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Face detection in video sequence is becoming popular in surveillance applications. The tradeoff between obtaining discriminative
features to achieve accurate detection versus computational overhead of extracting these features, which affects the classification
speed, is a persistent problem. This paper proposes to use multiple instances of rotational Local Binary Patterns (LBP) of pixels as
features instead of using the histogram bins of the LBP of pixels. The multiple features are selected using the sequential forward
selection algorithm we called Co-occurrence of LBP (CoLBP). CoLBP feature extraction is computationally efficient and produces
a high-performance rate. CoLBP features are used to implement a frontal face detector applied on a 2D low-resolution surveillance
sequence. Experiments show that the CoLBP face features outperform state-of-the-art Haar-like features and various other LBP
features extensions. Also, the CoLBP features can tolerate a wide range of illumination and blurring changes.

1. Introduction

Recently, surveillance cameras and Closed-Circuit Television
(CCTV) are available in places that are highly occupied with
people such as subway stations, airports, universities, and
casinos. Increasing the number of cameras makes it a difficult
task for the human to effectively monitor many cameras
for suspicious activities simultaneously. As a result, much
research is conducted to implement an intelligent system that
mimics the human brain and achieves the monitoring job
automatically with minimum human intervention. Monitor-
ing the people is one task where finding the location of the
face is used for surveillance applications; indeed, locating the
place of the face is a preliminary step for other surveillance-
related applications such as face recognition (i.e., find the
identity of the person), emotion recognition, face tracking,
and many other applications.

Humans can effortlessly detect and locate faces in real-
life; however, locating faces using computer vision technol-
ogy is not an easy task. Here we come to the problem of face
detection for computer vision which can be interpreted as
follows: given a still image or a video sequence frames, find

the location(s) and size(s) of the face(s) in the frame or image
if exist(s) [1].

The face detection problem is tackled by numerous
different methods since the 1970s. Face detection surveys in
[1, 2] illustrate a very comprehensive study on face detection
that covers most aspects of face detection techniques up to
2002. Despite the many approaches and techniques in these
surveys, none of these techniques was adequate to perform
in real-time basis. The term real-time, in this paper, is
interpreted as the ability to process frames with a rate close to
the examined sequence frame rate, under the condition that
the frame rate ≥ 15 frames/second, that is, 15 frames/second
in [3]. The first technique that could process in real-time
basis was introduced in [3] in which it was published after
these surveys.

Face detectors techniques can be divided into two main
streams [1]: featurebased approach where human knowledge
is used to extract explicit face features such as nose, mouth,
and ears. then geometry and distances are used to decide
on the existence of the face [4–6]. The advantages of this
approach are the simple implementation, the high detection
rate in simple uncluttered images, and the high tolerance to
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illumination changes. The disadvantages of this approach are
the dramatic performance failure in cluttered and difficult,
nonfrontal face, multiple faces, and low-resolution images.
The second stream is the image-based approach; in this
approach, the face detection problem is treated as a binary
pattern recognition problem to distinguish between face and
nonface images. This approach is a holistic approach that
uses machine learning to capture unique and implicit face
features. Most of the works in the last decade, including
this work, follow the image-based approach due to the
superiority over the featurebased approach from an aspect
of the capability to handle low-resolution images, nonfrontal
face images, and the possibility to process images in real-
time. However, tremendous amount of time (i.e., weeks in
[7]) is required to train the detector due to several problems,
some of these problems will be explained briefly.

Since the image-based approach is the core of this paper,
then it will be discussed. Image-based approaches can be
categorized, based on the classification strategy used in the
design process, into two subcategories: appearance-based
approach and boosting-based approach [8]. Appearance-
based approach category is considered as any image-based
approach face detector that does not employ the boosting
classification methods in it classification stage. However,
other classification schemes are used such as neural networks
[9, 10], Support Vector Machines (SVM) [11], Bayesian
classifiers [12, 13], and so forth. All techniques in the
appearance-based approach lack the ability to perform in
real-time, and it takes an order of seconds to process an
image [8]. The other image-based approach subcategory is
the boosting-based approach, this approach started after the
successful work of Viola and Jones [3] where high detection
rate and high speed of processing (15 frames/second)
using the AdaBoost (Adaptive Boosting) algorithm [14] and
cascade of classifiers were used. Boosting-based approach
is considered as any image-based approach that uses the
boosting algorithm in the classification stage.

There are some problems associated with using the
boosting-based approach to come about. Simple AdaBoost
algorithm mechanism used in Viola and Jones is illustrated
in Figure 1. AdaBoost uses a voting scheme from weak
classifiers, ht(X), where X is the input image, t is the iteration
number. These weak classifiers are used to construct a strong
classifier, H(X). The problem of the boosting algorithm in
the face detection context is that each weak classifier, ht(X),
is trained with a single feature as in [7, 11, 15, 16] following
the pattern of the successful work of [3]. However, in earlier
iterations, these single feature weak classifiers are capable
of achieving a low classification error rate of 10%–30%
[7] while in later iterations, ht(X) cannot achieve less than
40%–50% error rate.

This problem prevents the face detector from achieving a
very highly accurate detection (i.e., ≈100% accuracy), also it
increases the number of small contributors ht(X) to achieve
the desired accuracy in which will correspondingly increase
the training time.

Although progresses are made to solve the explained face
detection problem, the long training time and the insufficient
number of discriminative features remain as challenging

Input image Xn , n ∈{1,2,...,

number of samples} and its

class label yn∈ {1,−1}
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Figure 1: AdaBoost training mechanism.

issues. The approaches followed in the literature to tackle
this problem are either by focusing on improving the type
of features or by improving the boosting algorithm, or
a combination of both approaches. Haar-like features are
used in [3], and extension to the Haar-like features have
been proposed in [16–19]; however, Haar-like features have
small tolerance to illumination changes [3]. Hence, the Local
Binary Patterns Histogram (LBP Histogram) features which
proved to have high tolerance to illumination [20] were used
in [11], but LBP Histogram features are more computa-
tionally expensive than Haar-like features. LBP Histogram
features [11] are not meant for real-time applications; they
favor high discriminative power over speed. Hence, using
these features prevent the face detector from processing
images in real-time. Improved Local Binary Patterns (ILBP)
features [8, 21] are less computationally expensive than LBP
Histogram features; however, the number of ILBP features
is limited to the number of pixels of the scanning window
so a high detection rate, in comparison to LBP Histogram,
cannot be achieved. Further extension to the LBP features
is proposed in [22] in which Multi-Block LBP (MB-LBP)
features are introduced. It is claimed in [22] that MB-LBP
features are more informative than the Haar-like features,
and they also have smaller feature vector length; hence, these
advantages result to a faster training stage. Multidimensional
covariance features in [23] are another type of features, but
extracting these features is computationally expensive.
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Figure 3: Illustration of face detection system using CoLBP features.

In this work, a type of features called Co-occurrence
of Local Binary Patterns features (CoLBP) is proposed.
The CoLBP features are used to implement a frontal face
detector that is capable to achieve a high-performance rate.
This face detector is used for surveillance purposes; it is
applied on a low-resolution 2D information from a static
camera mounted in a position where mostly frontal faces
are captured. The proposed CoLBP features are based on the
rotational LBP features [20]. This paper uses the rotational
LBP with all possible resolutions in the examined scanning
window to capture the maximum possible structure of the
window that can be obtained using the rotational LBP
operator. Unlike most of the known LBP features extensions
in [11, 21, 22] where the pixels of the examined scanning
window are transformed to LBP values, then the features
are the histogram bins of the LBP values; in this work,
the features are the LBP values of the pixels, as explained
in Figure 2. Hence, extracting a feature of the proposed
features (CoLBP) requires computing one pixel’s rotational
LBP value whereas in the histogram based LBP features as
in [11, 21, 22], it requires to compute all of the examined

scanning window pixels LBP values in order to find their
histogram bin. Therefore, the CoLBP features have less
feature extraction computational overhead than histogram
based LBP features. The main contribution of this paper
is using the co-occurrence of multiple features to increase
the feature’s discriminative power. The multiple features
are selected using the Sequential Forward Selection (SFS)
algorithm. CoLBP features are not only computationally
efficient but also provide high discriminative power capable
to achieve a high detection rate.

The rest of the paper is organized such that Section 2
introduces the proposed CoLBP features; this section also
gives a brief explanation about the classification scheme
used to train the face detector and the post-processing step.
The conducted experiments are in Section 3. Finally, the
conclusion is given in Section 4.

2. Methodology

Figure 3 illustrates the CoLBP face detector that is based
on the proposed CoLBP features. The Co-occurrence of the
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Figure 4: Multiple resolutions LBPP,R on a gray-scale image to illustrate the ability to capture different image structure.

LBP features (CoLBP) features are built upon the rotational
LBP features (see the Appendix for explanation about the
rotational LBP features). The cascade of classifiers [3] and
GentleBoost algorithm [24] are used to train the CoLBP
detector. The multiple detections of the same face are merged
using post-processing stage. Subsequent sections will explain
in details the proposed CoLBP features as well as the method
used to train the face detector using these features.

2.1. Co-Occurrence of Local Binary Patterns (CoLBP) Feature
Extraction. LBP features drew much of the attention in
object detection in general and face detection specifically due
to its discriminative power as well as its high tolerance to
illumination changes [11]. Detailed explanation about the
LBP features and its feature extraction can be found in the
Appendix. The main problem of the simple LBP features
is that despite its capability to extract high discriminative
face features [11], the number of features is limited to the
number of pixels. This issue makes the simple LBP features
insufficient to achieve a high-performance rate face detector.
Various extensions are presented in the literature to solve
this problem such as Sobel-LBP [25], CS-LBP [26], MB-LBP
[22].

Despite the high discriminative power of the extended
features [11, 22, 25, 26] in comparison to the rotational
LBP feature, the features are the histogram bins of a region.
Therefore, in the classification stage, in order to transfer the
image from the pixel space into the feature space to be
classified, all histograms’ regions LBP features have to be
computed to obtain the regions’ distributions.

The proposed CoLBP features have the following advan-
tages.

(1) Less computational overhead than the extended LBP
features that uses histogram bins as features as in [11,
22, 25, 26].

(2) Overcomplete set of discriminative face features to
achieve an accurate face detector; hence, it solves
the problem of insufficient amount of information
obtained by the simple LBP features. Overcomple
feature vector, in this paper, is a vector that its
length exceeds the number of pixels of the examined
window.

The CoLBP features proposed in this paper tackles
the computation overhead problem by using the rotational
LBPP,R, where P, R correspond to the number of points and
radius, respectively. Therefore, the features are the LBPP,R

value of the pixels. Hence, in the classification stage, only
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Figure 5: The relation between P and R in LBPP,R.

the desired pixel’s LBPP,R features are extracted. Therefore,
CoLBP features are more computationally effective than
histogram bins features.

Moreover, in order to overcome the problem of limited
features number that prevents the system from providing
enough information to achieve high-performance rate; the
CoLBP feature vector is constructed by an exhaustive
extraction for LBPP,R for all possible Rs with different P
values as illustrated in Figure 2. Each LBPP,R is considered
as a resolution to capture the image structure [11]; hence,
having different LBPP,R with different Rs and Ps capture the
image structure with different resolutions [11] as it can be
visualized through Figure 4. To be consistent throughout the
paper, the name CoLBP, which stands for Co-occurrence
of LBP features, is called on the feature vector that con-
sists of multiple resolutions LBPP,R features. Hence, when
Section 2.1.1 explains the co-occurrence of features, then it
flows as “c” multiple features from the same vector CoLBP.

In order to choose Ps for each R, an experiment is
conducted that examines the relation of each possible R with
a wide range of Ps. Ps that achieved the highest PR for each R
are selected for the CoLBP feature vector. An example of this
experiment is shown in Figure 5.

Hence, from Figure 5, the CoLBP feature vector consists
of 3, 164 rotational LBP features extracted from multiple
LBPP,R resolutions. The rotational LBP features used are
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Input: (Xn, yn,wn)Nn=1, Xn is the training image and yn ∈ {−1, +1} is the class label, wn is the weight,
c is the number of co-occurred features;

Output: z(X);
Initialize: z(X) = ∅;
(1) Retrieve the calculated CoLBP feature vectors (xn)Nn=1, xn ∈ Rk ;
(2) Use decision stump to find all features f(X) ∈ Rk threshold values θ ∈ Rk and parity values p ∈ Rk ;
for i = 1, 2, . . . , c do

for l = 1, 2, . . . , k do
z∗i (X) is concatenation of z(X) with si(X) that is trained with the lth feature, where z∗i (X) is a temporary
z(X) � (s1(X), s2(X), . . . , si(X));
z∗i (Xn) binarizes all examples (Xn)Nn=1 using (2);
Find the least weighted squared error of adding feature l, J(l), using z∗i (Xn) = j,
where j ∈ A, A = {0, 1}i, {0, 1}i is the Cartesian product of i terms;

for n = 1, . . . ,N do
For all j ∈ A, find the estimated class label ŷ j(n);

ŷ j(n) =
{

1 if P(yn = +1 | z∗i (Xn) = j) ≥ P(yn = −1 | z∗i (Xn) = j)
−1 otherwise

end
end
Select si(X) with the lth feature that makes arg minl J(l);
Update z(X) with si(X);

end

Algorithm 1: SFS algorithm for selecting multiple CoLBP features.

LBP8,1, LBP9,2, LBP12,1, LBP12,2, LBP16,3, LBP18,4, LBP24,4,
LBP24,5, LBP26,6, LBP24,7, LBP24,8, LBP24,9, LBP32,10, and
LBP32,11.

To this end, it is shown how the CoLBP features can have
less computational overhead than the histogram bins LBP
features. Also, CoLBP has an overcomplete set of carefully
selected discriminative features.

2.1.1. Co-Occurrence of Multiple CoLBP Features. The co-
occurrence of features task can be defined as finding the
joint probability of multiple features occurred simulta-
neously. Similar approach was recently proposed in [17,
18]. The objective of feature co-occurrence is claiming
that a higher discriminative power can be achieved using
the co-occurrence of multiple CoLBP features than taking
same number of features separately. Therefore, in order to
find the joint probability among multiple features, feature
binarization is carried on as in [3]. Each feature f (X) for
the image X of the CoLBP has a threshold θ and parity
p ∈ {1,−1} calculated using a degenerative decision stump
[27] from the training data such that the minimum number
of examples are misclassified.

Having the parameters ( f (X), θ, p), then given an input
image X, s(X) binarizes the input to 1 as being a face
detection or 0 as being a nonface detection as in

s(X) =
⎧

⎨

⎩

1 if p f (X) > pθ,

0 otherwise.
(1)

f (X) is a single feature value, θ is a threshold values, and
p ∈ {1,−1} is the party that indicates the direction of the
inequality.

This is a single feature binarization as in [3]. It is a specific
case of a generalized case where more than one feature occur.
Equation (2) shows the generalized form, z(X), where it
binarizes multiple features using(1)

z(X) � (s1(X), s2(X), . . . , sc(X)), (2)

where c is the number of co-occurred features, each si(X) has
( fi(X), θi, pi), where i ∈ {1, 2, . . . , c}.

Therefore, z(X) is a vector which has c of the highest
contributing si(X) selected as in the following section. z(X)
has 2c possible outcomes.

If z(X) is used as a weak classifier for boosting-based
approach detector with number of features co-occurrence of
c = 1, then this z(X) is similar to train each weak classifier
with single feature as in many boosting-based approaches for
the face detection problem in the literature including, but not
limited to, [3, 11, 15, 16].

2.1.2. CoLBP Feature Selection. The combinations of
(s1(X), s2(X), . . . , sc(X)) in (2) are selected such that a
minimum cost is achieved by z(X). If c = 1, then selecting
z(X) for the minimum error is trivial since it is based on
selecting one feature f (X), and this f (X) corresponds to
the minimum error resulted using the decision stump.
However, if c > 1 then finding z(X) which achieves the
minimum error is not an easy task. The optimal solution
would be using the exhaustive search, where the solution
is considered optimal from an aspect that the selected c
co-occurred features achieve the minimum error. However,
in the face detection problem, the feature vector dimension
is usually in thousands (i.e., Viola and Jones had feature
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vector x, x ∈ Rk, where k = 160, 000 features). Therefore,
there are

(

k
c

)

possible number of combinations for selecting
(s1(X), s2(X), . . . , sc(X)) in z(X). As a result, a large number
of combinations is possible; hence, many feature selection
techniques have been proposed throughout the time, and
below are some of them.

Sequential Backward Selection (SBS) [28] is a top-down
approach that starts by a set that comprises all features then
deletes features on one-by-one basis, where each deleted
feature is the one that has the least contribution to minimize
the error. On the other hand, the Sequential Forward
Selection (SFS) [29] starts from a set of zero features and adds
the feature that leads to minimum error. Both methods are
suboptimal feature selection in comparison to the exhaustive
search; however, they have the advantage of being less
computational expensive than the exhaustive search method,
and they are simple to implement. The disadvantage of SFS
and SBS methods is the nesting effect in which the addition
of the feature in the case of SFS or deletion of the feature
in the case of SBS cannot be redone. For instance, in SFS,
if a feature is added, then this feature will not be checked
again whether it still has a high contribution to minimize the
error; therefore, some features might lose their contribution
after some iterations while they will still be considered. To
solve the nesting issue, a method called Plus-l-Minus-r is
introduced in [30] in which it adds l features using SFS
and deletes r features using SBS; however, its main problem
is the lack of theoretical approach to choose l and r. Also,
it is more computationally expensive than SBS or SFS. An
optimal decision is made by using the branch and bound
method [31]; however, this method’s complexity increases
exponentially with the required number of features to be
selected. The Sequential Forward Floating Selection (SFFS)
and Sequential Backward Floating Selection (SBFS) [32] are
similar to Plus-l-Minus-r in some sense but instead of being
tied up by l and r, they keep adding and deleting features
until minima is achieved. SFFS and SBFS methods are proved
to outperform SFS and SBS [32].

From all these techniques a tradeoff between computa-
tion feasibility versus optimality is claimed in [32]. In this
paper, the SFS is considered for the following reasons.

(i) Despite that SFFS method proved the superiority
over SFS [32]; however, same results were obtained
when small number of features selection were needed
(i.e., c ≤ 4) [32]. Also, as will be proven exper-
imentally in subsequent sections that the CoLBP
face features tend to perform better when (c < 4).
Therefore, using SFS or SFFS would give same results.
One of the reasons that make SFS and SFFS perform
similarly when c is small (i.e., 4) is that the nesting
problem associated with SFS will not affect the system
in the same manner as in the situation when several
features are used.

(ii) SFFS is more computationally expensive than SFS
[32].

The implemented SFS is a modification to the original
SFS [29] as it binarizes the input feature vector and finds

the highest contributing c co-occurred features. The SFS
algorithm is illustrated in Algorithm 1.

P(y = +1 | z(X)), P(y = −1 | z(X)) are the
conditional joint probability. Hence, for the input image
X, the binarization function z(X) ∈ {0, 1}c, {0, 1}c is the
Cartesian product of c terms, c is the number of co-occurred
features, and y ∈ {−1, +1} is the class label such that y = 1
is a face object and y = −1 is a nonface.

Therefore, P(y = +1 | z(X)), P(y = −1 | z(X)) are
computed such that

P
(

y = +1 | z(X)
) =

∑

i∈{n|yn=+1}
wi,

P
(

y = −1 | z(X)
) =

∑

i∈{n|yn=−1}
wi,

(3)

where wi is the sample weight.

2.2. Classification. The proposed CoLBP features are used
to implement a face detector (CoLBP detector). The CoLBP
detector is trained using the GentleBoost algorithm [24]
and cascade of classifiers [3]. The weak classifiers for the
GentleBoost algorithm is z(X) obtained using c co-occurred
features as explained in the previous sections. Therefore, for
each boosting iteration, t, iteration’s specific weak classifier,
zt(X), with the minimum error, Jt, is selected. Also, the
weight of each sample wn, where n = 1, 2, . . . ,N , N is the
number of samples, is increased for the misclassified samples
and decreased for the correctly classified samples in each
iteration of the boosting. Therefore, extra attention is given
to the wrongly classified samples. In GentleBoost algorithms,
the weighted squared error is used as an error measure. The
final strong classifier is H(X) =∑T

t=1 ht(zt(X)), where h(·) is
a confidence function that optimizes the GentleBoost’s cost
function. The overall training stage mechanism is as seen in
Figure 1, the weak classifier step in Figure 1 is constructed by
running Algorithm 1.

Many variations of boosting algorithms are explained in
the literature [14, 19, 24, 27] where all of them have the
same explained mechanism but might differ in one or more
of either error calculation, weight update and/or feature
selection criterion. The GentleBoost [24] was chosen for
reasons such as GentleBoost proved the ability to outperform
the Discrete AdaBoost and Real AdaBoost in face detection
experiments [16], it is numerically stable, and it is simple
to implement. Complete discussion about the GentleBoost
algorithm can be found in [24].

2.3. Multiple Detections Merging. Applying image-based
approach face detectors on an image will cause multiple
detections for the same face as seen in Figure 6. The
multiple detections occur for two reasons: first, due to the
nature of the detection criterion where overlapping scanning
window exhaustively search the image with different sizes
and locations. Hence, there are windows where the difference
in their content is small. Second, the classifier is trained
to be insensitive to small localization error [3, 8, 9] so
the classifier can handle different face variations. Despite
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the multiple detections problem, trivially, the number of
detections in nonface regions is significantly less than that
in the face regions since the classifier is trained to achieve
a high accuracy. Therefore, the algorithm used in this paper
finds the centroid position of each detection, and then cluster
these positions.

Furthermore, the multiple detection algorithm is based
on a threshold β which decides the minimum number of
detections in each cluster to be considered as a detection. All
the clusters that do not pass this test are deleted. Afterwards,
the detection within each cluster with the highest confidence
values is only considered. The confidence of the detection is
the value of the strong classifier H(X).

3. Experiments

Previous sections have introduced the new CoLBP features
with its method of extraction and properties studied. Also,
the possibility of using the CoLBP features to train a
classifier for object detection and a method to merge multiple
detections are explained.

In this section, the explained CoLBP features will be
applied for the face detection problem, and its performance
will be evaluated. Specifically, it will be tested on a real-life 2D
surveillance data, BioID dataset, as well as a face/nonface Ole
Jensen and Viola and Jones datasets to investigate whether
the proposed solution can achieve better detection results
than the existing solutions.

The following experiments have been designed for the
performance evaluation.

(1) Evaluate the discriminative power of CoLBP features
and observe the performance of co-occurrence of
multiple features versus the separate ones.

(2) Compare the CoLBP features to other various LBP
features extensions presented in the literature.

(3) Evaluate the performance of the CoLBP features-
based face detector and compare it to the Haar-like
features-based face detector.

(4) Open the area to compare the CoLBP features face
detector to the state-of-art face detectors by applying
it on the BioID dataset.

(5) Observe the robustness of the CoLBP features
towards different illumination and camera blurring
noise.

There are several terms that are usually used for face
detection evaluation such as Detection Rate (DR), Perfor-
mance Rate (PR), True Positive (TP), and False Positive (FP).
DR is the ratio between the number of correctly classified
faces to the total number of examined faces. PR is the
ratio of the number of correctly classifying a face image as
a face image and nonface image as nonface image to the
total number of images evaluated. TP indicates correctly
classifying a face image as a face. FP detection indicates
incorrectly classifying a nonface image as a face.

3.1. CoLBP Features As Face Discriminative Features. The
CoLBP features explained in Section 2.1 is examined in this

Figure 6: Multiple detections merging example.
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experiment to prove the feasibility of providing face discrim-
inative features. This experiment also compares different
number of co-occurred features to prove the claim that hav-
ing a co-occurrence of features produces higher performance
rate than considering same number of feature separately.

The GentleBoost algorithm is used to train a classifier
using different number of co-occurred features, c. The
training and evaluation stages are performed using the Ole
Jensen dataset [33] and its mirror images. Ole Jensen dataset
consists of 15, 000 gray-scale images of size 24 × 24 pixels,
where 5, 000 images are for frontal faces and 10, 000 images
correspond to nonface images. No extra cropping, resizing
and aligning are performed on the dataset; hence, the dataset
is used as it was provided in [33]. The training set contained
22, 000 images, where 4, 000 images and their mirror images
correspond to face images and 7, 000 images and their mirror
images correspond to nonface images. Furthermore, 1, 000
and 3, 000 face and nonface images, respectively, and their
mirror images are used as evaluation set. The evaluation is
based on the performance rate (PR) measure.
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Figure 8: Training error for different number of co-occurred
features.

The feature extraction of the CoLBP features follows
the explanation in Section 2.1 such that all LBPP,R radii are
extracted. Hence, there are a maximum of 11 possible Rs for
each window of size 24 × 24. Having R = 12 will require a
radius of 12 pixel radius excluding the center point; therefore,
a diameter of 25 pixels is needed. Based on the different Ps
used, which are mentioned in Section 2.1, an overall number
of features of 3, 164 features are extracted from each window.

A comparison is made when c = 1, c = 2, c = 3, and
c = 4 where the comparison is based on training the classifier
with ≈1000 features. Figure 7 shows the generalization error
whereas Figure 8 illustrates the training error for the same
experiment. The error is calculated as error = 1 − PR. The
number of features in Figures 7 and 8 are chosen such that
it is unrelated to the number of iterations used to train the
classifier. For example, following Section 2.2, the samples
weights are updated in every iteration where the iteration
consists of 1 CoLBP feature if c = 1 or 2 CoLBP features
if c = 2, and so forth. Therefore, for fair comparison and
to investigate the higher discriminative feature power using
the co-occurrence of features then Figures 7 and 8 show the
number of features the GentleBoost classifier is trained with.

Despite that all the c co-occurred features have almost
same number of features when the training error converges
to zero, all the co-occurred features outperformed the single
CoLBP (i.e., CoLBP c = 1) features in the generalization
error. The least generalization error resulted using c = 2,
especially in early iterations. However, due to the fact that
SFS reliability to select the best features decreases when the
number of selected features increases, then it can be observed
from Figures 7 that the performance of the system degrades
when it is trained with c > 2. Especially if the comparison is
conducted in early iterations.

To understand the significance achieved using c = 2 in
comparison to c = 1 obtained in Figure 7, then taking an

arbitrary number of features, for example 50 features. The
difference in PR between using c = 1 and c = 2 with 50
features is 0.004. So if an image of size 490 × 330 pixels is
examined, and exhaustive search scanning window of size
24× 24 with 1 pixel step size is used, then 143, 369 windows
is the total number of windows. Therefore, using c = 1 with
50 features will lead to an average of 573 wrongly classified
windows more than that using same number of features with
c = 2.

Co-occurrence of other types of features are introduced
in the literature such as the co-occurrence of Haar-like
features in [17, 18]. Despite it was claimed that the co-
occurrence of Haar-like features increased their discrimina-
tive power however it was observed that this co-occurrence is
prone to overfitting.

From this experiment, the following can be concluded:

(i) CoLBP features are capable of extracting face dis-
criminative features.

(ii) Co-occurred features have higher discriminative
power than separate features.

3.2. CoLBP Features versus Various Types of LBP Features.
Various extensions to the rotational LBP features are pro-
posed in the literature including, but not limited to, the
explained ones in Section 1. Therefore, to further prove
the viability of the proposed CoLBP features, comparisons
are made with Sobel-LBP [25], MB-LBP [22], and LBP
Histogram [11] features. The comparisons are conducted
in identical environment to examine the following: perfor-
mance, training time, which consists of the time consumed
to extract the feature vector and the time required to train
a model, and classification time, which consists of the time
required to extract the trained model features.

In addition to Ole Jensen dataset explained in Section 3.1;
Viola and Jones dataset [3, 34] which consists of 4, 916
gray-scale frontal face images of size 24 × 24 pixels and
7, 972 gray-scale nonface images of size 24 × 24 is used.
Both datasets’ mirror images are obtained; hence, a total of
19, 832 frontal face images and 35, 744 nonface images are
available. The datasets are divided into two halves; one half
is used for training and the other half is used for evaluation.
Therefore, the training dataset consisted of 9, 916 face images
and 17, 872 nonface images of 24 × 24 pixels, and same
number, but nonoverlapping, face and nonface images are
used for the evaluation stage. The GentleBoost algorithm is
used as a classifier. Hence, this experiment does not involve
β explained in Section 2.3, and the decision is restricted to
whether the detection is a face or a nonface image.

It is explained in [35, 36] that LBP Histogram features
setup with the combination (LBPu2

12,2, LBPu2
8,1, LBP4,1) gives

higher performance rate than the LBP Histogram combina-
tion in [11] especially on the examined dataset; hence, this
combination is used in this experiment. Furthermore, two
setups for the Sobel-LBP, which is explained in [25], with
24× 24 and 12× 12 subregions are examined.

Figure 9 shows PR for different types of features using
different number of features. It is clear from Figure 9, that
CoLBP c = 2 outperforms all other types of features
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Table 1: Comparisons between different types of LBP extensions. The times calculations are based on training and evaluating 27,788 images
of size 24× 24 pixels.

Feature type
Training Classification

Feature vector
length

Feature vector
extraction time (sec)

Model training time
(sec)

Trained model
number of features

Model’s feature
extraction time (sec)

LBP Histogram 978 10.779 43.927 22 9.117

MB-LBP 8464 31.814 761.491 41 0.368

Sobel-LBP 12× 12 2049 4.042 298.221 75 2.026

CoLBP c = 1 3164 25.245 219.693 38 0.296

CoLBP c = 2 3164 25.245 169.158 18 0.280
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Figure 9: Comparison between the CoLBP features and various
other LBP features extensions.

including the CoLBP c = 1. To have a fair comparison
between these features, a common PR target threshold is
chosen, and the corresponding model that achieves that
threshold is considered. Hence, the comparison is conduct
under identical environment from an aspect that all models
are trained with same dataset, are evaluated on same dataset,
used same classifier, and are capable of achieving an arbitrary
PR of ≈96%. This arbitrary threshold was chosen since it is
the maximum PR could be achieved with MB-LBP features,
and it was desired that the MB-LBP features to undergo the
comparison. Sobel-LBP with 24 × 24 pixels subregion was
not considered in the comparison as it could not achieve the
target PR. Having this threshold, the comparison results are
tabulated in Table 1.

From Figure 9, CoLBP c = 2 trend outperforms all other
experimented LBP extensions; however, judgement of the
performance based on the number of features used to train
the model is not meaningful. An argument can be raised
to defeat such comparisons such that arguing: other LBP
features might outperform CoLBP c = 2 when larger number
of features are used, yet might be able to classify the images
faster if the feature extraction time is faster than CoLBP.
Hence, Table 1 proves that CoLBP c = 2 not only achieves
a higher PR than the other examined LBP features but also

extracts a trained model feature faster. The reason behind
this result is as illustrated in Section 2.1 that the CoLBP
features are based on pixels rather than regions. Hence, only
the model’s specific LBPP,R values are extracted rather than
extracting all the LBP values for all examined window pixels,
which is required in LBP extensions that use the histogram
bins as features.

Furthermore, as explained in Section 3.1 that the co-
occurrence of features not only increases the discriminative
power of the features but also significantly reduces the
training time by reducing the number of weak classifiers to
half. For this reason, it can be seen from Table 1, that CoLBP
c = 2 training time is less than CoLBP c = 1 since CoLBP
c = 1 required 38 weak classifiers while CoLBP c = 2 required
18 weak classifiers. Also, CoLBP c = 1 required 38 features
to achieve the target PR in comparison to 36 features in the
case of CoLBP c = 2, since each weak classifier is trained
with 2 features. Moreover, even though half the number of
iterations are required in the CoLBP c = 2 in comparison to
CoLBP c = 1, but it can be noticed that the training time is
not reduced to half the time. The reason behind it is because
of the overhead of using the SFS algorithm in CoLBP c = 2.
Another observation from Table 1 is that having the CoLBP
c = 2 require less number of features extraction in contrast
to the CoLBP c = 1 (i.e., 38 in CoLBP c = 1 versus 36 in
CoLBP c = 2) leads to a faster classification time.

Therefore, the following can be concluded from this
experiment.

(i) CoLBP c = 2 features outperform the LBP His-
togram, Sobel-LBP, and MB-LBP features.

(ii) CoLBP c = 2 features require less execution time to
extract the trained model features. Hence, faster face
detection algorithm can be achieved.

(iii) Further proved Section 2.1 that CoLBP c = 2 not
only outperforms CoLBP c = 1 but also requires less
training time and has faster classification time.

3.3. CoLBP Face Detector. The CoLBP features are used to
train a face detector using the cascade of classifiers technique
in [3]. This experiment aims to prove that the CoLBP
features are capable to achieve a face detector with a low
FP of ≈1 in 106 examined window, this number is chosen
as it is considered to what a face detector should have to be



10 EURASIP Journal on Image and Video Processing

Table 2: CoLBP detector cascade of classifiers training stages.

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Number of features 6 7 26 36 61

TP 0.9900 0.9907 0.9907 0.9900 0.9900

FP 0.4761 0.3946 0.2516 0.02003 0.2344

Stage 6 Stage 7 Stage 8 Stage 9 Total

Number of features 116 121 226 451 1050

TP 0.9900 0.9900 0.9900 0.9900 0.9135

FP 0.1604 0.1433 0.1881 0.1257 5.1453× 10−6

considered for practical applications [7], and TP of >90%. FP
and TP values are chosen to coincide with the Viola and Jones
detector [3] in order to achieve a fair comparison between
CoLBP detector and Haar-like feature based detector.

Despite the fact that we cannot judge which number of
co-occurred features of c > 1 performs better; however, it
is clear from Figure 7 that CoLBP features with c = 2 has
the least generalization error in earlier iterations. This is
preferred since less number of features is required to reach
the desired detection accuracy; hence, a faster classification
speed is resulted. Therefore, c = 2 is used to train the cascade
of classifiers.

The 19, 832 frontal face images explained in Section 3.2
are used in this experiment. On the other hand, ≈20,000
nonface images are downloaded from the World Wide Web;
these images were manually investigated to ensure that they
do not contain any faces. The images were downsampled
with different ratios to increase their number. A total of
≈120,000 nonface images were obtained. These images are of
bigger resolution than the scanning windows. For example if
an image is of size 490 × 330 pixels, and we use exhaustive
search scanning window of size 24 × 24 with one pixel
step, then 143, 369 nonface windows are obtained. Therefore
based on this example, the large number of nonface images
can be imagined.

On each stage in the cascade of classifiers, a randomly
selected 6, 500 face images are used for training and ran-
domly selected 1, 500 face images are used for validation,
under the condition that the training and validation set have
no image in common. Also, 10, 000 nonface images are used
for each stage using the bootstrap strategy [3, 11] such that
each step is trained with the misclassified nonface images by
all previous stages. Furthermore, each stage is designed to
achieve a minimum of 99% TP and a maximum of stage’s
dependant FP. The stage’s FP can be found from Table 2 by
taking the ceiling of each 	FP
 to nearest one decimal place
(i.e., 0.4761 → 0.5).

After 9 stages, the minimum achieved FP using the
CoLBP features is 5.1453× 10−6 before depleting all nonface
images dataset. The nonface dateset is depleted since the
bootstrap strategy is used in training the cascade of classi-
fiers. Table 2 illustrates the number of features, FP, and TP of
each stage.

Comparison between Table 2 and Viola and Jones detec-
tor, where both have same objective of achieving total FP =
10−6, and knowing that CoLBP detector is trained with

less number of face training dataset than Viola and Jones
detector (i.e., 6, 500 faces in the CoLBP detector versus 9, 832
faces in Viola and Jones detector), shows that the CoLBP
detector requires only 1, 050 CoLBP c = 2 features while
Viola and Jones requires 6, 060 Haar-like features. Also the
CoLBP features are selected from 3, 164 features whereas the
Haar-like features are selected from 160, 000 features. Hence,
it can be concluded that the CoLBP features cannot only
extract discriminative face features to achieve a low total FP
of 5.1453 × 10−6 but also require less number of features
than Haar-like features in Viola and Jones detector, which
indicates that the CoLBP features have higher discriminative
power than the Haar-like features.

3.4. CoLBP Detector for Surveillance Application and Com-
parison to the Haar-Like Detector. The implemented CoLBP
detector performance is evaluated on a real-life scenario
as well as its performance is compared to the state-of-the-
art Haar-like detector. The evaluation dataset is a real-life
footage from a realistic environment where data became
available to the University of Toronto team for research
purposes. The footage is taped by a camera mounted on
the ceiling in vantage to capture frontal faces. The footage
is an RGB colorspace sequence and is of Codec Video 1
format with video rate of 5 frames/second. Also, the sequence
is of low-resolution of size 360 × 243 pixels, with decent
illumination, and has multiple faces but noncrowded area.
Faces appear in different sizes up to 80× 60 pixels.

A total of 171 frames are extracted from the sequence
where these frames contain all the frontal faces in the
sequence in addition to some frames for vacant area. 105
frames are for single frontal face in different positions in
order to examine the performance with different face sizes.
21 frames are for two people appearing in the screen to
illustrate the ability of detecting more than one face, and
finally 45 frames are for images where either a vacant place
or nonfrontal faces appear in the scene to inspect the false
positive detection tolerance. Some of the real-life frames are
shown in Figure 10

For comparison purposes, the CoLBP detector is com-
pared to the state-of-the-art Lienhart detector [15] (here-
after Haar-like detector). haarcascade frontalface alt model
is used. This model is chosen since the detector is trained
with the same boosting algorithm as the CoLBP detector,
which is the GentleBoost. This detector is considered for
comparison for several reasons, first its implementation
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Figure 10: Sample frames of the examined real-life sequence to give an impression about the examined environment and to illustrate the
different face sizes appearing in the sequence.

is very close to the successful work of Viola and Jones
detector. Furthermore, just like the CoLBP detector, Haar-
like detector’s weak classifier is based on decision stump.
Furthermore, despite there are several extensions to the
Haar-like features proposed in the literature as in [17, 19];
however, many papers compare their results with this Haar-
like detector since it is available in OpenCV.

The used scanning window is similar to Viola and Jones
[7] with a size of 24 × 24 pixels. The scanning window is
shifted by [ds × Δ], where ds is the image downsampling
factor, Δ is the shifting parameters, and [ ] is rounding
operator. ds downsamples the image by a factor of 1.25
until any dimension of the image becomes smaller than the
scanning window. Δ is the shifting parameter that is fixed to
1.

The Free Receiver Operator Characteristic (FROC) is
plotted for CoLBP detector and Haar-like detector for
all operating points. FROC is very similar to ROC, but
it plots the detection rate (DR) versus number of false
positive detections (nFP) instead of FP rate. The parameter
β explained in Section 2.3 is used to change the operating
points of the detectors.

The method of evaluation used in this paper is similar
to the proposed method in [37] but only the horizontal,
vertical and scale errors are considered while the rotation
error is dropped. The rotation error is dropped since the
CoLBP detector is to be used for surveillance purposes from
a camera mounted on the ceiling; hence, only straight with
no in-plane rotation is expected; thus, keeping the rotation
error penalty biases the decision since it will not occur. The
scaling, horizonal and vertical errors are measured between
the detected eyes with respect to the manually located eye.

Furthermore, the CoLBP detector and Haar-like detector
output the size and location of the face’s bounding box. On
the other hand, the used method of evaluation requires the
position of the centers of the eyes. Therefore, the location
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Figure 11: FROC for the CoLBP and Haar-like detectors using error
tolerance of ±2.5% scaling and ±5% vertical and horizontal errors.

of the eyes is estimated from the bounding box output by
running the detectors on many examples.

A correct face detection is considered when the detected
eyes lie within strict face detection criterion such that the
acceptable range is ±2.5% scaling error and ±5% horizontal
and vertical errors [37] from the manually located eye
location. Figure 11 shows the FROC for the CoLBP detector
versus Haar-like detector.

It can be observed from Figure 11 that the CoLBP
detector outperforms the Haar-like detector. It can also be
noticed that the Haar-like detector is more consistent with
its result throughout different operating points if compared
to the CoLBP detector. The reason behind the consistency
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issue is that the CoLBP detector is trained using two different
training datasets Ole Jensen and Viola and Jones; hence, the
training face images are not aligned perfectly (i.e., consistent
place of the eyes and consistent cropped face area), also to
mention that Viola and Jones faces dataset itself is aligned
roughly as mentioned in [3]. Therefore, insensitivity to small
face error occurs. While on the other hand, we have no
knowledge about the training datasets used in the Haar-like
detector [15], but it can be concluded from Figure 11 that the
training dataset is consistent and aligned; hence, the Haar-
like detector is less insensitive to small face error than our
used dataset. Therefore, the following can be concluded.

(i) CoLBP detector outperforms the Haar-like detector
with 5.50% detection rate (using the operating point
that achieves the highest detection rate for both
detectors).

(ii) CoLBP features have a higher discriminative power
than the Haar-like features. The CoLBP detector with
only 1, 050 CoLBP features distributed over 9 stages
could outperform the Haar-like detector which is
trained with ≈2,122 Haar-like features distributed
over 20 stages [15].

(iii) CoLBP detector requires less time to train the clas-
sifier than the Haar-like detector. Both detectors are
trained using the GentleBoost algorithm and using
the decision stump as weak classifier; hence, selecting
1, 050 features from a pool of 3, 164 features is less
complicated than selecting ≈2,122 features from a
pool of 117, 941 extended Haar-like features [16].

(iv) Haar-like detector outperforms the CoLBP detector
when nFP < 20 while CoLBP detector outperforms
Haar-like detector afterwards. Therefore, the choice
of the desired detector can be an application depen-
dent; however, the training complexity difference
explained in the previous point might play a crucial
factor on the decision.

3.5. Detection Rate Sensitivity to Face Decision Criterion
Parameters. This experiment is conducted to find the capa-
bility of the CoLBP detector to detect faces using the same
evaluation dataset in the previous section however examined
with wide range of error tolerance instead of the strict
method of evaluation. The error tolerance (δ) is changed
from 0% scaling, horizontal, vertical errors to 25% scaling,
horizontal, vertical errors using 1% step size.

Figure 12 illustrates the result of the error tolerance
range. It can be observed from Figure 12 that the detection
rate can reach up to 97.28%. Therefore, having this result
can further prove the capability of the CoLBP features in
detecting faces as well as illustrates the effect of the training
dataset, which made the system insensitive to small error.

3.6. CoLBP Detector Examined on the BioID Dataset. Due
to difficulties that make reproducing identical face detectors
that are implemented in the literature infeasible, and in order
to have a more comprehensive comparison of the CoLBP
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80

82

84

86

88

90

92

94

96

98

100
D

R
(%

)

0 0.05 0.1 0.15 0.2 0.25

δ

Hear-like detector
CoLBP detector

Figure 13: The CoLBP detector versus the Haar-like detector when
examined on the BioID dataset.

detector with the state-of-the-art detectors, the CoLBP
detector is applied to the real-life BioID dataset.

BioID database [38] is recorded and distributed to be
used as a benchmark for face detection and recognition
experiments. BioID images are recorded to illustrate real
world scenario such as the images have variation in illu-
mination, different background, and various face sizes. The
dataset consists of 1521 gray-scale frontal face images, each
image has a resolution of 384 × 286 pixels captured for 23
different persons.

Following the properties of the BioID dataset, it is widely
examined in the literature including, but not limited to, the
following works [8, 21, 39–42]. Figure 13 shows the CoLBP
detector versus the Haar-like detector for the same method
of evaluation range explained in Section 3.5.
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Figure 14: Visualizing the illumination range by changing the contrast of the image from −100% to +100%.

It can be concluded from Figure 13 that the CoLBP
detector outperforms Haar-like detector. However, same
conclusion explained in Section 3.4 can be drawn on the
reasons made the Haar-like detector to be more consistent
with its detection results over the entire range of different
face decision criterion if compared to the CoLBP detector.

Even though several papers in the literature examined the
BioID dataset; however, comparing the result still a daunting
problem since different methods of evaluation are used (i.e.,
the method that decides whether the detected region is a
face or not). However, if a comparison is conducted based
on the highest detection rate achieved, then the CoLBP
detector achieved 98.29% detection rate using 25% scaling
and transitional error while 98.27% is reported in [8] using
the Improved LBP (ILBP) features and measured using the
method of evaluation explained in [38], but only 1511 images
were considered in [8] instead of 1521. Furthermore, it can
be observed that the CoLBP detector achieves a comparable
result of >95% if compared to the state-of-the-art detectors
in [21, 39–42].

It can be concluded from this experiment that the CoLBP
detector is not only capable to outperform the Haar-like
detector on surveillance scenarios but also on the widely
examined BioID dataset. Furthermore, the CoLBP detector
can be regarded as not only computationally efficient but also
is capable of achieving a comparative results to several state-
of-the-art face detectors that are examined on the BioID
dataset.

3.7. Robustness Towards Illumination and Blurring Noise.
One of the properties of the examined surveillance dataset
is having a decent illumination and nonblurred frames
while both types of noise are common to occur in video
sequences. Therefore, the CoLBP detector performance is
evaluated in various artificially added illumination and
blurring scenarios. In order to have a better understanding
of the tolerance to noise, then ΔDR is measured

ΔDR = DRo −DRn, (4)

where DRo is the detection rate in the nonnoisy dataset, and
DRn is the detection rate when noise is applied.

The β value explained in Section 2.3 was fixed for the best
PR when CoLBP detector is examined on the surveillance
sequence.
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Figure 15: CoLBP detector robustness towards illumination
changes.

3.7.1. Robustness Towards Illumination. One of the powerful
facts that makes the LBP features to be superior over Haar-
like features is its capability to handle illumination changes
[11, 21]; therefore, this experiment is conducted to examine
the robustness of the proposed CoLBP features towards
illumination changes. The evaluation set was brightened and
dimmed by changing the contrast of the image using linear
transformation in the range from −100% to +100%. Sample
of the contrast range of the frames is shown in Figure 14.

The robustness of CoLBP detector towards illumination
is as illustrated in Figure 15.

It can be concluded from this experiment that the CoLBP
features holds the LBP features power in tolerating illumina-
tion changes. Also CoLBP features can handle a wide range
of illumination changes in the range from −30% to +70%.

3.7.2. Robustness Towards Blurring. The CoLBP detector is
to be used in surveillance applications; therefore, camera
blurring is expected. Gaussian filters of standard deviation
(σ) 1, 1.4 and 2 are applied on the evaluation dataset to add
blurring noise. The blurred images using these filters look as
the examples in Figure 16. The robustness towards blurring
noise is tabulated in Table 3.
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(a) Original image (b) 1 pixel Gaussian blur

(c) 1.4 pixel Gaussian blur (d) 2 pixel Gaussian blur

Figure 16: Visualizing the Gaussian filter blur on the image.

Table 3: CoLBP detector robustness towards blurring.

Noise filter ΔDR (%)

Gaussian filter with σ = 1 0

Gaussian filter with σ = 1.4 1.3605

Gaussian filter with σ = 2 2.0408

Hence it can be observed from Table 3 that the CoLBP
detector has a wide range robustness towards blurring
changes.

From the results presented in these experiments, several
important observations can be made, and they are summa-
rized below.

(i) The CoLBP features are capable to extract face
discriminative features.

(ii) The co-occurrence of multiple features decreases the
generalization error on the examined face dataset
as well as decreases the training computational
overhead in comparison to the separate features.

(iii) The CoLBP features can achieve a faster face detector
than other various examined LBP extensions.

(iv) The CoLBP features have higher discriminative
power than the Haar-like features on the examined
face detection problem.

(v) CoLBP features are not only computationally effi-
cient and have higher discriminative power than
Haar-like features but also achieve a comparative

result to the state-of-the-art face detectors when
examined on the BioID dataset.

(vi) CoLBP features hold the same properties of LBP
features from an aspect of tolerating wide range of
illumination changes.

(vii) CoLBP features are capable to handle different blur-
ring noise.

4. Conclusion

This paper introduces an idea addressing the challenging
problem of face detection in surveillance sequence where the
appearing faces are usually small and the video sequence is
of low-resolution. The rotational LBP features which target
the pixels of the image are used. The feature extraction
is performed by extracting the rotational LBP features
exhaustively for all possible resolutions in the examined
window to target the image structure. The CoLBP features
are multiple rotational LBP features occurred simulta-
neously, these feature are selected using SFS algorithm.
The co-occurrence of features proved the capability to
increase the discriminative power of the LBP features.
Experiments carried out on Ole Jensen, Viola and Jones,
BioID, and real-life surveillance sequence datasets show that
the proposed CoLBP features are effective in boosting face
detection performance and outperform state-of-the-art face
detection techniques. Experiments have also shown that
CoLBP features are capable to effectively handle illumination
and blurring noise. While this paper concentrates on the
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Figure 18: Rotational LBP8,2 feature extraction.

face detection problem, but the proven capability of the
CoLBP features to extract discriminative feature with their
properties to handle wide range of noise can be used for
different object detection problems.

Appendix

Review of Local Binary Patterns Features

Local Binary Patterns (LBP) features were first introduced in
[43]. Due to their power to detect corners, edges, spots and
flat ends as well as their high tolerance to illumination [20],
they are used in texture classification. Simple LBP feature
extraction algorithm operates by taking the value of the
center pixel in a 3× 3 pixels and assuming the texture of this
3× 3 matrix is the joint distribution of nine gray-scale image
pixels [44]. Furthermore, it subtracts the center pixel from
all surrounding pixels. The center pixel is considered as the
overall luminance factor in the 3× 3 matrix, and it does not
provide texture information. In order to achieve scaling of
gray-scale invariance and preserve the texture of the matrix,
the signs of the pixels are taken. Hence,

LBP
(

xo, yo
) =

7
∑

i=0

sign
(

gi − go
)

2i, (A.1)

where LBP(xo, yo) is the LBP value for the center pixel in the
3× 3 matrix; the decimal value of LBP(xo, yo) represents the
texture for this 3 × 3 pixel window. gi is the gray-scale value
of the surrounding pixels, and go is the gray-scale value of the
center pixel.

Also,

sign(x) =
⎧

⎨

⎩

1 if x ≥ 0,

0 otherwise.
(A.2)

Figure 17 shows an example of simple LBP operation.
Due to this procedure, 28 possible LBP values can be obtained
from 3× 3 matrices.

The LBP features are not extracted on only 1 pixel
neighbor or a square window, but as in [20], they can be
extracted with a circular neighbor with different radii and
points. Points are considered as the number of equally spaced
points that construct the LBP operator and the radius is
how far the points from the central pixel lie. This LBP
features type is called rotational LBP features. Rotational LBP
operator is symbolized as LBPP,R, where P, R correspond
to the number of points and radius, respectively, therefore,
there are 2P possible binary words for each LBPP,R. Figure 18
shows an example of LBP8,2 feature extraction.

Furthermore, it was found in [20] that there is a subset of
the 2P LBPP,R that spans most of the texture descriptor, this
subset is called Uniform LBPP,R, LBPu2

P,R. The Uniform LBPP,R

words are the words that have only two flipping bits from 0
to 1 and 1 to 0 (e.g., 01110000).
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