became sensitive to
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environmental challenges, such as illumination changes
and shadow effects. Scale-invariant features prove to
have accurate results in various lighting conditions and
scaling changes (Figure 2). Therefore, in this study, we
combine a simple background difference model with the
newly proposed scale-invariant centre-surround detectors
(CenSurE) to decrease the difficulty of the BGS model.
As one of the states-of-art scale-invariant feature detec-

tors, the CenSurE is chosen for matching correspondence
between two images of the same scene. The CenSurE com-
putes a simplified box filtering using integral images, as
illustrated in Figure 1, at all locations with different scale-
spaces. The scale-space is a continuous function which is
used to find extrema across all possible scales. To achieve
real-time performance, the CenSurE performs the scale-
space by applying bi-level kernels to the original image.
In our approach, rather than modelling the pixel inten-

sity to obtain a foreground mask, we use image features

and their descriptor to extract significant changes in the
scene. This model is divided into three main module
names: modelling, matching and thresholding (Figure 3).

3.1. Modelling
The first stage of this system deals with setting the
background in the scene which is similar to all other
BGS techniques. Unlike traditional background model-
ling, which deals with all the pixels in the frame without
considering their neighbouring pixel, only the selected
area of the keypoints of interest and their neighbouring
pixels are considered in this system. The general flow
diagram of the proposed model is as shown in Figure 3.
Before modelling the background based on keypoints,

we first need to initialize the background. Median filtering
is a non-recursive approach that is widely used in back-
ground initialization. This model assumes that the back-
ground is more likely to appear in a scene in the sequence

A B

Figure 1 (a) Harr responds on the y-direction (left) and on the x-direction (right); (b) If we consider a rectangular box with A, B, C,
and D vertices, it only takes four memory accesses to calculate the sum of intensities inside the box as ∑A + D - (C + B).

Figure 2 Point detection in different lighting conditions using the CenSurE detector.
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of frame, so it uses the median of the previous n frames I
as the background model (Equation 3).

Bt(x; y) = Median
∑n=t

n=t−�t
In(x; y) (3)

In median filtering, the correct selections of the buffer
size n and frame time rate Δt are critical issues that affect
the performance of median filtering. It has been shown
by Cucchiara et al. [7] that with proper selection of the
observation time window (nΔt), median filtering gives
the best overall performance for real-time application as
compared to mean and mode filtering.
After building the reference background, we need to

extract a significant keypoint from the reference image.
To achieve this goal, the CenSurE detector is applied to
both backgrounds as well as the incoming frame to
extract a reference keypoint Kr and frame keypoint Kf as
shown by module 1 in Figure 3. Because the keypoint
itself is not efficient enough to give us information about

the scene and the lighting condition, SURF descriptors
have to be extracted to gain a more stable and recognisa-
ble point.

3.2. Matching
With given reference and frame descriptors, we can com-
pare and match this descriptor to find any changes in the
scene. Here, we have used a simple brute force matcher
technique that simply matches the descriptor in one set
with the closest descriptor in another set by making a
guess for each one based on a distance metric. Results of
the implementation are shown in Figure 4.
To achieve maximum elimination, we use a Euclidean

distance with a high value to assign the most probable
incoming feature to correspond to the reference feature.
After matching all possible descriptors, we are now able
to eliminate unwanted keypoints and their neighbours to
locate an area of interest in the incoming frame based on
Equation 4, where Dr and Df represent the reference

Figure 3 General flow diagram of the proposed model.
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descriptor and frame descriptor, respectively. This is
done in module 2 shown in Figure 3.

km = kr − kf If Dr → Df (4)

3.3. Thresholding
After going through the procedure of module 2 in
Figure 3, there are still some false blobs coming from
the matching module. Thus, for each blob, a local
thresholding method is applied to remove them using
certain threshold values. For this experimental study,
the threshold values are manually set and they are
greyscale values varying between 40 and 50.
The local thresholding is one of the techniques which

can be useful particularly when the scene illumination
varies locally over time [19]. In modules 2 and 3, the
interest’s pixels and their neighbouring areas are masked
so that vast amount of pixel intensity from each frame
can be automatically eliminated. Correspondingly, using
global thresholding over this mask, we can obtain the
same result as the local thresholding.

4. Comparison and discussion
In this article, we have proposed a new method for moving
object detection using a keypoint model and compared it
to the GMM [1,2,5,10], which is considered to be one of
the best BGS models available. The Intel (R) core (TM) i7-
960 @ 3.2 GHz CPU with 5 GB RAM is chosen as the
hardware platform. Algorithm implementation is done
using a C-based computer vision library, “OPENCV,” to
carry out real-time performance for these two models.
The datasets are selected from the Internet, based on

various challenges of indoor and outdoor environments
such as camera variation, lighting difference and shadow
effect (Figure 5) The ground truth data were segmented
manually with the help of Photoshop and Adobe after
the effect. The sample visual result of our comparison
can be seen in Figure 5.

To produce a quantitative analysis, 11 frames were
selected randomly from each dataset and the following
measures comprising: false positive (FP), false negative
(FN) and percentage of correct classification (PCC) are
computed for each dataset. The FP parameters represent
the accuracy of correct detection of a changed pixel in
the frame. Conversely, a FP, FN or false alarm rate shows
the number of changed pixels that incorrectly detect as
no change, and finally, the PCC represents the overall
rate of correct detection, which can be determined from
FN and FP according to Equation 5:

PCC =
(CD)

(CD + FP + FN)
(5)

In Equation 6, CD is correct detection and can be cal-
culated as:

CD = Total pixel − (FN + FP) (6)

Here, we discuss different properties of GMM and a
keypoint model based on the final results from Table 1
and Figure 6. For the purpose of comparison, all quan-
tity values (FN, FP and PCC) are normalized based on
the size of the image databases 384 × 288.

1. GMM uses weighted Gaussian distributions of pix-
els over sequences of a frame. Therefore, it is not able
to properly handle the condition where unwanted
noise abides in the scene for a long period of time.
This drawback can be seen from the shadow effect
database where the shadow stays in the video for a
long period of time. As a result, the FN rate of GMM
became twice as larger than FN rate of the keypoint
model.
2. In the last case, both the algorithms were tested
under different lighting conditions, and there are once
more big FP rate differences between these two meth-
ods with a value of 0.001700 for the keypoint model
and 0.019453 for the GMM algorithm. The reason

Figure 4 Matching result from brute force matcher.

Wan Zaki et al. EURASIP Journal on Image and Video Processing 2011, 2011:13
http://jivp.eurasipjournals.com/content/2011/1/13

Page 5 of 8



behind this improvement can be found in the thresh-
olding technique used by the keypoint model, which
treats each blob independently from the others and

adjusts the thresholding parameter with respect to the
intensity value of each individual blob.
3. The graphs from Figure 6a-c illustrate the PCC
for a waving tree, shadow effect and lighting differ-
ence consecutively. As these graphs show, the pro-
posed model gives accuracy improvements in all
three cases with 99.2% in shadow effect, 99.4% in
waving tree and 99.5% in lighting difference.
4. In addition, as the graph in Figure 6 shows, the
keypoint model gives a more stable performance in
comparison with GMM, with less variation in PCC
rate.
5. From Figure 5, it can be observed that qualitatively
the GMM gives comparable or slightly better pixel
recognition results. However, in some cases that the

Table 1 FP and FN rate for three selected databases

Frame/scenario Average FP Average FN Average PCC

GMM

Waving tree 0.016708 0.002135 0.981155

Shadow 0.004854 0.015982 0.979178

Light 0.019453 0.001347 0.979194

Keypoint model

Waving tree 0.001345 0.004337 0.994320

Shadow 0.004988 0.002526 0.992494

Light 0.001700 0.002865 0.995441

A

B

C

Figure 5 (a) Shadow effect (the first and second row shows the original image and ground truth consecutively, and the third and last
row shows the GMM and keypint model’s output). (b) Waving tree(the first and second row shows the original image and ground truth
consecutively, and the third and last row shows the GMM and keypint model’s output). (c) Lighting difference(the first and second row shows
the original image and ground truth consecutively, and the third and last row shows the GMM and keypint model’s output).
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C

Figure 6 PCC for three different scenarios. (a) Shadow effect. (b) Waving tree. (c) Lighting difference.
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pixels are not compact, the object recognition or
tracking is not good as our proposed keypoint model.
6. Table 2 presents the computational comparison of
the keypoint model and the GMM, in which the
proposed model gives better computational speed.
For the first two cases (waving tree and shadow
effect) and the last case (lighting difference) respec-
tively, the keypoint models are 1.8 and 3.5 faster
than the GMM.
7. Speed of the keypoint model is dependent on the
number of keypoints recognized in the scene and is
not based on individual pixels. Thus, the data from
Table 2 prove that the keypoint model gives more
variant computational speed in different cases due to
the nature of this algorithm.

5. Conclusion and future work
In this article, we have presented a keypoint reference
model for object detection under various conditions. For
the purpose of comparison, we investigated the proposed
method with the well-known GMM in three challenging
situations: pixel variation, illumination changes and a sha-
dow effect. The overall evaluation shows that the keypoint
modelling gives higher accuracy in all the different situa-
tions because of the reduction of TP and FN error rates.
This improvement is achieved by two main factors.

First, through the use of keypoint model that considers
the pixel dependency in the modelling stage. Hence, it is
less sensitive to illumination changes and shadow effects.
Second is due to the fact that the individual blob thresh-
olding technique used by the keypoint model significantly
helps reduce the FP rate in the final stage. The fastest and
more accurate model can be gained by combining the
newest matching technique and faster descriptor extrac-
tor with that in a specific environment. In addition,
machine learning can be used to improve the matching
accuracy.
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Table 2 Computational comparison between keypoint model and GMM

Computational time frame per second (fps)

Video Number of frame Format Size Keypoint GMM

Waving tree 735 Avi (Xvid–mpeg4) 640 × 512 4.4fps 2.4fps

Light 600 Avi (Xvid–mpeg4) 384 × 288 12.8fps 7fps

Shadow 414 Avi (Xvid–mpeg4) 640 × 512 8.3fps 2.4fps
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