
RESEARCH Open Access

Performance analysis of massively parallel
embedded hardware architectures for retinal
image processing
Alejandro Nieto1*, Victor Brea1, David L Vilariño1 and Roberto R Osorio2

Abstract

This paper examines the implementation of a retinal vessel tree extraction technique on different hardware
platforms and architectures. Retinal vessel tree extraction is a representative application of those found in the
domain of medical image processing. The low signal-to-noise ratio of the images leads to a large amount of low-
level tasks in order to meet the accuracy requirements. In some applications, this might compromise computing
speed. This paper is focused on the assessment of the performance of a retinal vessel tree extraction method on
different hardware platforms. In particular, the retinal vessel tree extraction method is mapped onto a massively
parallel SIMD (MP-SIMD) chip, a massively parallel processor array (MPPA) and onto an field-programmable gate
arrays (FPGA).

1 Introduction
Nowadays, medical experts have to deal with a huge
volume of information hidden in medical images. Auto-
mated image analysis techniques play a central role in
order to ease or even to remove manual analysis. The
development of algorithms for medical image processing
is one of the most active research areas in Computer
Vision [1]. In particular, retinal blood vessel evaluation
is one of the most used methods for early diagnosis to
determine cardiovascular risk or to monitor the effec-
tiveness of therapies [2]. A lot of effort has been devoted
to the development of techniques that extract features
from the retinal vessel tree and to measure parameters
as the vessel diameter [3], tortuosity [4] or other geome-
trical or topological properties [5].
From the image processing point of view, special fea-

tures of retinal images, such as noise, low contrast or
gray-level variabilities along the vessel structures, make
the extraction process highly complex. Different
approaches to extract the retinal vessel tree or just some
specific features with relevant information for the
experts have been proposed [6-9].

In all the applications, accuracy is a requirement.
However, in some of them, the computational effort is
also the main issue. In this sense, a new technique was
proposed in Alonso-Montes et al. [9]. This algorithm
was designed specifically for its utilization in fine-
grained SIMD architectures with the purpose of improv-
ing the computation time. It uses a set of active con-
tours that fit the external boundaries of the vessels and
support automatic initialization of the contours, avoid-
ing human interaction in all the process. This solution
provides reliable results because the active contours are
initialized outside the vessels region, so narrow vessels
can be extracted in an accurate way. The algorithm has
been tested on a massively parallel processor, which fea-
tures a correspondence of a processor-per-pixel. This
solution provides the highest performance. However,
when using real devices, we have to face certain limita-
tions imposed by the technology (i.e. integration density,
noise or accuracy), so the results are worse than
expected [9]. At this point, other a priori less suitable
solutions can provide similar or even better
performance.
The algorithm can process the image quickly and effi-

ciently, making it possible to operate online. This speeds
up the work of the experts because it allows not only to
have immediate results but also they can change para-
meters in real-time observation, improving the

* Correspondence: alejandro.nieto@usc.es
1University of Santiago de Compostela, Centro de Investigación en
Tecnoloxías da Información (CITIUS), Santiago de Compostela, Spain
Full list of author information is available at the end of the article

Nieto et al. EURASIP Journal on Image and Video Processing 2011, 2011:10
http://jivp.eurasipjournals.com/content/2011/1/10

© 2011 Nieto et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

mailto:alejandro.nieto@usc.es
http://creativecommons.org/licenses/by/2.0

diagnostic. It also reduces the cost of the infrastructure
as it is not necessary to use workstations for processing.
The algorithm can be integrated into a device with low
cost, low form factor and low power consumption. This
opens the possibility of using the algorithm outside the
medical field, for example, in biometric systems [10].
Although the algorithm was designed for massively

parallel SIMD (MP-SIMD) processors, it can be also
migrated to other devices. DSPs or GPUs provide good
results in common image-processing tasks. However,
reconfigurable hardware or custom ASICs solutions per-
mit to improve the matching between architecture and
image-processing algorithms, exploiting the features of
vision computing, and thus potentially leading to better
performance solutions. In this study, we want to analyze
devices that allow us to fully integrate the entire system
on an embedded low power device. The algorithm
described here is designed to operate on-line, immedi-
ately after the stage of image capture and integrated
into the system, and not for off-line processing, so we
select devices that allow this kind of integration. DSPs
are a viable solution, but we cannot take advantage of
the massively parallelism of the algorithm. On the other
hand, the high power consumption of GPUs discards
these for standalone systems.
Among the plethora of different platforms that today

offer hardware reconfigurability, this paper focuses on
the suitability of field- programmable gate arrays
(FPGAs) and massively parallel processor arrays (MPPA)
for computer vision. FPGAs are widely used as proto-
typing devices and even final solutions for image-proces-
sing tasks [11,12]. Their degree of parallelism is much
lower than what an MP-SIMD provides, but they feature
higher clock frequencies and flexible data representa-
tions, so comparable results are expected. Advances in
the miniaturization of the transistors allow higher inte-
gration densities, so designers can include more and
more features on their chips [13]. MPPAs are a clear
example of this because until a few years ago, it was not
possible to integrate several hundred microprocessors,
even if they were very simple. These devices are charac-
terized by a different computation paradigm, focusing
on exploiting the task parallelism of the algorithms [14].
In this paper, the automatic method to extract the

vessel tree from retinal images presented in Alonso-
Montes et al. [9] was tested on an FPGA and an MPPA,
and the results were compared with the native platform
of the algorithm, an MP-SIMD processor.
The paper is organized as follows. Section 2 describes

the retinal vessel tree extraction algorithm. Sections 3, 4
and 5 detail both the particular implementation of the
algorithm and the architectures where it is implemented.
Section 6 summarizes the results and conveys the main
conclusions.

2 The retinal vessel tree extraction algorithm
The retinal vessel tree extraction algorithm was pro-
posed by Alonso-Montes et al. [9]. This technique uses
a set of active contours that fit the external boundaries
of the vessels. This is an advantage against other active
contour-based techniques which start the contour evolu-
tion from inside the vessels. This way, narrow vessels
are segmented without breakpoints, providing better
results. In addition, automatic initialization is more reli-
able, avoiding human interaction in the whole process.
Figure 1 shows the result of applying the algorithm to a
retinal image. Figure 2 summarizes the necessary steps
to perform this task. It should be noted that although
the images are represented in color only, the green
channel is used, so the algorithm behaves as if it was
processing gray-scale images.
An active contour (or snake) is defined by a set of

connected curves which delimit the outline of an object
[15]. It may be visualized as a rubber band that will be
deformed by the influence of constraints and forces try-
ing to get the contour as close as possible to the object
boundaries. The contour model attempts to minimize
the energy associated to the snake. This energy is the
sum of different terms:

• The internal energy, which controls the shape and
the curvature of the snake.
• The external energy, which controls the snake
movement to fit the object position.

Figure 1 Retinal vessel tree extraction algorithm applied over
a test image.

Nieto et al. EURASIP Journal on Image and Video Processing 2011, 2011:10
http://jivp.eurasipjournals.com/content/2011/1/10

Page 2 of 17

• Other energies included with the aim of increasing
the robustness, derived from potentials (as the so-
called inflated potential) or momenta (as the
moment of inertia) [16].

The snake will reach the final position and shape when
the sum of all these terms reaches a minimum. Several
iterations are normally required to find this minimum.
Each step is computationally expensive, so the global com-
putational effort is quite high. Also, the placement of the
initial contour is very important in order to reduce the
number of intermediate steps (lower computational load)
and to increase the accuracy (less likely to fall into a local
minimum). Although they can fit to local minima of
energy positions instead of the real contour location and
an accurate convergence criteria requires longer

computation times, such techniques are widely used in
image-processing tasks. Snakes or active contours offer
advantages as easy manipulation with external forces,
autonomous and self-adapting and tracking of several
objects at a time.
There are several active contour models. Among the

plethora of different proposals, the so-called Pixel-Level
Snakes (PLS) [17] was selected. This model represents
the contour as a set of connected pixels instead of a
higher-level representation. In addition, the energy mini-
mization rules are defined taking into account local data.
This way, it will perform well in massively parallel pro-
cessors because of its inherent parallelism. The algorithm
operation is divided into two main steps: (1) initialize the
active contours from an initial estimation of the position
of vessels and (2) evolve the contour to fit the vessels.

Figure 2 Block diagram of the retinal vessel tree extraction algorithm.

Nieto et al. EURASIP Journal on Image and Video Processing 2011, 2011:10
http://jivp.eurasipjournals.com/content/2011/1/10

Page 3 of 17

2.1 Active contours initialization and algorithm execution
flow
One of the most important steps in active contours is
initialization. As it was detailed before, two input images
are needed: the initial contour from which the algorithm
will evolve and the guiding information, i.e., the external
potential. Figure 2 summarizes this process.
The first task is intended to reduce noise and pre-esti-

mate the vessels boundaries, from which the initial con-
tours will be calculated. In so-doing, adaptive
segmentation is performed, subtracting a heavy diffused
version of the retinal image itself followed by a threshold
by a fixed value, obtaining a binary map. To ensure that
we are outside of the vessels location, some erosions are
applied. The final image contains the initial contours.
The second task is to determine the guiding informa-

tion, i.e., the external potential. It is estimated from the
original and the pre-estimation vessels location images
(calculated in the previous task). An edge-map is
obtained by combining the boundaries extracted from
those images. Dilating several times this map, diffusing
the result and combining it with the original boundaries
estimation will produce the external potential. It actually
represents a distance map to the actual vessels position.
These two tasks are done only once. External potential

is a constant during all the process. Once the active
contours image is obtained, it is updated during the evo-
lution steps.
As Figure 2 shows, PLS is executed twice for this con-

crete application. During the fast PLS, topological trans-
formations are enabled so the active contours can be
merged or split. This operation is needed to improve
accuracy to remove isolated regions generated by the
erosions required for the initial contour estimation. In
this stage, the inflated potential is the main responsible
of the evolution because the contour is far from the real
vessels location and the rest of potentials are too weak
to carry out this task. The aim of this stage is to evolve
the contour to get it close to the vessels. It is called fast
because a small number of iterations are needed. During
the second PLS iteration, the slow PLS, topological
transformations are disabled. The external potential is
now in charge of the guidance of the contour evolution
and the internal potential prevents the evolution
through small cavities or discontinuities in the vessels
topology. The accuracy of the result depends deeply on
this stage, so a higher number of iterations are needed
(slow evolution). Between both stages, a hole-filling
operation is included in order to meet greater accuracy,
removing isolated holes inside the active contours.

2.2 Pixel-Level Snakes
It was commonly said that an active contour is repre-
sented as a spline. However, the approach selected here,

the PLS, is a different technique. Instead of a high-level
representation of the contour, this model uses a con-
nected set of black pixels inside a binary image to repre-
sent the snake (see Figure 1). We must note that a black
pixel means a pixel activated, i.e., an active pixel of the
contour. The contours evolve through an activation and
deactivation of the contour pixels through the guidance
of potential fields. This evolution is controlled by simple
local rules, so high performance can be achieved even in
pure-software implementations. Its natural parallelism
eases hardware implementations and it is one of its
main advantages.
Figure 3 shows the main blocks of the PLS. First of all,

the different potential fields must be computed.

• The external potential is application dependent, so
it must be an external input. This was discussed pre-
viously in this section. It is constant during all the
evolution.
• The internal potential is calculated from the cur-
rent state of the contour. Then it is diffused several
times to obtain a topographic map that helps avoid
abrupt changes in the shape of the contour.
• The inflated potential simply uses the current
active contour, without any change. It produces
inflating forces to guide the contour when the other
potentials are too weak as is the case when the
boundaries are trapped in local minima.

The involved potentials are weighed, each one by an
application-dependent parameter, and added to build
the global potential field. Active contours evolve in four
directions: north, east, west and south (NEWS). Next
algorithm steps are dependent on the considered direc-
tion, so four iterations are needed to complete a single
evolution step.
The next step is to calculate a collision mask. The col-

lision detection module enables topographic changes
when two or more active contours collide. Topographic
changes imply contour merging and splitting. This mod-
ule uses a combination of morphological hit-and-miss
operations, so only local access to neighbors is needed.
The obtained image that contains pixels are forbidden
to be accessed in the current evolution.
During the guiding forces extraction step, a directional

gradient is calculated from the global potential field. As
this is a non-binary image, a thresholding operation is
needed to obtain the pixels to which the contour will
evolve. At this point, the mask obtained from the colli-
sion detection module is applied.
Input: Initial contour (C),
External potential (EP)
Output: Resulting contour (C)
C = HoleFilling (C)

Nieto et al. EURASIP Journal on Image and Video Processing 2011, 2011:10
http://jivp.eurasipjournals.com/content/2011/1/10

Page 4 of 17

for i = 0...iterations do
IP = InternalPotential (contour)
foreach dir 2 (N, E, W, S) do
IF = InflatedPotential (C)
CD = CollisionDetection (C, dir)
GF = GuidingForce (EP, IP, IF, CD, dir)
C = ContourEvolution (GF, C, dir)

end
end
C = BinaryEdges (C)
function InternalPotential (C)
aux = BinaryEdges (C)
IP = smooth (aux, times)
return IP
function InflatedPotential (C)
IF = C
return IF
function CollisionDetection (C, dir)
if enable then
if dir = N then
aux1 = shift (C, S) andnot C;
aux2 = shift (aux1, E);
aux3 = shift (aux1, W);
CD = aux1 or aux2 or aux3;

else
% Other directions are equivalent

end
else
CD = zeros ()

end
return CD
function GuidingForce (EP, IP, IF, CD, dir)
aux1 = EP + IP + IF
aux2 = aux1 shift (aux1, dir)
aux3 = threshold (aux2, 0)
GF = aux3 andnot CD
return GF
function ContourEvolution (GF, C, dir)
aux = shift (C, dir) and GF
C = C or aux
return C
Algorithm 1: Pixel-Level Snakes. All variables are

images. All operations are performed over all pixels of
the image before the execution continues.
The final step is to perform the evolution itself (con-

tour evolution module). The active contour is dilated in
the desired direction using the information from the
guiding forces extraction module.
Except when the potentials are involved, all the opera-

tions imply only binary images, so computation uses
only Boolean operations. The pseudocode in Algorithm
1 shows all the steps. We have to remark that all the
variables (except the iterators) are images, two-dimen-
sional arrays. Each operation has to applied over all the
pixels of the image before continuing with the next
operation.
This is an adapted version of the PLS for the retinal

vessel tree extraction algorithm. There are only stages of

Figure 3 Overview of the Pixel-Level Snakes algorithm.

Nieto et al. EURASIP Journal on Image and Video Processing 2011, 2011:10
http://jivp.eurasipjournals.com/content/2011/1/10

Page 5 of 17

expansion. The way in which the contour is initialized
ensures that alternating phases of expansion/contraction
required in any other active contours method is not
necessary here, which simplifies the code and increases
performance. Further details of this active contours-
based technique can be found in Vilariño and Rekeczky
[17], Dudek et al. [18], Vilarino and Dudek [19].

2.3 Performance remarks
The inherent parallelism of the retinal vessel tree algorithm
makes its hardware implementation simple with high per-
formance. Finally, the image can be split into multiple sub-
windows and can be processed independently. In addition,
the required precision for the data representation is low
(see [9]), so the accuracy will not be seriously affected by
this parameter. All these advantages will be exploited dur-
ing the algorithm port to the hardware platforms of this
review. One of the drawbacks of this extraction method is
that it is hard to exploit temporal parallelism. However, the
heavy computational effort comes from the PLS evolution,
where each iteration directly depends on the previous one,
forcing to execute all the steps serially.
Table 1 summarizes the type of operations present in

the algorithm per pixel of the image and iteration of the
given task. Table 2 sums up the total number of opera-
tions including the number of iterations per task and
program flow-related tasks. The number of iterations
was determined experimentally and agrees with the
worst case of those studied to ensure the convergence
of the contours. Considering that the input image is 768
× 584 px and that by each pixel 6846 operations must
be performed, around 3 GOPs are required to process
the entire image. The operations of this algorithm are
very representative of image-processing operations
which are part of the low- and mid-level stages. They
comprise operations as filtering, basic arithmetics, logic
operations, mask applications or basic program flow
data dependencies. Any image-processing-oriented hard-
ware must deal properly with all these tasks.
The retinal vessel tree extraction algorithm was tested

employing a PC-based solution. It was developed using

OpenCV and C++ on a computer equipped with an
Intel Core i7 940 working at 2.93 GHz (4 physical cores
running 8 threads) and 6 GB of DDR3 working at 1.6
GHz and in triple-channel configuration. To evaluate
the efficiency of the implementation, the DRIVE data-
base was used [20]. The retinal images were captured
with a Canon CR5 non-mydriatric 3CCD. They are 8-bit
three channel color images with a size of 768 × 584 px.
Using this computer, each image requires more than 13
s to be processed. This implementation makes use of
the native SSE support which OpenCV offers. To take
advantage of the multi-core CPU, OpenMP was used to
parallelize loops and some critical blocks of the algo-
rithm which are implemented outside the OpenCV fra-
mework. This allows us to obtain around a 15% higher
performance. Although it would be possible to do cer-
tain optimizations to further improve performance, it
would be very difficult to achieve times under 10 s,
which takes us away from our goal. This is because the
algorithm is not designed to run on such architectures,
not because of the algorithmic complexity, but due to
the large number of memory accesses required and that
are not present in focal-plane processors.
Even with a high-end computer, the result is not satis-

factory in terms of speed. Candidate systems using this
algorithm require a faster response. To address this and
other problems associated with a conventional PC, such
as size or power consumption, we propose three imple-
mentations on three specific image-processing devices: a
Vision Chip, a custom architecture on FPGA and a
MPPA. From the characteristics of the algorithm, it is
extracted that (by its nature) an MP-SIMD architecture
matches better. We also test the capabilities of the
reconfigurable hardware on FPGAs, which increasingly
provides more features. Finally, using the MPPA, we
check whether exploiting the task parallelism instead of
its massive data parallelism also provides good results.

3 Pixel-Parallel Processor Arrays
Conventional image-processing systems (which integrate
a camera and a digital processor) have many issues for
application in general- purpose consumer electronic
products: cost, power consumption, size and complexity.

Table 1 Type and number of operations per pixel per
step of each task

Initialization Fast
PLS

Hole
filling

Slow
PLS

Pixel-to-pixel

Arithmetic 7 5 - 7

Boolean 1 4 - 9

Pixel-to-
neighborhood

2D filters 11 8 - 8

Binary masks 10 2 1 5

Table 2 Number of operations per pixel

iterations Operations per px

Initialization 1 189

Fast PLS 6 697

Hole filling 18 199

Slow PLS 40 5,761

6,846

Pixel-to-neighborhood operations shown in Table 1 are transformed to pixel-
to-pixel operations

This includes program flow operations

Nieto et al. EURASIP Journal on Image and Video Processing 2011, 2011:10
http://jivp.eurasipjournals.com/content/2011/1/10

Page 6 of 17

One of the main disadvantages is the data transmission
bottlenecks between the camera, the processor and the
memory. In addition, low-level image-processing opera-
tions have a high and inherent parallelism which only
can be exploited if the access to data is not heavily
restricted. Computer Vision is one of the most intensive
data processing fields, and conventional systems do not
provide any mechanism to address adequately this task,
so this issue comes up as an important drawback.
Pixel-parallel processor arrays aim to be the natural

platform for low-level image-processing and pixel-paral-
lel algorithms. They are MP-SIMD processors laid down
in a 2D grid with a processor-per-pixel correspondence
and local connections among neighbors. Each processor
includes an image sensor, so the I/O bottleneck between
the sensor and the processor is eliminated, and the per-
formance and power consumption are highly improved.
This and their massively parallelism are the main bene-
fits of these devices.
Pixel-parallel processor arrays operate in SIMD mode,

where all the processors execute simultaneously the
same instruction on their local set of data. To exchange
information, they use a local interconnection, normally
present only between the nearest processors to save sili-
con area. Concerning each processor, although with
local memories, data I/O and sensing control to be self-
contained, they are as simple as possible in order to
reduce area requirements, but still powerful enough to
be general purpose. The idea behind these devices is
that the entire computing is done on-chip, so that input
data are logged in through the sensors and the output
data are a reduced and symbolic representation of the
information, with low-bandwidth requirements.
One of the drawbacks of this approach is the reduced

integration density. The size of the processors must be
as small as possible because, for a 256 × 256px image,
more than 65 k processors plus interconnections must
be included in a reduced area. This is the reason why
many approaches utilize analog or mixed-signal imple-
mentations, where the area can be heavily optimized.
Nevertheless, accuracy is its main drawback because it is
hard to achieve large data-word sizes. In addition, a
careful design must be done, implying larger design per-
iods and higher economic costs. The scalability with the
technology is not straightforward because of the human
intervention in all the process, which does not allow
automation. The size of the arrays is also limited by cap-
ability to distribute the signals across the array. The
effective size of the arrays forces us to use lowresolution
images. Examples of mixed-mode focal-plane processors
are the Eye-Ris vision system [21] or the programmable
artificial retina [22].
Other approaches use digital implementations with the

aim to solve the lack of functionality, programmability,

precision and noise robustness. The ASPA processor
[23] and the design proposed by Komuro et al. [24] are
the examples of this kind of implementations.
As each processor includes a sensor, it should occupy

a large proportion of the area to receive as much light
as possible. However, this will reduce the integration
density. New improvements in the semiconductor indus-
try enables three-dimensional integration technology
[25]. This introduces a new way to build visions system
adding new degrees of freedom to the design process.
For instance, [26] proposes a 3D analog processor with
a structure similar to the eye retina (sensor, bipolar cells
and ganglion cells layers, with vertical connections
between them) and [27] presents a mixed-signal focal-
plane processor array with digital processors, also seg-
mented in layers.
As a representative device of this category, the

SCAMP-3 Vision Chip was selected to map the retinal
vessel tree extraction algorithm described in Section 2.

3.1 The SCAMP-3 processor
The SCAMP-3 Vision Chip prototype [28] is a 128 ×
128 px cellular processor array. It includes a processor-
per-pixel in a mixed-mode architecture. Each processor,
an Analog Processing Element (APE), operates in the
same manner as a common digital processor but work-
ing with analog data. It also includes a photo-sensor and
the capability to communicate with others APEs across
a fixed network. This network enables data sharing
between the nearest neighbors of each APE: NEWS. All
processors work simultaneously in SIMD manner.
Figure 4 shows its basics elements. Each APE

includes a photo-sensor (Photo), an 8 analog register
bank, an arithmetic and logic unit (ALU) and a net-
work register (NEWS). A global bus connects all the
modules. All APEs are connected through a NEWS
network, but the array also includes row and column
address decoders to access to the processors and
extract the results. The data output is stored in a dedi-
cated register (not shown).
Operations are done using switched-current mem-

ories, allowing arithmetic operation and enabling gen-
eral-purpose computing. As current mode is used, many
arithmetic operations can be done without extra hard-
ware [29]. For example, to add two values, a simple
node between two wires is needed (Kirchhoff’s law).
The SCAMP-3 was manufactured using 0.5-mum

CMOS technology. It works at 1.25 MHz consuming
240 mW with a maximum computational power of 20
GOPS. Higher performance can be achieved by
increasing the frequency, at the expense of a higher
power consumption. Using this technology, a density
of 410 APEs/mm2 is reached (less than 50μm × 50μm
per APE).

Nieto et al. EURASIP Journal on Image and Video Processing 2011, 2011:10
http://jivp.eurasipjournals.com/content/2011/1/10

Page 7 of 17

3.2 Implementation
The implementation of the retinal vessel tree extraction
algorithm is straightforward. The selected algorithm, as
well as other operations present in the low- and mid-
level image-processing stages, matches well with this
kind of architectures. The SCAMP features a specific
programming language and a simulator to test the pro-
grams which speeds up the process. For instance, the
simulator allows to select the accuracy level of the
operations, allowing focusing first on the program func-
tionality and then on the precision of the implementa-
tion. This is a necessary step to solve the problem
caused by not so accurate memories. Specific details,
specially those referred to current-mode arithmetic can
be found in Dudek [29].
However, some modifications have to be added to the

algorithm because of the particularities of the device.
Some operations were added to increase the accuracy of
the algorithm. The volatility and the errors due to mis-
match effects during the manufacture of the memories
must be taken into account and the SCAMP has meth-
ods to improve the results. The distance estimation dur-
ing the external potential estimation and accumulated
adding are operations that need carefully revision due to
the looseness of the switched-current memories.
Other point to take into account is the data input.

While for many applications the optical input is the best
option, for other applications, where the images are high
resolution or the photo-detectors are not adequate to
sense the images, a mechanism to upload the image is
needed. However, one of the greatest benefits of these
devices is lost, the elimination of the bottleneck between
the sensing and processing steps. For instance, to inte-
grate the APEs with the sensors of the camera used for

the retinal image capture (a Canon CR5 non-mydriatric
3CCD [20]) will provide better results.
It has to be noted that in the SCAMP-3, the size of

the array is much lower than the size of the utilized
images. The input images can be resized, but the result
will be seriously affected. This forces us to split the
image into several sub-images and process it indepen-
dently. As it was mentioned in Section 2, this algorithm
allows to consider the sub-images as independent with-
out affecting the quality of the results. However, it
affects to the performance and this is not generalizable
and highlights the problems of these devices when their
size is not easily scalable. More details of the implemen-
tation can be found in Alonso-Montes et al. [30].

4 Field-programmable Gate Arrays
An FPGA consists of a set of logical blocks connected
through a dense network. These blocks can be pro-
grammed to configure its functionality. Combinational
functions can be emulated and connected together to
build more complex modules.
The great flexibility of the network, which includes a

deep hierarchy where each level is optimized for certain
tasks, made them very appropriate in all industrial fields
and research areas. Nevertheless, it is also one of its
drawbacks because much of the chip area is consumed
in connections that are not always necessary, increasing
cost and power consumption and reducing the working
frequency. Certainly, GPUs are a tough competitor as
they allow efficient designs in a short time. However, its
scope is much more limited since they cannot be used
in embedded or portable systems due to their high
power consumption and their little suitability for standa-
lone operation. In addition, FPGA vendors are working

Figure 4 Overview of the SCAMP-3 main elements.

Nieto et al. EURASIP Journal on Image and Video Processing 2011, 2011:10
http://jivp.eurasipjournals.com/content/2011/1/10

Page 8 of 17

hard to improve the high-level programming languages
(like SystemC) and integrating modules for specific solu-
tions (both softcore and hardcore) to facilitate the use
and debugging of the FPGAs and to reduce design time.
Furthermore, the capabilities of its internal blocks are

growing. Apart from dedicated memory blocks, multi-
pliers or DSP units or embedded processors, they also
include elements as PCI-Express endpoints, DDR3
SRAM interfaces or even high-performance multi-core
processors [31]. The aim is not only to increase perfor-
mance, but also to speed up the design process. FPGAs
are the devices where traditionally ASICs are tested
prior to manufacturing. They were selected because of
its rapid prototyping and reconfiguration ability. Never-
theless, this is changing. New devices offer faster solu-
tions and small area requirements, reducing the time-to-
market with a low cost (compared with a custom
design) because of the range of IP cores available in the
market is very extensive. Code portability, scaling to
higher-capacity FPGAs or migration to new families
make them a device to be considered as a final solution
and not only as a test platform.
One of the challenges on FPGA design is to develop a

custom hardware to fit the application or algorithm.
Therefore, apart from having a wide knowledge of the
algorithm, some skills on both hardware and software
design are required. In addition, the performance will
depend on the particular implementation. FPGA indus-
try is making a big effort to ease the design. C-like lan-
guages as SystemC or Impulse C or even high-level
graphical programming as the enabled by LabVIEW [32]
allow a programming closer to the way it is done in a
traditional computer. Algorithms are easier to port than
using HDL languages because they are intended to
model the systems from the behavior point of view
instead from a pure- hardware approach.
FPGAs are widely used as computer vision systems.

The dense network enables low-, mid- and high-level
image processing, adapting to the needs of each level
(spatial and temporal parallelism with custom datapaths)
[11]. There are many proposals in the literature, as
SIMD accelerators, stream processing cores, MIMD
units, directly implemented algorithms or other kind of
processors that, using the dedicated resources, can lead
to an adequate performance in many applications [33].
In addition, accuracy can be tuned to the real needs of
the application, saving resources.

4.1 Custom architecture: Coarse-grain Processor Array
Taking into account that the higher performance of an
active contour algorithm is achieved when most of the
processing is done on-chip and that a parallelism
degree as high as in the pixel-parallel processor array
cannot be achieved due to the shortage of hardware

resources, an alternative architecture was proposed
Nieto et al. [34].
The purpose of this architecture is to exploit the large

amount of on-chip memory to perform as much compu-
tation as possible without using external memories. The
parallelism degree has to be reduced because a proces-
sor-per-pixel approach is unrealizable. The proposed
architecture is the SIMD processor depicted in Figure 5.
The processing array is composed by a set of proces-

sing elements (PE) arranged in a matrix form. Local
connections between them are included, forming a clas-
sical NEWS network (vertical and horizontal connec-
tions to the closest PE). A complex network that
includes also diagonal connections was considered, but
the increase of hardware resources (about a 2 × factor)
made us to discard it.
As all PEs work in SIMD manner, a unique control

unit is needed. This task is carried out by a simple
micro-controller (uController). It includes a memory for
program storage and controls the execution flow of the
program. Some operations of the algorithm must be
applied several times (as the PLS steps) and the micro-
controller will help to tune up the algorithm easily. It
also has to discern between control operations (loops
and branches) and compute-intensive operations (to be
driven to the processing array).
As Figure 5 shows, the two main modules of each PE

are a Register File and an ALU. The Register File is
made up of an embedded Dual-Port Block RAM and
stores a sub-window of the image. To store partial
results during algorithm execution, the Register File also
has to store several and independent copies of the origi-
nal sub-window. An example will clarify this: if the
Block RAM size is 8 Kb, it can store up to 1024 8-bit
words or, this is, 4 images of 16 × 16 px. The ALU
implements a reduced set of mathematical operations.
The instruction set covers both arithmetic (as addition,
subtraction, multiplication or multiply-and-accumulate
operations) and bitwise operations (common Boolean
and bit shifts), featuring general-purpose low-level
image processing. To reduce hardware requirements,
the embedded multipliers or DSP units available are
used. The Register File provides two operands but does
not allow store operations at the same time so each
operation is performed in two clock cycles (fetch-data
and execution-store).
Concerning execution, once the image is loaded into

the distributed memory of each PE, the uController
starts processing. If the current instruction is a control
operation, the processing array will halt. If not, it will be
decoded and distributed to all the PEs. Each PE will exe-
cute this instruction over its own local data. For
instance, if the size of the sub-window is 16 × 16 px,
256 iterations are needed to complete its execution.

Nieto et al. EURASIP Journal on Image and Video Processing 2011, 2011:10
http://jivp.eurasipjournals.com/content/2011/1/10

Page 9 of 17

Then, the next instruction is processed. The following
pseudo-code shows how the programming is done:
for (dir = 0; dir<4; dir++) {
Im4 = not Im0
if(dir = 0)//North
Im5 = Im4 and shift(Im0, south, 1)
Im6 = Im5 or shift(Im5, east, 1)
Im4 = Im6 or shift(Im5, west, 1)

else if(dir = 1)//East
Im5 = Im4 and shift(Im0, west, 1)
Im6 = Im5 or shift(Im5, north, 1)
Im4 = Im6 or shift(Im5, south, 1)

else if(dir = 2)//West
Im5 = Im4 and shift(Im0, east, 1)
Im6 = Im5 or shift(Im5, north, 1)
Im4 = Im6 or shift(Im5, south, 1)

else//South
Im5 = Im4 and shift(Im0, north, 1)
Im6 = Im5 or shift(Im5, east, 1)
Im4 = Im6 or shift(Im5, west, 1)

}
Flow operations (for and if) are executed in the uCon-

troller while the rest of operations are supplied to the
Processor Array and executed over the whole sub-win-
dow before applying the next instruction. Each available
sub-window is represented as Im[x]. Second operator
supports variable shifts across the sub-window before
operating in order to access to the neighborhood. To
handle this characteristic, the Address Generator unit is
included. It enables automatic network access if the data
are in a neighbor PE, so human interaction is not needed
and scaling through larger arrays is automatic, making
the source code totally portable. More information about
this feature can be found in Nieto et al. [34].

The I/O interface enables the communication between
the computer host and the board. This module is
directly connected to the processing array, and it will
halt the uController when execution ends to do the data
transfer.

4.2 Implementation
As the results are device-dependent, we opted not to
select neither the highest performance nor the lowest
cost FPGAs. We selected a representative device within
the range of solutions for the consumer. The Xilinx
Spartan-3 family was designed focusing on cost-sensitive
and high volume consumer electronic applications. The
device chosen for the algorithm implementation is an
XEM3050 card from Opal Kelly with a Xilinx Spartan-3
FPGA, model SC3S4000-5 [35]. The most remarkable
features of this FGPA are 6912 CLBs or 62208 equiva-
lent logic cells (1 Logic Cell = 4-input LUT and a D
flip-flop), 96 × 18 Kb embedded RAM blocks and 520
Kb of Distributed RAM, 96 dedicated 18-bit multipliers
and a Speed Grade of -5. This FPGA uses 90 nm pro-
cess technology. The board also includes a high-speed
USB 2.0 interface and 2 × 32 MB SDRAM and 9 Mb of
SSRAM. VHDL description and Xilinx ISE 10.1 tools
were employed.
With this device, the following parameters for the

coarse-grain processor array were chosen. Data width
was set to 8-bits because the original implementation of
the algorithm demonstrated that with this word-size suf-
ficient precision is reached. Each sub-window is 16 × 16
px and up to 8 independent sub-windows per Block
RAM can be used (each one features 18 Kb, where 2 Kb
are parity bits -not used). The ALU contains an
embedded multiplier. An USB 2.0 I/O controller is also

Figure 5 Overview of the Coarse Grain Processor Array architecture.

Nieto et al. EURASIP Journal on Image and Video Processing 2011, 2011:10
http://jivp.eurasipjournals.com/content/2011/1/10

Page 10 of 17

implemented. With these parameters, an array size of 9
× 10 PEs fills completely the FPGA. It is able to process
images of 144 × 160 px at a clock frequency of 53 MHz.
The algorithm was implemented completely trust-

worthy to the original algorithm proposal. Instruction
set and processors topology match algorithm operations.
As it happens with the SCAMP implementation, it is
still needed to split the input images into several sub-
windows. However, the architecture supports simple
scaling to larger or newer FPGAs.

5 Massively Parallel Processor Array
MPPA provides hundreds or even thousands of proces-
sors. Each unit is encapsulated and works independently,
so they have their own program and data memories. All
units are connected to a programmable interconnection,
enabling data exchange between them. These are usually
point-to-point channels controlled by a message passing
system which allows its synchronization. MPAAs also
include distributed memories which are connected to
the network using the same channels. This independent
memories will help during the development process to
store data when the local memory of each processor is
not enough or to build FIFO queues, for instance.
The main differences between MPPA and multicore or

manycore architectures are the number of processing
units (which traditionally was much higher, though lat-
est GPUs have increasingly computational units, making
them comparable), their originally conceived general-
purpose character and that they do not include a shared
memory (as is the case of symmetric multiprocessing)
[36].
They are focused on exploiting the functional and

temporal parallelism of the algorithms instead of the
spatial parallelism (as happened with the Pixel-parallel
processor array). The idea is to split the original algo-
rithm into several subtasks and match each with one or
several processors of the array. Each processor executes
sequential code, a module of the algorithm or the appli-
cation. The different modules are connected together
using the channels in a similar way of a flow diagram of
an algorithm. This way they attempt to solve the bottle-
neck between processors and the external memory and
avoid the need to load all data at a time while the func-
tional units are stopped. Stream computing has been
proved to be very efficient [14]. The parallelism is
obtained running different modules in parallel. However,
processors can include internal SIMD units making
them even more powerful and flexible.
As they are encapsulated, higher working frequencies

can be achieved, making them competitive despite the
lower parallelism level if we compare them with a cellu-
lar processor, for example. The use of multiple compu-
tational units without explicitly managing allocation,

synchronization or communication among those units
are also one of its major advantages. This is one of the
goals of MPPAs, to ease the development process. As all
these processes can be done (commonly) through a
friendly high-level programming language, some authors
say that MP-PAs are the next evolution of FPGAs [37].
Designers are increasingly demanding high-performance
units to address parts of the application which are diffi-
cult to map on a pure-hardware implementation. This is
one of the reasons why future FPGAs will include high-
end embedded microprocessors [31]. MP-PAs already
provide this capability including a standard interface
with the rest of modules of the system. Dedicated hard-
ware as this will cut down power consumption and
hardware resources while performance will be heavily
increased. However, FPGAs are still faster for intensive
computing applications [38].
As remarkable examples of MPPAs devices, we should

cite the picoChip [39], the Tilera Processor [40] or the
PARO-design system [41].

5.1 The Ambric Am2045 processor
The selected platform where to migrate the retinal ves-
sel tree extraction algorithm is the parallel processor
Am2045 from Ambric [37]. It is made up of a large set
of fully encapsulated 360 32-bit RISC processors and
360 distributed memories. Each RISC processor runs its
own code, a subtask of the complete algorithm. A set of
internal interconnections allows data exchange between
them. Synchronization between processors is done auto-
matically through a flexible channel hierarchy. A simple
handshake and local protocol between registers enables
synchronization without intermediate logic, as it hap-
pens when using FIFOs. A chain of those registers is
known as a channel. Figure 6 shows the main blocks of
this architecture.
Ambric uses two kinds of processors, SR and SRD.

Both are 32-bit RISC processors specially designed for
streaming operations. SRD CPU enables instruction and
data-level parallelism. Sub-word logical and integer
operations as well as fixed point operations are also pos-
sible. SRD processors also include 3 ALUs, two of which
work in parallel, and a 256-word local memory. SR
CPUs are a simpler version of SRDs, specially designed
to deal with simple tasks where DSP extensions are not
needed. They only have an ALU and a 64-word local
memory. A group of 2 SRD and 2 SR CPUs is known as
a Compute Unit (CU) and includes a local interconnec-
tion to let direct access between them.
Distributed memory is organized in modules known as

RAM Units (RU). Each RU has 4 banks of 256 words
connected together through a dynamic configured inter-
connection. There are also direct links between the RU
and the SRD CPUs (not shown in Figure 6) which

Nieto et al. EURASIP Journal on Image and Video Processing 2011, 2011:10
http://jivp.eurasipjournals.com/content/2011/1/10

Page 11 of 17

provide random access or FIFO queues both for instruc-
tions and for data to increase performance and
flexibility.
A group of 2 CU and 2 RU is called Brick. Bricks are

connected using a distant reconfigurable channel net-
work, which works at a fixed frequency.
The Am2045 chip uses 130-nm standard-cell technol-

ogy and provides 360 32-bit processing elements and a
total of 4.6 Mb of distributed RAM, working at a maxi-
mum frequency of 333 MHz and featuring a power con-
sumption about 10 W. It also includes two DDR2-400
SDRAM interfaces and a 4-lane PCI-Express, to enable
fast internal and external I/O transactions. This device
does not feature shared memory, but it has an external
memory that can only access certain elements that con-
trol the I/O to the chain of processors which map the
algorithm. A more detailed description of the hardware
can be found in Butts et al. [37].

5.2 Implementation
The computational paradigm in Ambric’s device is com-
pletely opposed to the two former implementations
addressed in this paper. While using cellular or coarse-
grain processors, we were focusing on the characteristics
of the algorithm that allowed to exploit its massive spa-
tial parallelism, now this is not suitable. Although with
stream processors it is possible to implement applica-
tions in a pure SIMD fashion, it is more appropriate to
modify the algorithm and make certain concessions in
order not to compromise performance. For instance, the
iterative nature or operations as the hole-filling are very
expensive in terms of both time and hardware resources
(number of processors). This is one of the drawbacks of
the computational paradigm used by this platform.
Recursive operations are quite resource consuming
because each iteration requires to replicate the set of
processors which implements the operation. This is not

a strict rule, and there are other approaches that can
address this problem differently through a reorganiza-
tion of operations and modules. However, most low-
level and much of the mid-level operations have data
dependencies that oblige to complete the previous
operation over the whole or most part of the data set
before applying the next operation. PLS is a clear
example.
Figure 7 summarizes the algorithm mapped on the

Am2045 device. 16-bit instead of 8-bit words are used
to guarantee accuracy. The SIMD capabilities of the
SRD processors are also used. This is specially advanta-
geous for binary images because 32 pixels can be pro-
cessed at a time, increasing greatly the performance
during the PLS evolution. Many operations can be seen
as 2D convolutions, split into vertical and horizontal fil-
ters. While for horizontal filtering the implementation is
straightforward, for vertical filtering the local memories
must be used to store the previous rows. FIFO queues
balance the paths and avoid internal blockages during
the processor communication. Although synchronization
is automatic, it may occur that some paths were much
faster than others. For example, consider a processor
which supplies data to two processing paths, one much
more slower than the other and a second processor
where both paths are combined. When a processor tries
to read from an empty channel, a stall occurs. FIFO
queues avoid those stalls, but a bottleneck analysis is
necessary.
Some operations of the algorithm were not implemen-

ted. The hole- filling step, located between slow and fast
PLS evolutions and introduced to improve results (see
Figure 2), was removed because of its heavy resource
consumption. In the same way, some internal improve-
ments in the PLS were eliminated, as the internal poten-
tial. This greatly simplifies the implementation of the
PLS, leading to binary operations only. Each PLS step

Figure 6 Overview of the Ambric architecture: Computational Units (CU) and RAM Units (RU).

Nieto et al. EURASIP Journal on Image and Video Processing 2011, 2011:10
http://jivp.eurasipjournals.com/content/2011/1/10

Page 12 of 17

requires just one processor, and there is no need to
store partial results, leading to a large increase in perfor-
mance. Otherwise, PLS step will require more proces-
sors to be implemented. Although normally this is not a
problem, when performing a large number of iterations,
it will be something to consider. This results in an accu-
racy reduction in the results that, depending on the
application, may make the results invalid. This point is
discussed in depth in Section 6.
On the other hand, to tune up this kind of operations

is tedious because the chain structure (see Figure 7)
must be modified. Recursive operations over the same
set of data make the implementation in stream proces-
sors much more complex than in cellular processors,
and these operations are common during the first stages
of image processing.
The following pseudo-code shows how SR CPUs work.

It implements a 3 × 3 sharpening filter using only one
processor. It will have a poor performance, but it illus-
trates how the programming is done and how these
platforms speed up the development.
public void run(InputStream<Integer> in,

OutputSteam<Integer> out) {
//Sharpen filter implementation
//(one processor used)
px_1 = px_2; px_2 = px_3; px_3 = in.

readInt();
px_4 = px_5; px_5=px_6; px_6=in.readInt

();
px_7=px_8; px_8=px_9; px_9=in.readInt

();
tmp = (-px_1-px_2-px_3);
tmp = tmp + (-px_4+8*px_5-px_6);
tmp = tmp + (-px_7-px_8-px_9);

if (tmp < 0) tmp = 0;
out.writeInt(tmp);

}
More details of the implementation can be found in

Resco et al. [42].

6 Results and comparison
In this section, the results of the algorithm implementa-
tion are discussed. Table 3 summarizes the most rele-
vant results of the different implementations. We can
see that even with a next generation processor, the
results are not satisfactory. Systems running this kind of
algorithms usually are required for a rapid response,
something that a PC hardly can provide.
As it was detailed in Sec. 2.3, it was developed using

OpenCV/OpenMP and C++ on a computer equipped
with a 4-core Intel Core i7 940. This way, compared
with the initial straightforward MATLAB implementa-
tion (for test purposes) time execution drops from 41 to
13.7 s. As explained in the Introduction, this algorithm
was designed to work on-line following the capture
stage, so a PC is not a good choice. However, we will
use it as a reference system for comparison.
When executing the retinal vessel tree extraction algo-

rithm, we were not only seeking ways to reduce the pro-
cessing time but also we wanted to test different platforms
and determine their weaknesses. This way, SCAMP-3
implementation adds operations to improve accuracy
(necessary when using analog memories), FPGA gets the
most accurate results because it is possible to implement
the original method trustworthy (at the cost of reducing
performance) and Ambric’s device provides the fastest
results but reducing the accuracy (required hardware
resources would be very high otherwise).

Figure 7 Retinal vessel tree extraction algorithm mapped in Ambric Am2045 device.

Nieto et al. EURASIP Journal on Image and Video Processing 2011, 2011:10
http://jivp.eurasipjournals.com/content/2011/1/10

Page 13 of 17

It can be seen from Table 3 that Ambric’s device gives
the highest performance, lowering the total execution
time and achieving a high speed-up. This is in part due
to the simplifications we made in the algorithm as it
was explained previously in Sec. 5. This implementation
enables a performance not achievable by computers or
FPGAs (at least using a low-cost device). We must
emphasize that the simplification of the algorithm pro-
vides accurate and valid results, but they may not be
suitable for certain applications. For instance, they are
still valid to obtain the skeleton of the retinal tree but
not to measure the vascular caliber. When migrating the
algorithm to this platform, we have faced a trade-off
between speed and validity of the results for any appli-
cation and in this case and for comparison purposes, we
give priority to the processing speed.
The other main reason for the high performance of

the Ambric’s device is the high working frequency of
the Am2045 device (333 MHz), which is considerably
faster than those achieved by the SCAMP or the FPGA.
Digital solutions provide higher clock frequencies but
they are commonly limited by the interconnection
between the processing units, as is the case of the
FPGA. MPPAs architectures implement point to point
connections with minor reconfigurable options than
FPGAs so clock frequency does not depend on the algo-
rithm which is being running. However, recent FPGAs
families increase its computing capacity considerably.
We have estimated that migrating the proposed design
to a Virtex-6 model XC6VLX240T-1 [43], a considerable
speed-up can be obtained, reaching 80 ms per image
without compromissing accuracy in the original
algorithm.
The cycles-per-pixel (CPP) metric measures the

number of clock cycles required to execute all opera-
tions that result on each one of the pixels in the
resulting image (see Table 2), normalizing the differ-
ences in frequency and number of processing cores.
The above discussion is summarized using this value.
It should be noted that the Ambric Am2045 runs a

simplified version of the algorithm. When the number
of operations is corrected, this leads us to an obvious
reduction in performance, approximately multiplying
by 3 the CPP value. Although the theoretical perfor-
mance would remain higher than the other approaches,
the problem we face is different: there is not enough
processors and interconnections to fit the algorithm in
the device. This was the main reason why it was
decided to simplify it.
Analog computing increases greatly the density of

integration. In the SCAMP-3 with a relatively old 0:5
mum CMOS technology, each processing element occu-
pies an area lower than 50μ m × 50μ m and it remains
flexible enough to implement any kind of computation.
However, accuracy must be considered due to the nat-
ure of the data representation (current mode) and the
technology issues (mismatch, memory volatility, noise
effects...). Analog computing allows to integrate a pro-
cessor per pixel of the sensor, eliminating one of the
most important bottlenecks in traditional architectures.
Given the number of bits of the data representation,
digital platforms guarantee accuracy independently of
the technology process. While 7-8 bits are hard to reach
using mixed-signal architectures [44], 32-bit or 64-bit
architectures are common in digital devices.
The discussed algorithm is robust enough to run in

platforms with short data representations as SCAMP-3.
However, this is not only the unique factor which affects
the final result. As it was discussed above, each device
requires us to make certain concessions to guarantee its
viability. Table 4 summarizes the maximum average
accuracy (MAA) [45] of each implementation compared
with the manual segmentation available in the DRIVE
database [20]. We can see that using the Ambric device,
the accuracy drops around a 10% when removing the
mentioned operations. The main reason is the appear-
ance of many false positives that now are not eliminated
using the hole-filling operation. However, once skeleto-
nized the vascular tree, they can be easily removed
using hit-and-miss masks if the application requires it.

Table 3 Most relevant results of the retinal vessel tree extraction algorithm implementation on the different devices

Intel Core i7 940 SCAMP-3 Spartan-3 Am2045

Window size (px) - 128 × 128 144 × 160 -

Processors (used/available) 4/4 16,384/16,384 90/90 125/360

Working frequency (MHz) 2930 1.25 53 333

Window execution time (ms) - 6.55 66.1 -

Required windows 1 30 20 1

Computation time (s) 13.6 0.193 1.323 0.008

Total execution time with I/O (s) 13.7 0.230 1.349 0.0087

Speed-up 1× 59.6× 10.2× 1574.7×*

Cycles-per-pixel (without I/O) 357,993 8,950 14,070 742*

* It should be noted that the Ambric Am2045 runs a simplified version of the algorithm. See Section 6 for details

Nieto et al. EURASIP Journal on Image and Video Processing 2011, 2011:10
http://jivp.eurasipjournals.com/content/2011/1/10

Page 14 of 17

Concerning algorithm issues, a comparison with other
approaches can be found in Alonso-Montes et al. [9].
Although digital designs consume more silicon area,

the improvements in the semiconductor industry are
lowering the silicon area requirements, providing higher
rates of integration density. The benefits are an easily
scaling and migration of the architectures, which it is
possible to carry out with straightforward designs as a
difference with analog computing. FPGAs and MPPAs
are clear examples. Analog Cellular Processors have a
large network that connects the processing elements. To
upscale this network, keeping a high yield with different
array sizes and manufacturing processes is extremely
difficult. This is one of the main reasons why they are
not able to process high-resolution images and why cus-
tomers have more availability of digital devices. This
way, MPPA devices are the most suitable platform to
deal with big images because they have not restrictions
in this sense (stream processing modules can also be
implemented on FPGAs). Pure SIMD-matrix approaches
offer good performance because they match the most
common early vision operations but the image size is
limited. In those cases, a sliding window system is a
need to process bigger images.
Image size constrains the amount of RAM needed in

the system, especially when working with high-resolu-
tion images. One advantage of this algorithm is that it
needs a small amount off-chip memory and that it can
take advantage of the embedded RAM to perform all
computation, reducing IO. External RAM is mainly used
to store the input image and the results so 4-8 MB are
enough. The SCAMP-3 Vision Chip can store on-chip
up to 8 128 × 128 px images (equivalent to 128 Kb, tak-
ing into account that the computation in done in analog
mode), the architecture proposed for the Spartan-3 up
to 8 144 × 160 px images (176 Kb) and the Ambric
Am2045 can store up to 4.6 Mb of data. This is the
main reason why PC performance is so low: the selected
devices are capable of doing all the processing on-chip,
accessing to the external memory just for loading the
input image. On the contrary, the PC should make an
intensive use of external memory to store partial results,
making memory access a bottleneck. Explicit load/store
operations are needed and this is why CPP is much
higher than the other approaches.
Analog processing allows to integrate the processors

with the image sensors. But this kind of processor

distribution, although adequate for low and some steps
of mid-level image processing, is not suitable for com-
plex algorithms with more complex data dependencies.
SCAMP-3 is very powerful for early vision tasks, but it
lacks the flexibility to address higher-level operations.
Using FPGAs, different architectures and computing
paradigms can be easily emulated. Its dense network,
although it consumes a large silicon area, provides this
flexibility. MPPAs attempt to, reducing interconnection
between processors, build more powerful computing ele-
ments. The fixed network of Cellular Processors limits
its range of application. The programmable and dense
network of FPGAs enables any kind of architecture
emulation but reducing integration density and the
working frequency. MPPAs are located in an intermedi-
ate position. Its programmable network provides enough
flexibility to cover a wide range of applications, freeing
up space to build more powerful processors, but limiting
the kind of computations that can address. This is why
recursive operations are hard to implement and the
resource usage is so high. PLS had to be simplified to
deal with this trade-off.
With respect to the algorithm development process,

Time-To-Market (TTM) is key in industry. Ambric’s
platform offers the system with the lowest TTM. A
complete SDK that provides a high-level language and
tools for rapid profiling make the development much
faster than in other platforms. This is one of the pur-
poses of the platform, to offer a high-performance
device keeping prototyping rapid and closer to software.
Using HDL language to develop complex architectures
or software-to-hardware implementations is much more
expensive because they are closer to hardware than to
software. This is specially true in the second case, where
a high-level language (as SystemC or ImpulseC) is
recommended.
Regarding portability, it is clear that a computer-based

solution (even a mobile version) is not a valid solution
because of size, power consumption or lack of integra-
tion and compactness between its components. For
early vision tasks, a focal-plane processor (as SCAMP-3)
is the best choice. The processors are integrated
together with the sensors and their power consumption
is very reduced. To accomplish complex operations,
FPGAs offer reduced size and power consumption in its
low-end products, allowing to build complex Systems-
on-Chip and compacting all the processing on the same
chip. For better performance, an MPPA or a larger
FPGA is needed. Power consumption will be higher,
specially for the high-end FPGAs, but the amount of
processing units we can include is considerably higher.
Although the conclusions we have drawn in this sec-

tion come from a specific algorithm, this has features
common to most algorithms for low- and medium-level

Table 4 Maximum Average Accuracy (MAA) for each
implementation, including the manual segmentation by
an expert

Manual Intel Core i7 940 SCAMP-3 Spartan-3 Am2045

MAA 0.9473 0.9202 0.9180 0.9192 0.8132

Nieto et al. EURASIP Journal on Image and Video Processing 2011, 2011:10
http://jivp.eurasipjournals.com/content/2011/1/10

Page 15 of 17

image-processing tasks (see Sec. 2.3). We have seen that
visual processors as SCAMP are excellent in early vision
operations, but specific algorithms are needed to address
the subsequent processing steps. MPPAs provide an
environment closer to the programmer, with a great
performance, limited by the low-level operations. FPGAs
enable us to replicate any application with very accepta-
ble results, although the development time is higher. Its
internal network is both their greatest advantage and
disadvantage.

7 Conclusions
In this paper, a comparison of different implementations
of a retinal vessel tree extraction algorithm was made.
The algorithm can operate online in a device with
reduced size, cost and power consumption, opening new
possibilities in other areas apart from the medical field.
It was specifically designed focusing on performance, so
an MP-SIMD processor array offers good results. How-
ever, the technology limitations, especially array size and
a limited accuracy, make us consider other approaches.
FPGAs enable us to speed up most applications with

acceptable results. They take advantage of its highly
reconfigurable network to improve the matching
between architecture and algorithm, exploiting its char-
acteristics and potentially leading to better performance
solutions. Advances in semiconductor industry enable to
integrate more and more functional units in a reduced
silicon area.
MPPAs take advantage of this integrating hundred of

processors in the same chip. They focus on exploiting
the task parallelism of the algorithms, and results prove
that this approach provides remarkable performance.
However, certain trade-offs must be done when dealing
with low-level image processing not to compromise
efficiency.
Results show that even using a high-end CPU, a sig-

nificative gain can be achieved using hardware accelera-
tors. A low-cost FPGA outperforms the Intel Core i7
940 by a factor of 10×. With a focal plane-processor,
this factor reaches 60×. Using the selected MPPA, a fac-
tor of more than 1500× was reached, but we have to
take into account that the algorithm was simplified in
order to sort the limitations of the platform when deal-
ing with low-level image processing. The accuracy drops
about 10% which might compromise its suitability for
some applications. First estimations using a Virtex-6
FPGA and the same architecture indicated here show a
speed-up around 170×, even better than the focal-plane
processor, which is the natural platform for this kind of
algorithms.
The retinal vessel tree extraction algorithm presents

common features to most of the low- and mid-level
algorithms available in the literature. Except for high-

level operations over complex data sets, where high pre-
cision is needed, the presented architectures perform
adequately for low- and mid-level stages, where opera-
tions are simple and have to be applied over a large set
of data. They are able to exploit the massive spatial par-
allelism of low-level vision, featuring general-purpose
computation. Ambric’s processor requires a special
mention because, although it can exploit spatial paralle-
lism of low-level vision, its throughput is very high
when dealing with the mid-level stage, where task paral-
lelism is clearly advantageous. However, SCAMP-3 is
mainly restricted to the low-level stage where its low
power consumption and form factor fit well. FPGAs are
flexible enough to cover the complete application. Their
major drawback is the time required to get the system
ready.

Acknowledgements
This work is funded by Xunta de Galicia under the projects 10PXIB206168PR
and 10PXIB206037PR and the program Maria Barbeito. Authors would also
like to thank the reviewers for their helpful comments and suggestions.

Author details
1University of Santiago de Compostela, Centro de Investigación en
Tecnoloxías da Información (CITIUS), Santiago de Compostela, Spain
2Department of Electronic and Systems, University of A Coruña, A Coruña,
Spain

Competing interests
The authors declare that they have no competing interests.

Received: 1 March 2011 Accepted: 27 September 2011
Published: 27 September 2011

References
1. Bankman I: Handbook of Medical Imaging: Processing and Analysis.

Academic Press, London; 2000.
2. Patton N, Aslam T, MacGillivray T, Deary I, Dhillon B, Eikelboom R,

Yogesan K, Constable I: Retinal image analysis: concepts, applications and
potential. Prog Retin Eye Res 2006, 25(1):99-127.

3. Lowell J, Hunter A, Steel D, Basu A, Ryder R, Kennedy R: Measurement of
retinal vessel widths from fundus images based on 2-D modeling. IEEE
Trans Med Imaging 2004, 23:1196-1204.

4. Wilson C, Cocker K, Moseley M, Paterson C, Clay S, Schulenburg W, Mills M,
Ells A, Parker K, G Quinn, et al: Computerized analysis of retinal vessel
width and tortuosity in premature infants. Investig Ophthalmol Vis Sci
2008, 49(8):3577.

5. Ortiz D, Cubides M, Suarez A, Zequera M, Quiroga J, Gomez J, Arroyo N:
System for Measuring the Arterious Venous Rate (AVR) for the Diagnosis
of Hypertensive Retinopathy. ANDESCON, 2010 IEEE 2010, 1-4.

6. Salem N, Nandi A: Unsupervised Segmentation of Retinal Blood Vessels
Using a Single Parameter Vesselness Measure. Sixth Indian Conference on
Computer Vision, Graphics Image Processing, 2008. ICVGIP ‘08 2008, 528-534.

7. Lion N-X, Zagorodnov V, Tan Y-P: Retinal Vessel Detection Using Self-
Matched Filtering. IEEE International Conference on Image Processing, 2007.
ICIP 2007 2007, 6:VI-33-VI-36.

8. Li Q, You J, Zhang L, Zhang D, Bhattacharya P: A New Approach to
Automated Retinal Vessel Segmentation Using Multiscale Analysis. 18th
International Conference on Pattern Recognition, 2006. ICPR 2006 2006,
4:77-80.

9. Alonso-Montes C, Vilarino D, Dudek P, Penedo M: Fast retinal vessel tree
extraction: A pixel parallel approach. Int J Circuit Theory Appl 2008, 36(5-
6):641-651.

Nieto et al. EURASIP Journal on Image and Video Processing 2011, 2011:10
http://jivp.eurasipjournals.com/content/2011/1/10

Page 16 of 17

http://www.ncbi.nlm.nih.gov/pubmed/16154379?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16154379?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15493688?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15493688?dopt=Abstract

10. Alonso-Montes C, Ortega M, Penedo M, Vilarino D: Pixel Parallel Vessel
Tree Extraction for a Personal Authentication System. IEEE International
Symposium on Circuits and Systems. ISCAS 2008 2008, 1596-1599.

11. MacLean W: An evaluation of the suitability of FPGAs for embedded
vision systems (IEEE). Computer Vision and Pattern Recognition-Workshops,
2005. CVP Workshops. IEEE Computer Society Conference on 2005, 131.

12. Rode H, Chiddarwar A, Darak S: Suitability of FPGA for computationally
intensive image processing algorithms. IET Seminar Digests, 2009 2009,
65-65.

13. Foty D: Perspectives on Scaling Theory and CMOS Technology–
Understanding the Past, Present, and Future. Proceedings of the 2004 11th
IEEE International Conference on Electronics, Circuits and Systems, 2004. ICECS
2004 2004, 631-637.

14. Dally W, Kapasi U, Khailany B, Ahn J, Das A: Stream processors:
Programmability and efficiency. Queue 2004, 2(1):52-62.

15. Kass M, Witkin A, Terzopoulos D: Snakes: Active contour models. Int J
Comput Vis 1998, 1(4):321-331.

16. Cohen L, Cohen I: Finite-element methods for active contour models and
balloons for 2-D and 3-D images. IEEE Trans Pattern Anal Mach Intell 2002,
15(11):1131-1147.

17. Vilariño D, Rekeczky C: Pixel-level snakes on the CNNUM: algorithm
design, on-chip implementation and applications. Int J Circuit Theory Appl
2005, 33(1):17-51.

18. Dudek P, Vilarino L: A Cellular Active Contours Algorithm Based on
Region Evolution (IEEE). 10th International Workshop on Cellular Neural
Networks and Their Applications, 2006. CNNA 2006 2006, 1-6.

19. Vilarino D, Dudek P: Evolution of Pixel Level Snakes Towards an Efficient
Hardware implementation. IEEE International Symposium on Circuits and
Systems, 2007. IS-CAS 2007 2007, 2678-2681.

20. Staal J, Abramoff M, Niemeijer M, Viergever M, van Ginneken B: Ridge
based vessel segmentation in color images of the retina. IEEE Trans Med
Imaging 2004, 23(4):501-509.

21. Rodríguez-Vázquez Á, Domínguez-Castro R, Jiménez-Garrido F, Morillas S,
Listán J, Alba L, Utrera C, Espejo S, Romay R: The eye-RIS CMOS vision
system. Analog Circuit Design 2008, 15-32.

22. Paillet F, Mercier D, Bernard T: Second Generation Programmable Artificial
Retina. Proceedings of the Twelfth Annual IEEE International ASIC/SOC
Conference, 1999 1999, 304-309.

23. Lopich A, Dudek P: Asynchronous cellular logic network as a co-
processor for a general-purpose massively parallel array. Int J Circuit
Theory Appl 2010, 39:963-972.

24. Komuro T, Ishii I, Ishikawa M, Yoshida A: A digital vision chip specialized
for high-speed target tracking. IEEE Trans Electron Devices 2003,
50:191-199.

25. Topol AW, Tulipe DCL, Shi L, Frank DJ, Bernstein K, Steen SE, Kumar A,
Singco GU, Young AM, Guarini KW, Ieong M: Three-dimensional integrated
circuits. IBM J Res Dev 2006, 50:491-506.

26. Kurino H, Nakagawa M, Lee K, Nakamura T, Yamada Y, Park K, Koyanagi M:
Smart vision chip fabricated using three dimensional integration
technology. Adv Neural Inf Process Syst 2001, 720-726.

27. Foldesy P, Zarandy A, Rekeczky C, Roska T: 3D Integrated Scalable Focal-
Plane Processor Array. 18th European Conference on Circuit Theory and
Design, 2007. ECCTD 2007 2007, 954-957.

28. Dudek P: Implementation of Simd Vision Chip with 128 × 128 Array of
Analogue Processing Elements. ISCAS 2005 IEEE International Symposium
on Circuits and Systems, 2005 2005, 6:5806-5809.

29. Dudek P: A Processing Element for an Analogue SIMD Vision Chip.
European Conference on Circuit Theory and Design. ECCTD 2003 2003,
3:221-224.

30. Alonso-Montes C, Dudek P, Vilarifio D, Penedo M: On Chip Implementation
of a Pixel-Parallel Approach for Retinal Vessel Tree Extraction (IEEE). 18th
European Conference on Circuit Theory and Design, 2007. ECCTD 2007 2008,
511-514.

31. DeHaven K: Extensible Processing Platform Ideal Solution for a Wide
Range of Embedded Systems. Extensible Processing Platform Overview
White Paper 2010.

32. Curreri J, Koehler S, Holland B, George A: Performance Analysis with High-
Level Languages for High-Performance Reconfigurable Computing. 16th
International Symposium on Field-Programmable Custom Computing
Machines, 2008. FCCM ‘08 2008, 23-30.

33. Saegusa T, Maruyama T, Yamaguchi Y: How Fast is an FPGA in Image
Processing? International Conference on Field Programmable Logic and
Applications, 2008. FPL 2008 2008, 77-82.

34. Nieto A, Brea V, Vilarino D: FPGA-Accelerated Retinal Vessel-Tree
Extraction. International Conference on Field Programmable Logic and
Applications, 2009. FPL 2009 2009, 485-488.

35. Spartan-3 FPGA Family Data Sheet. Xilinx Product Specification DS099
2009.

36. Schroder-Preikschat W, Snelting G: Invasive Computing: An Overview.
Multiprocessor System-on-Chip: Hardware Design and Tool Integration 2010,
241.

37. Butts M, Jones A, Wasson P: A Structural Object Programming Model,
Architecture, Chip and Tools for Reconfigurable Computing. 15th Annual
IEEE Symposium on Field-Programmable Custom Computing Machines, 2007.
FCCM 2007 2007, 55-64.

38. Hutchings B, Nelson B, West S, Curtis R: Comparing Fine-Grained
Performance on the Ambric MPPA Against an FPGA. International
Conference on Field Programmable Logic and Applications, 2009. FPL 2009
2009, 174-179.

39. Duller A, Panesar G, Towner D: Parallel processing–the picoChip way!
Commun Process Archit 2003, 125-138.

40. Agarwal A: The Tile Processor: A 64-core Multicore for Embedded
Processing. Proceedings of HPEC Workshop 2007.

41. Hannig F, Ruckdeschel H, Dutta H, Teich J: Paro: Synthesis of hardware
accelerators for multi-dimensional dataflow-intensive applications.
Reconfig Comput Archit Tools Appl 2008, 287-293.

42. Resco C, Nieto A, Osorio R, Brea V, Vilarino D: A Digital Cellular-Based
System for Retinal Vessel-Tree Extraction. European Conference on Circuit
Theory and Design, 2009. ECCTD 2009 2009, 835-838.

43. Virtex-6 Family Overview. In DS099 White Paper Edited by: bf I Xilinx 2010.
44. Montes CA: Automatic Pixel-Parallel Extraction of the Retinal Vascular-

Tree: Algorithm Design, On-Chip Implementation and Applications. PhD
Thesis, Faculty of Informatics, University of A Coruna 2008.

45. Niemeijer M, Staal J, van Ginneken B, Loog M, Abramoff M: Comparative
Study of Retinal Vessel Segmentation Methods on a New Publicly
Available Database. Proceedings of SPIE 2004, 5370:648.

doi:10.1186/1687-5281-2011-10
Cite this article as: Nieto et al.: Performance analysis of massively
parallel embedded hardware architectures for retinal image processing.
EURASIP Journal on Image and Video Processing 2011 2011:10.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

Nieto et al. EURASIP Journal on Image and Video Processing 2011, 2011:10
http://jivp.eurasipjournals.com/content/2011/1/10

Page 17 of 17

http://www.ncbi.nlm.nih.gov/pubmed/15084075?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15084075?dopt=Abstract
http://www.springeropen.com/
http://www.springeropen.com/

	Abstract
	1 Introduction
	2 The retinal vessel tree extraction algorithm
	2.1 Active contours initialization and algorithm execution flow
	2.2 Pixel-Level Snakes
	2.3 Performance remarks

	3 Pixel-Parallel Processor Arrays
	3.1 The SCAMP-3 processor
	3.2 Implementation

	4 Field-programmable Gate Arrays
	4.1 Custom architecture: Coarse-grain Processor Array
	4.2 Implementation

	5 Massively Parallel Processor Array
	5.1 The Ambric Am2045 processor
	5.2 Implementation

	6 Results and comparison
	7 Conclusions
	Acknowledgements
	Author details
	Competing interests
	References

