
Hindawi Publishing Corporation
EURASIP Journal on Image and Video Processing
Volume 2011, Article ID 698914, 13 pages
doi:10.1155/2011/698914

Research Article

Three Novell Analog-Domain Algorithms for Motion Detection in
Video Surveillance

Arnaud Verdant,1 Patrick Villard,1 Antoine Dupret,2 and Hervé Mathias3

1CEA, LETI, MINATEC, 17 Rue des Martyrs, 38054 Grenoble Cedex 9, France
2ESYCOM-ESIEE Paris, 2, Boulevard Blaise Pascal, Cité DESCARTES, BP 99, 93162 Noisy le Grand Cedex, France
3 IEF, Bâtiment 220, Université de Paris 11, 91405 Orsay Cedex, France

Correspondence should be addressed to Antoine Dupret, a.dupret@esiee.fr

Received 1 May 2010; Revised 1 October 2010; Accepted 8 December 2010

Academic Editor: Dan Schonfeld

Copyright © 2011 Arnaud Verdant et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

As to reduce processing load for video surveillance embedded systems, three low-level motion detection algorithms to be
implemented on an analog CMOS image sensor are presented. Allowing on-chip segmentation of moving targets, these algorithms
are both robust and compliant to various environments while being power efficient. They feature different trade-offs between
detection performance and number of a priori choices. Detailed processing steps are presented for each of these algorithms and a
comparative study is proposed with respect to some reference algorithms. Depending on the application, the best algorithm choice
is then discussed.

1. Introduction

Motion detection in video surveillance with CMOS Image
Sensors (CIS) requires high performance but it also needs to
meet power consumption constraints, especially for remote
sensing applications.

One way to address this issue is to design ASICs with
specific image processing architectures. It allows some low
level local analog processing to be performed at the sensor
level (prior to A/D conversion), which is particularly power
efficient. Thanks to submicron CMOS processes, the in-
sensor processing can be performed without significantly
impairing the device resolution and sensitivity. In the case
of embedded video surveillance with a major concern on
autonomy, such a physical motion detection implementation
is a particularly interesting task to investigate since it
allows extracting relevant information from a scene prior
to broadcasting. This could be used to adapt the sensor’s
performance such as ADC resolution. Power consumption
for capturing, storing, and transmitting the video would so
be reduced. However, specific adapted algorithms have to be
developed concurrently. Since such sensors have to be fully
autonomous, these algorithms have to be both robust and

compliant to various environments while being at the same
time computationally and power efficient.

In the case of quasisteady camera (video still), adaptive
environment modeling constitutes a key point in motion
segmentation for surveillance systems. Among many works
focusing on computer vision, the visual surveillance problem
is discussed in [1], where conventional approaches for
motion detection are presented. Implementation of opti-
cal flow measurement is also an interesting well-known
technique in [2, 3]. These precedent approaches focus on
optimizing motion detection in CIS but are not concerned
with very low power image processing. In addition, optical
flow methods based on Two-Frame Differential Method
(i.e., Lucas and Kanade [4] or Horn and Schunk [5]) are
based on hypotheses such as illumination steadiness. Such
hypotheses are not always relevant, especially when objects
move fast with respect to the frame rate. The aperture
problem also constitutes a limitation to their straightforward
implementation. Hence, these algorithms require iterative
multiresolution processing as to extract information.

On the other hand, motion detection achieved by
estimating background is based on weaker hypotheses.
Background updating is an essential task since real-time

2 EURASIP Journal on Image and Video Processing

algorithms for embedded systems have to be efficient in
a large number of situations, that is able to adapt their
sensitivity to the scene. Image segmentation with difference
to background and adaptive threshold has been studied in
[6], where the signal variance is computed from recursive
average computations and then compared to a threshold
obtained by averaging background variance over all the
pixels. This method has been improved in [7] where its
inherent trailing effect is compensated by a confidence
weight representing the confidence of a pixel being part of the
foreground. Adaptive threshold for motion detection in out-
door environment has been explored in [8]. The histogram
of a distant matrix (obtained with Principal Component
Analysis technique) and the variance of a mean image allow
adapting the threshold level according to outdoor conditions.
Other approaches based on multiple background estimations
[9] or adaptive background estimation [10] have also been
proposed.

All the precedent methods are efficient but require many
operations. Due to the reduced processing resources available
in CMOS Image Sensors, computational efficiency is so
required yet keeping enough robustness. In order to perform
low power motion detection in CIS, other methods based on
background modeling have been proposed. In [11] low-level
motion detection algorithms are presented and in [12], an
efficient algorithm based on Σ-Δ modulation for artificial
retinas is described. In this work, robustness improvement
to false positives is achieved with local thresholding. For
each pixel, background estimation and variance are com-
puted with nonlinear operations to perform adaptive local
thresholding.

In our proposed motion detection scheme for increased
autonomy, such algorithms [11, 12] need to be improved in
terms of false positives and detection efficiency while only
using low power operations. The developed algorithms based
on low-level computations are designed to be implemented
on a versatile analog architecture allowing a wide range
of operators and compact processing steps. In this paper,
after a short presentation of our architectural choices and
their consequences on the associated algorithms (part 2),
we describe the motion detection algorithms we take as
reference (part 3). We then present the developed motion
detection algorithms with associated results and estimated
power consumption (part 4). Finally, we discuss the algo-
rithms performance from different points of view in order
to balance purely simulated results according to targeted
application.

2. Constraints and Targeted Architecture

2.1. Programmable Architecture. The considered program-
mable computational unit (Figure 1) is a low power SIMD
machine based on analog processing [13]. It is composed
of an A × B photosensors array to which an array of A ×
(mB) analog memory points (Analog RAM) is associated,
where m is the number of memory elements per pixel. In
our implementation, we have chosen m = 3. Indeed, the
analog memory is constrained by technological trade-offs

such as silicon area and immunity to noise. The capacitive
density is linked to technological parameters (with a typical
value of 0.9 fF/μm2). The temporal noise specifications of our
architecture also impose a lower bound for capacitance value
(
√

(kT/C) = 90μV for a typical value of C about 500 fF).
According to these two parameters, 3 memory elements allow
to keep reasonable memory area with regard to pixel matrix,
while providing enough robustness with regard to noise and
impact of parasitic capacitances. A and B may be up to
1024. The so-formed matrix is bordered on one side by a
vector of A switched capacitor analog processors. A column
of multiplexers selects the column of pixels or memories to
be used by the processor. A sequencer, implemented by a
digital IP CPU, delivers the successive processor instructions.
For each processor instruction, the switches configurations
for the OTA and for the associated analog registers are fixed.
Hence, motion detection is directly performed on the pixel
gray levels (voltage signals). The matrix does not embed
Bayer filter. Thus, demosaicing is not required.

This architecture is implemented using a 0.35 μm CMOS
process. It features a 10 μm pixel pitch with a standard
fill factor (30%). With small parasitic capacitors and 3.3 V
voltage swing, it constitutes a good compromise with respect
to larger or to deep sub-micrometer processes. Moreover,
leakages are also reduced compared to more advanced
technologies, thus reducing static power consumption as well
as defects in Analogue RAM (ARAM).

In order to take advantage of the SIMD architecture
parallelism, the motion segmentation has to be performed
independently for each pixel. The corresponding processing
so requires many identical operations to be performed
iteratively. Provided that the variables involved in the
computations are independent, a parallel implementation
of algorithms is thus possible and interesting in order to
reduce the global power consumption. An analog-based
computational system is an efficient response to these
constraints.

With such an architecture, performing motion detection
algorithms in the analog domain can be achieved with little
power requirements. For example, mixing capacitors charges
at pixel level [14] efficiently performs pixel averaging. A
digital counterpart implementation would require numerous
computations and power consuming data transfers.

The chosen programmable architecture globally enables
the implementation of “simple” algorithms at a much
reduced power cost. “Simple” is to be understood as stepwise
linear algorithms based on a reduced temporal or spatial
convolution kernel. From available basic operators, different
low level algorithms can be implemented by suitably pro-
gramming the architecture. The various operations required
by our algorithms can be performed with this parallel
architecture, relying on

(i) pixel average,

(ii) recursive average (i.e., weighted sums),

(iii) fixed step increments/decrements,

(iv) storage (state).

EURASIP Journal on Image and Video Processing 3

Sensors ARAM MUX3 A/D-PROC I/O

X-decoder

Y
-d

ec
od

er

+
−
+
−
+−

+
−

D Q

D Q

D Q

D Q

Figure 1: Sensor architecture.

(a) (b)

(c) (d)

Figure 2: Tested sequences for motion detection.

The most used operators are addition, multiplication of
a variable by a fixed coefficient, increment, absolute value,
and comparison. Conditional operations are needed, their
executions depending upon comparison results referred to
states.

Our analog-based architecture has been shown to over-
come its digital counterparts in [15] in the context of a low
power CMOS image sensor based on a waking up scheme for
which the presented algorithms have been optimized.

2.2. Methodology. Concluding on algorithm performance is
achieved by measuring motion detection performance on
Matlab, as well as induced power consumption and temporal
noise effect of CMOS devices using a SystemC model of the
system (architecture and algorithm).

As to validate our algorithms performance, we have
used different 8 bit sequences representative of indoor and

outdoor conditions: Walk (IEF’s sequence, rustling foliage),
Pets 2002 (strobe light), dtneu schnee (falling snow), and
kwbB (i21http://www.ira.uka.de/), respectively (a), (b), (c),
and (d) on Figure 2 and Hall Monitor (Figure 4). For
instance, the falling snow in the dtneu schnee sequence and
the rustling foliage of Walk sequence both introduce parasitic
changes of pixels’ grey level and constitute realistic tests
for the robustness of our algorithms. In our sequences, the
objects to be detected are humans or cars.

2.3. Metrics Choice and Performance Evaluation. Perfor-
mance metrics are based on [16]. During the simulation,
motion segmentation is performed on gray level images
resulting in binary images containing “moving” and “static”
pixels. Each image is then divided in blocks of 10 × 10
pixels. If a block contains more than a predefined number
of moving pixels, this block is then considered as a region

4 EURASIP Journal on Image and Video Processing

of interest (ROI). From experimental evaluations based on
a hand generated ground truth, an ROI can be considered
as active when 5 to 10% of the pixels are “moving”.
Measurements for reference algorithms as well as proposed
new ones are based on this value. For each frame, the state
of each block is stored in a vector. This vector is compared
to a reference which indicates ground truth information for
the current frame. The number of True Positives and False
Positives and Negatives can thus be counted (TP, FP, TN,
FN).

Our considered performance criteria are

(i) Detection Rate (DR = TP/(TP + FN)), which is the
ability of the algorithm to detect moving objects,

(ii) False Alarm Rate (FAR = FP/(TP + FP)) which esti-
mates detection quality,

(iii) False Positive Rate (FPR = FP/(FP + TN)), which is
representative of algorithm robustness.

In our sequence, nonrelevant motion concerns static
elements of the scene or other elements such as snow in
dtneu schnee sequence, rustling foliage in Walk and kwbB
sequences and strobe light in Pets 2002 sequence.

We have developed a faithful, Cycle Accurate, SystemC
behavioral model of the architecture [17]. This model
enables to jointly simulate the proposed algorithms and the
processing architecture. This SystemC modeling is used to
determine the number of instructions and the instruction
rate required for each algorithm. The SystemC modeling
also enables checking the consistency between the results
obtained by the model and purely algorithmic results. A
log file allows tracing instructions and data, hence enabling
to check the whole coherence of the architecture for any
conflicts during the parallel processing.

In order to take into account the impact of the
nonidealities introduced by the analog parts and to get
an accurate evaluation of power consumption, the analog
blocks composing the architecture have been described at
a low level, down to simple components like switches,
capacitors, OTAs. For all these elementary blocks, relevant
nonidealities have been modeled with respect to the target
CMOS technology and validated thanks to classical electrical
simulations (Spice-like). The power consumptions given in
the next parts derive from this SystemC modeling of our
architecture. Some hints about these aspects of the works
have been exposed in [17].

3. Starting Point: ΣΔ and RA Algorithms

The embedded power motion detection algorithms have to
meet two requirements: limited complexity, as to comply
with our CIS computational limitations and high perfor-
mance. In order to perform adaptive motion detection,
background modeling has been chosen because of its compu-
tationally efficient implementation. In [11], two techniques
allowing adaptive background modeling are presented. These
algorithms perform local computations (i.e., from each
pixel value) in order to generate low pass filtering on the
observed scene. Approaches based on connected-component

−20
0

20
40
60
80

100
120
140
160
180
200

Frame

G
ra

y
le

ve
l

0 20 40 60 80 100 120 140 160

Sn
RAn

Figure 3: Background estimation (RAn) with recursive average
filtering for a temporal pixel variation (Sn) as a function of time.

extraction, object merging, clustering are not explored here,
because they require too intensive calculations with regard to
the aimed architecture.

3.1. Background Estimation Using ΣΔ and Recursive Average
Algorithms. The autonomous remote CIS we develop must
perform motion detection in unknown and potentially
changing environments. In such configurations, algorithms
must meet hard constraints of robustness and adaptability.
Markovian algorithms are generally used to face these
situations. However, with respect to the considered power
consumption and computational constraints, we had to
simplify algorithms of this class while preserving their
robustness.

As reference algorithms, we consider the Recursive
Average (RA) algorithm and the ΣΔ algorithm, respectively,
presented in [11, 12]. Both feature simple arithmetic com-
putations. Moreover, the ΣΔ algorithm, which follows the
Markov model and has been used for real-time implemen-
tations in [18, 19], provides high robustness.

3.1.1. Recursive Average: Principle. A first technique exposed
in [11] relies on recursive operations. Considering a pixel
value Sn (from 0 to 255), its background estimation RAn is
obtained from (1), with a large time constant fixed by N .

RAn = RAn−1 − 1
N

RAn−1 +
1
N
Sn. (1)

As to evaluate the impact of time constants and other
algorithm parameters, we plot the temporal variations of a
pixel grey level along with its filtered output. The slower the
to be detected object, the higher the required time constant.
Figure 3 illustrates low pass filtering of a pixel signal using
RA. Not surprisingly from Figure 3, we can see that a proper
choice of N , depending on frame rate, enables to extract
background from moving objects. Yet this representation will
help us explain the other algorithms. The visual impact of
N is shown on Figure 4 showing estimated background with
two different time constants.

EURASIP Journal on Image and Video Processing 5

(a)

(b)

(c)

Figure 4: Estimated background from an original image (a) (Hall
Monitor sequence), with N = 25 (b) and N = 28 (c).

Motion is then considered when the absolute difference
between the estimated background and the processed pixel
level is greater than a static global threshold (2).

if |RAn − Sn| ≥ threshold −→ motion. (2)

This algorithm so performs basic motion detection
while being well suited for our analog implementation.
However, local thresholding must be considered to improve
robustness. Motion detection performance is exposed on
Table 1.

3.1.2. ΣΔ: Principle. The second method presented in [12]
is based on nonlinear operations with Σ-Δ modulations.
According to successive comparisons with signal value (3),
a variable Mn is here incremented (4) or decremented (5) by
a constant value so as to fit the pixel level Sn.

Δn =Mn−1 − Sn (3)

if Δn > 0 −→Mn =Mn−1 − 1 (4)

if Δn < 0 −→Mn =Mn−1 + 1. (5)

As for RA on Figure 3, Figure 5 illustrates low pass
filtering of a pixel signal with Σ-Δ modulation method.

−20
0

20
40
60
80

100
120
140
160
180
200

Frame

G
ra

y
le

ve
l

0 20 40 60 80 100 120 140 160

Sn
Mn

Figure 5: Background estimation with Σ-Δ modulation. Sn is the
pixel gray level value, Mn is the estimation of the background as a
function of time.

Figure 6: Result of background estimation on Hall Monitor
sequence with Σ-Δ modulations. Notice the trailing effect generat-
ing a “ghost”.

Considering an analogue implementation, the main
advantage of this method is that it features more flexibility
than the RA algorithm. Indeed, estimated background vari-
ations can be adjusted by incrementation/decrementation
steps, whereas time constant values of recursive averages are
limited by the physical implementation of the computation.
In our architecture, these time constant values are fixed by
the ratios of the capacitances on which the signals charges
are shared.

Figure 6 shows the estimated background obtained with
Σ-Δ modulations on the Hall Monitor sequence.

For motion detection, based on the same modulations
than (4) or (5), a variable Vn is generated. It can be
interpreted as the signal variance and allows to threshold
the absolute difference Δn between the pixel signal Sn and
the estimated background Mn (Figure 7). Motion is detected
when Δn is higher than Vn.

if Vn > N · Δn −→ Vn = Vn−1 − 1,

if Vn < N · Δn −→ Vn = Vn−1 + 1,

if Δn > Vn −→ motion.

(6)

Instead of the global threshold used in RA, the ΣΔ
algorithm so computes a local adaptive threshold for each

6 EURASIP Journal on Image and Video Processing

0

10

20

30

40

50

60

70

80

Frame

G
ra

y
le

ve
l

0 10 20 30 40 50 60 70

Sn
Mn

Δn

Vn

Motion

Figure 7: ΣΔ algorithm. Sn is the pixel gray level value and Mn the
background estimation, and Vn the threshold of Δn.

Table 1: Motion detection performance of two state-of-the-art
algorithms.

Grey level
sequence

Performance metrics (%)

RA ΣΔ

Detection Rate
(DR)

Hall 97.3 94.2

kwbB 97.8 94.6

Walk 100 99.1

Pets 2002 95.8 93.3

dtneu schnee 99.9 91.6

False Alarm Rate
(FAR)

Hall 79.3 16.3

kwbB 81.7 32.4

Walk 84.8 86.7

Pets 2002 85.0 28.3

dtneu schnee 54.8 43.7

False Positive
Rate (FPR)

Hall 42.0 2.5

kwbB 15.4 2.7

Walk 59.2 60.5

Pets 2002 16.5 1.6

dtneu schnee 24.3 14.5

pixel as to achieve more robustness on noisy elements, while
keeping enough sensitivity on static background. Thanks
to the observed scene nonuniformity, local thresholding is
computed according to the temporal activity of each zone.
Moreover, this algorithm features no trailing effects, at the
cost of a poor band pass filtering capability.

3.1.3. Recursive Average and ΣΔ Performance. Table 1
presents the motion performance of state-of-the-art
algorithms. The N value used for the RA algorithm is 25. The
N value used for the ΣΔ algorithm (required for threshold
processing) is 15.

RA exhibits poor robustness. Indeed, this algorithm
requires setting a global threshold that constitutes the main

limitation of this method since no sensitivity adaptation
according to scene activity can be performed. Moreover, RA
exhibits phase shifting resulting in trailing effects and poor
band pass filtering. More specifically, this algorithm does
not allow high frequency rejection along with background
subtraction.

The motion detection performance exposed for the
ΣΔ algorithm clearly shows the interest of local adaptive
thresholding compared to the global one used by the RA
algorithm.

However, the on-chip motion detection information can
be used to adapt the sensor performance (e.g., higher ADC
accuracy on moving pixels). In order to keep a reasonable
global power consumption (a few mW), an improved
robustness of these on-chip motion detection analog domain
algorithms is still required while keeping high detection rate.

4. Algorithms

We now describe our three designed motion segmentation
algorithms for CIS:

(i) a first algorithm running with no a priori determina-
tion of constant, based on scene activity to adapt its
sensitivity,

(ii) a second algorithm using band pass filtering in order
to reduce false positives upon high frequency pixel
variations,

(iii) finally, an algorithm featuring only one constant to
determine a priori, and reducing the trailing effect
induced by recursive averaging.

4.1. Scene-Based Adaptive Algorithm (SBA). In order to
improve adaptability, we now present the Scene-Based
Adaptive (SBA) algorithm. This algorithm derives from the
ΣΔ algorithm in [12]. It performs motion segmentation on
gray level sequences with no a priori constant determination,
like the N constant used in ΣΔ. Based on Σ-Δ modulations,
the SBA algorithm is also compliant with the reduced
available computational resources of CIS architectures, thus
eliminating true Markovian approaches.

Our idea is to get rid of constants related to the back-
ground of the scene. The detection of grey level variations
resulting from motion derives from the absolute difference
Δn between the last extremum and the current pixel value Sn
(Figure 8). Instead of detecting grey level variations like in
(4) and (5), this filter requires no constant setting.

The Δn value generated is now used to perform adaptive
motion detection with the technique presented below.

First, the mean value M1n of Δn is computed (7).
Considering that insignificant motions of the background
introduce only small variations changes, the idea is to favor
large signal variations at the expense of small ones. A
convex function is so needed to amplify M1n. Therefore,
(8) introduces M2n which is an approximation of M12

n.
Indeed, our switched capacitor architecture enables only
multiplication between a digital number (i.e., the steps of Δn)
and an analog value (i.e., M1n).

EURASIP Journal on Image and Video Processing 7

Grey level

Δn1

Pixel
signal Sn

Time

Figure 8: Extracting the signal’s variations (Δn) according to SBA.

In order to reduce the trailing effects, the next step
consists in building an adjustable increment, much like
in adaptive ΣΔ. A third variable M3n is thus obtained
from the signal value (9). Indeed, M3n derives from a Σ-Δ
modulation of the signal value using an increment equal
to M2n. If the absolute difference between M3n and Sn is
larger than M2n (10), then the pixel variation is reckoned as
relevant and motion is detected.

If M1n−1 < Δn −→ (M1n =M1n−1 + 1)

else if M1n−1 > Δn −→ (M1n =M1n−1 − 1)
(7)

if M2n−1 < M1n · Δn −→ (M2n =M2n−1 + 1)

else if M2n−1 > M1n · Δn −→ (M2n =M2n−1 − 1)
(8)

if M3n−1 < Sn −→ (M3n =M3n−1 + M2n)

else if M3n−1 > Sn −→ (M3n =M3n−1 −M2n)
(9)

if |M3n − Sn| > M2n −→ motion. (10)

The absolute difference between Sn and M3n can be
seen as the maximal estimated signal dispersion. A larger
variation than the estimated one is considered due to a
relevant moving object (10). Apart from the increment or
decrement level, this algorithm runs without any a priori
fixed constant.

Figure 9 illustrates SBA computations of a pixel signal. In
absence of motion, one can notice that M3n fits Sn (|M3n −
Sn| = 0). Compared to ΣΔ, the estimator of the background
can have a steeper slope when large signal variations occur.
Reciprocally, small changes of the pixel grey level lead to long
time constants.

Figure 10 illustrates motion detection performed with
the ΣΔ and SBA algorithms. In the presented algorithm,
some trailing effect can be observed but with a better
robustness: in this illustration, the rustling foliage is filtered
while motion detection is preserved on the pedestrian.

4.2. Recursive Average with Estimator Algorithm (RAE). In
various outdoor situations, many false alarm sources can
be encountered. Despite the fact that the static background
encountered in urban area does not provide such constraints,
weather conditions in the same areas can lead to increased
FPR and FAR. In [12], no high frequency rejection is
performed, thus implying numerous false positives.

0

10

20

30

40

50

60

70

80

Frame

G
ra

y
le

ve
l

0 10 20 30 40 50 60 70

Sn
M3n

M2n
|M3n−Sn|

Motion

Figure 9: Second computation of a pixel signal with SBA algorithm.
Sn is the pixel gray level value, with M2n and M3n as, respectively,
expressed in (8) and (9).

Figure 12(b) illustrates motion detection, performed at
a crossroad under falling snow, with the ΣΔ algorithm. In
order to improve motion detection robustness by rejecting
high frequency variations, we have designed an algorithm
featuring band pass filtering. It is also based on recursive
average which can be compactly implemented considering
charge transfer between capacitances. Though having the
same degree of complexity, the designed algorithm is thus
optimized for an analog-based architecture, compared to
delta modulation.

4.3. Recursive Average with Estimator Algorithm (RAE). In
various outdoor situations, many false alarm sources can
be encountered. Despite the fact that the static background
encountered in urban area does not provide such constraints,
weather conditions in the same areas can lead to increased
FPR and FAR. In [12], no high frequency rejection is
performed, thus implying numerous false positives.

Figure 12(b) illustrates motion detection, performed at
a crossroad under falling snow, with the ΣΔ algorithm. In
order to improve motion detection robustness by rejecting
high frequency variations, we have designed an algorithm
featuring band pass filtering. It is also based on recursive
average which can be compactly implemented considering
charge transfer between capacitances. Though having the
same degree of complexity, the designed algorithm is thus
optimized for an analog-based architecture, compared to
delta modulation.

This algorithm is thus based on a background estimation
extracted from the difference between two low pass filters.
The computation of two recursive averages (RA1n (12) and
RA2n (13)), each with its own time constant (fixed by the N
and M parameters), allows here to define a band pass filter:
the slowest is used to bring out the background while the
other, with short lag, filters out the signal’s fast perturbations.
For each pixel, the main computation steps are described
below. n represents the frame index, Sn the current gray level

8 EURASIP Journal on Image and Video Processing

(a)

(b)

(c)

Figure 10: (a) Original image, (b) Motion detection with ΣΔ,
and(c) Motion detection with SBA.

value for the considered block, and k · δn a local threshold
(14).

RA10 = S0, RA20 = S0, (11)

RA1n = RA1n−1 − 1
N

RA1n−1 +
1
N
Sn, (12)

RA2n = RA2n−1 − 1
M

RA2n−1 +
1
M

Sn (13)

if Δn = |RA1n − RA2n| > k · δn −→ motion. (14)

An adaptive threshold based on the temporal variations
of this absolute difference allows detecting motion. If this
estimator Δn becomes larger than a local threshold k ·
δn, which depends on the Δn temporal activity, motion is
detected. Δn acts as a band-pass filter selecting only moving
objects of interest in the scene. The adaptive threshold is
obtained by using δn, the recursive average of Δn, as a
variable amplifying gain for the threshold (17). The increase
of the threshold level k · δn, due to signal variations, can

0

10

20

30

40

50

60

70

80

Frame

G
ra

y
le

ve
l

0 10 20 30 40 50 60 70

Sn
RA1n
RA2n

Δn

k · · · δn

Motion

Figure 11: Computation of a pixel signal with the RAE algorithm.
Sn is the pixel gray level value with the variables RA1n, RA2n, Δn,
and δn as, respectively, expressed in (12), (13), (14), and (17).

be seen on Figure 11. With this method, k · δn directly
depends on Δn perturbation level, periodicity or persistence.
To prevent saturation (considering either analog or fixed
point implementation), δn is amplified rather than Δn. The
time constant of this threshold must be quite large with
respect to pertinent scene motions in order to adapt the
sensitivity to persistent perturbations only.

These recursive operations with few memory require-
ments make this algorithm easy to implement on our
architecture. The time constant for fast recursive average
can be determined in order to allow an efficient fast
perturbations filtering while not inducing significant trail
effect. Considering the z-transform of the recursive average,
the time constant is given as follows:

RA1(z)
S(z)

= z

N(z − (1− 1/N))
= z

N(z − e−Te/τ)
,

with τ = −Te
ln(1− 1/N)

.

(15)

The response to a step function with amplitude A of the
transfer function defined by Δn is expressed in (16), with N
and M being the constants used in (12) and (13).

Δn = |RA1n − RA2n| = A ·
∣
∣
∣
∣
∣

(
M − 1
M

)n+1

−
(
N − 1
N

)n+1
∣
∣
∣
∣
∣.

(16)

In this algorithm, the two constants (M,N) depend on the
to-be detected objects properties (i.e., size and speed) and
on the frame rate. However, knowing the type of object
to be detected, local adaptive thresholding is achieved. In
the following section, these (M,N) constants have been,
respectively, set to (22, 24) for the simulations performed
on the reference sequences, with a 25 Hz frame rate. The
class of objects to detect here are cars or pedestrians. The
power of two based sizing for M and N facilitates our
analog implementation with regard to component matching.
With M = 24, the 95% rise time is 3τ = 1.533 s

EURASIP Journal on Image and Video Processing 9

which corresponds approximately to 50 frames at 25 fps.
Considering tested videos, this value has experimentally
shown efficient background estimation. Choosing N = 4
is a good compromise between implementation constraints
and filtering efficiency (in order not to reduce DR, while
improving FAR).

δn = δn−1 − 1
P
δn−1 +

1
P
Δn. (17)

The constant P has been set to 26 (3τ = 6.285 s or 200
frames). The k constant can be typically set around 2 and
can be increased in order to reduce false positives.

Figure 11 illustrates computations of a pixel signal using
the proposed algorithm.

One can notice that this algorithm can bring efficient
filtering of high frequency perturbations. However, some
trailing effect is observed with the RAE algorithm (not
obtained with ΣΔ). Figure 12 illustrates RAE applied on
the dtneu schnee sequence with falling snow. With the same
sensitivity as ΣΔ, this algorithm allows to filter these high
frequency perturbations.

4.4. Adaptive Wrapping Thresholding Algorithm (AWT).
Although being robust and computationally efficient, the ΣΔ
and RAE algorithms require determining some constants.
According to the known frame rate, the M, N , and P
constants of RAE as well as the increment level of ΣΔ can
be determined a priori. However, the RAE k constant or the
ΣΔ N constant allows adjusting the algorithm sensitivity in
accordance with the amplitude of noisy elements. In order
to avoid defining a priori constants, an Adaptive Wrapping
Thresholding motion detection algorithm (AWT), based
on recursive average operations with a reduced number
of constants, is presented in this section. Unlike common
algorithms based on recursive low pass filtering [6], this
algorithm also limits the trailing effect due to phase shifting.

We thus propose an algorithm based on recursive
average operations performing local adaptive thresholding
from each pixel signal (Figure 13). In the two precedent
algorithms (SBA and RAE), motion detection is performed
by thresholding temporal variations (Δn). We propose here
to compute two wrapping variables in order to detect
significant variations of the signal. These two variables are
used to define the upper and lower bounds between which
the grey level of the signal should remains. In order to take
into account the variations of the background, those two
variables are updated using a low pass-filter. Yet the time
constant of these filters can be much larger than the ones
used in ΣΔ and even SBA.

This algorithm relies on a background estimation for
each pixel signal from which we estimate the signal standard
deviation. This standard deviation is then used to estimate
a maximum range for background variations. If the value
of a considered pixel moves outside this estimated range of
background variations, we consider that motion occurs.

First of all, background estimation (RA1n) is computed
recursively (19). The temporal variations (Δn) are extracted
as absolute difference between the pixel signal (Sn) and the

(a)

(b)

(c)

Figure 12: Motion segmentation with the ΣΔ algorithm (N = 5)
(b) and the RAE algorithm (c).

background estimation (20). The mean deviation of the
estimated background variations (RA2n) is then calculated
from (Δn) (21). In a fourth step, two variables (RA3n
and RA4n) are computed (22) and (23), which allow here
to define the estimated range of maximum background
variations. Motion is then considered according to (24).

RA10 = S0; RA20 = 0; RA30 = S0; RA40 = S0,

(18)

RA1n = RA1n−1 −
1
N

RA1n−1 +
1
N
Sn, (19)

Δn = |RA1n − Sn|, (20)

RA2n = RA2n−1 − 1
N

RA2n−1 +
1
N
Δn, (21)

RA3n = RA3n−1 − 1
N

RA3n−1 +
1
N

(Sn + RA2n), (22)

RA4n = RA4n−1 − 1
N

RA4n−1 +
1
N

(Sn − RA2n) (23)

if Sn > RA3n + RA2n or Sn < RA4n − RA2n −→ motion.
(24)

10 EURASIP Journal on Image and Video Processing

0

10

20

30

40

50

60

70

80

Frame

G
ra

y
le

ve
l

0 10 20 30 40 50 60 70

Sn
RA1n
RA3n

RA4n
RA2n
Δn

Motion

Figure 13: Computation of a pixel signal with AWT algorithm. Sn
is the pixel gray level value, with the variables RA1n, RA2n, RA3n,
RA4n, and Δn as, respectively, expressed in (19), (21), (22), (23),
and (20).

Hence this algorithm relies on a constant, N , allowing to
determine the time constant of recursive averages (equivalent
to increment/decrement levels of the ΣΔ algorithm [12]).
However, no additional constant is required to handle
sensitivity, unlike ΣΔ or RAE where a coefficient is required
to set the threshold level. Computations of RA3n and RA4n
allow here to define adaptive thresholding directly from the
signal variations (Figure 13).

Furthermore, this method allows reducing the trailing
effect observed with common motion detection algorithms
based on recursive average. Indeed, recursive average based
on signal level induces phase shifting and trail effect on
target. With this algorithm, the double condition in motion
detection with RA3n and RA4n reduces the trailing effect
(Figure 14).

Unlike ΣΔ, SBA or RAE, there is no need for a multi-
plication operation. From our analog implementation point
of view, this constitutes an improvement since there is no
need to implement multiple capacitors to get a wide range
of constants for multiplication.

5. Results

5.1. Algorithms Performance. Table 2 exposes the different
results of the state-of-the-art algorithms (RA and ΣΔ), as well
as new ones (SBA, RAE, and AWT).

Simulations performed on sequences with the SBA
algorithm without any arbitrary constant (Table 3) provides
quite similar detection rate along with close FAR and FPR
measurements, compared to ΣΔ measurements (Table 2).
This algorithm thus provides equivalent detection efficiency
and robustness, with no need for constant settling, thus
showing improved adaptability. Although it does not feature
a high frequency rejection, a satisfying detection perfor-
mance is achieved on gray level sequences.

The results exposed on Table 4 show that RAE is
equivalent to ΣΔ in terms of DR for all sequences. However,
better results are obtained by our algorithm with respect to

(a)

(b)

(c)

Figure 14: Comparison between RA algorithm (b) and AWT (c)
algorithm on kwbB sequence.

FPR and FAR. This algorithm so features different variables
allowing motion segmentation on gray level sequences with
a good sensitivity and high frequency rejection. However, a
constant k allowing threshold setting is required and some
trailing effect is generated.

The AWT algorithm results are slightly below the per-
formance levels of RAE. However, no a priori choice of
threshold sensitivity has been made. Hence these results
highlight interesting performance about motion detection
without environment knowledge.

The Walk sequence denotes reduced robustness here.
Although rustling foliage is efficiently filtered out by our
algorithms, the motion of the tree branches has the same
speed and amplitude characteristics as the objects to be
detected (e.g., humans). The single processing is not robust
to such motion.

The power consumption is proportional to the Number
of Instructions (NOI). From SystemC simulations applied
to 320 × 240 30 fps video sequences, we have estimated a
power consumption below 5 mW for the worst case (SBA
algorithm). This is less than the power consumption of a state
of the art 3 M samples/s 10-bit Successive Approximation
Register (SAR) ADC designed in the same technology, that
is between 10 and 20 mW. The SAR are known to be the
least power consuming ADC architectures. This validates
the relevance of the algorithm architecture codesign since
a digital implementation of those algorithms would require
such an ADC plus a digital processing unit. Furthermore,

EURASIP Journal on Image and Video Processing 11

Table 2: Motion detection performance.

Grey level sequence
Performance metrics (%)

RA ΣΔ SBA RAE AWT

Detection Rate (DR)

Hall 97.3 94.2 93.5 94.8 92.8

kwbB 97.8 94.6 94 96.4 96.6

Walk 100 99.1 99.3 99.5 99.3

Pets 2002 95.8 93.3 94.1 93 94.6

dtneu schnee 99.9 91.6 90.1 87.5 90.1

False Alarm Rate (FAR)

Hall 79.3 16.3 14.9 12.6 16.7

kwbB 81.7 32.4 27.4 26.4 36.8

Walk 84.8 86.7 83.4 85.7 85

Pets 2002 85.0 28.3 43.4 26.2 29.8

dtneu schnee 54.8 43.7 54.9 11.9 45.2

False Positive Rate (FPR)

Hall 42.0 2.5 2.2 1.8 2.5

kwbB 15.4 2.7 1.7 1.7 3.0

Walk 59.2 60.5 46.7 56 52.9

Pets 2002 16.5 1.6 3.9 1.2 1.6

dtneu schnee 24.3 14.5 22.1 1.8 13.3

Number of Instructions 6 30 43 21 32

Table 3: Motion detection performance.

Algorithm
Average parameter variation on 5 sequences (%)

DR FAR FPR

RA — — —

ΣΔ −0.9 50.8 161.3

SBA −13.3 9.2 −11.6

RAE 0.7 4.7 8.9

AWT −0.2 −4.4 −8.3

our analog processing unit derives from a SAR ADC;
therefore, the scaling of the CMOS technology brings the
same improvements as for the classical SAR ADC.

So as to take into account technological parameters
in these simulations, temporal noise had been added in
these sequences via our SystemC model. Indeed, in our
architecture, several noise sources create signal variations
that can be interpreted as relevant motion. In our model,
the 8-bit images are converted into voltage signal on a
1.8 V dynamic range. An additional Gaussian noise with a
1.1 mV standard deviation is added to each image. During
processing, a second Gaussian noise source with a 0.25 mV
standard deviation is added to each operation to model
analog processor nonidealities.

Table 3 presents the impact of noise on analog processing
on the different motion detection parameters considered.

We can see that in the case of SBA and ΣΔ, DR is reduced
while FAR is increased. For these two algorithms, noise
induces less sensitivity on relevant part of the scene, while
decreasing global robustness. These results highlight the
lower robustness of these two algorithms when implemented
in our analog architecture. Concerning the RAE algorithm,
both DR and FAR are amplified. This can be due to an
insufficient threshold amplification. For AWT algorithm, the

Table 4: Average motion detection performance.

Algorithm
Performance metrics (%)

FAR DR FPR

ΣΔ 41.5 94.6 16.3

SBA 44.8 94.2 15.3

RAE 32.6 94.2 12.5

AWT 42.7 94.7 14.6

whole parameters are decreased. The threshold amplification
is too high for this one, leading to less sensitivity on the whole
images. However, the noise added on recursive average-based
processing (RAE, AWT) induces fewer variations for the
selected parameters. Thus we can consider that the recursive
average-based methods are more robust than the ones based
on Δ modulations (ΣΔ, SBA), when implemented in our
analog architecture.

5.2. Discussion. In the precedent part, we have presented
3 robust and fast new algorithms and compared them to
the reference ΣΔ algorithm. Based on particular parameters
allowing the measurement of motion detection performance,
such as detection rate or false positive rate, we have
determined the robustness or detection efficiency of these
algorithms. The average results for the tested sequences are
presented on Table 4.

However, these results must be balanced by some factors.
Indeed, we can define some criteria allowing taking into
account implementation constraints such as power con-
sumption or other limitations like the kind of targeted appli-
cation for motion detection algorithm. We have exposed
below some of the criteria, which can be found according to

12 EURASIP Journal on Image and Video Processing

Table 5: Balanced algorithm performance according to selected
criteria.

Algo.
Criteria

1 2 3 4 5 6 7

RA − − − − − − − + +

ΣΔ − + − + ± + − −
SBA + + − − + − −
RAE − + + + − + + +

AWT + + + + ± − +

motion detection context. Table 5 illustrates the rates of each
algorithm according to these criteria.

(1) settings: the fewer the required constants for adapt-
ing threshold level or time constants, the more
autonomous the left-behind sensor,

(2) adaptation: threshold level evolution according to
pixel temporal activity,

(3) high frequency rejection: high frequency noise filter-
ing of pixel signal (band pass filtering),

(4) trailing effect: artefacts or motion segmentation dis-
tortion due to phase shifting induced by algorithm,

(5) robustness: number of generated false positives,

(6) computational efficiency: induced power consump-
tion (mainly depending on the number of instruc-
tions in our implementation),

(7) robustness with regard to analog implementation
(temporal noise).

These qualitative results show that, depending on the
aimed application, an algorithm can prevail on another, even
if its motion detection performance is worse. However, AWT
and RAE are better suited for an analog implementation.

6. Conclusion

Three algorithms developed using a codesign approach
have been presented. They perform motion detection at
reduced power consumption while ensuring fast and robust
computation. Compared to classical sensors performing
motion detection downstream the image acquisition, the
offered processing capabilities are somehow limited, but the
chosen analog architecture, on which they are implemented,
offers a better compromise between power consumption
and algorithm performance. Moreover, considering only the
algorithmic aspect of the works, significant improvements
have been brought in terms of self-adaptability to the scene.
Constants involved in the presented algorithms are indeed
mostly depending on the nature of the objects to be detected
(speed and size).

Though these algorithms have been tailored for a dedi-
cated architecture, a real-time implementation on a standard
digital processor (e.g., an ARM920T) is however possible but
at a significantly higher power consumption (roughly some
100 mW for the processor alone).

Finally, an ASIC is currently being designed as to provide
an experimental validation of the concept. One of its main
features is that the pixel area (10 × 10μm2) is very close
to state-of-the-art pixels in similar technology (0.35 μm
CMOS).

References

[1] W. Hu, T. Tan, L. Wang, and S. Maybank, “A survey on
visual surveillance of object motion and behaviors,” IEEE
Transactions on Systems, Man and Cybernetics Part C, vol. 34,
no. 3, pp. 334–352, 2004.

[2] A. Moini, A. Bouzerdoum, K. Eshraghian et al., “An insect
vision-based motion detection chip,” IEEE Journal of Solid-
State Circuits, vol. 32, no. 2, pp. 279–284, 1997.

[3] S. Mehta and R. Etienne-Cummings, “Normal optical flow
measurement on a CMOS APS imager,” in Proceedings of the
IEEE International Symposium on Cirquits and Systems (ISCAS
’04), vol. 4, pp. 848–851, May 2004.

[4] B. D. Lucas and T. Kanade, “An iterative image registration
technique with an application to stereo vision,” in Proceedings
of the 7th International Joint Conference on Artificial Intelligence
(IJCAI ’81), pp. 674–679, April 1981.

[5] B. K. P. Horn and B. G. Schunck, “Determining optical flow,”
Artificial Intelligence, vol. 17, no. 1-3, pp. 185–203, 1981.

[6] S. Joo and Q. Zheng, “A temporal variance-based moving
target detector,” in Proceedings of the IEEE Workshop on
Performance Analysis of Video Surveillance and Tracking (PETS
’05), January 2005.

[7] M. F. Abdelkader, R. Chellappa, Q. Zheng, and A. L. Chan,
“Integrated motion detection and tracking for visual surveil-
lance,” in Proceedings of the 4th IEEE International Conference
on Computer Vision Systems (ICVS ’06), p. 28, January 2006.

[8] J. F. Vázquez, M. Mazo, J. L. Lázaro et al., “Adaptive threshold
for motion detection in outdoor environment using computer
vision,” in Proceedings of the IEEE International Symposium on
Industrial Electronics (ISIE ’05), vol. 3, pp. 1233–1237, June
2005.

[9] W. Pan, K. Wu, Z. Chai, and Z. S. You, “A background
reconstruction method based on double-background,” in
Proceedings of the 4th International Conference on Image and
Graphics (ICIG ’07), pp. 502–507, August 2007.

[10] J. Guo, D. Rajan, and E. S. Chng, “Motion detection with adap-
tive background and dynamic thresholds,” in Proceedings of the
5th International Conference on Information, Communications
and Signal Processing, pp. 41–45, December 2005.

[11] J. Richefeu and A. Manzanera, “Motion detection with smart
sensor,” in Proceedings of the 9th Congress Young Searchers in
Computer Vision (ORASIS ’05), May 2005.

[12] A. Manzanera and J. C. Richefeu, “A new motion detection
algorithm based on Σ-Δ background estimation,” Pattern
Recognition Letters, vol. 28, no. 3, pp. 320–328, 2007.

[13] S. Moutault, H. Mathias, J. O. Klein, and A. Dupret, “An
improved analog computation cell for Paris II, a pro-
grammable vision chip,” in Proceedings of the IEEE Interna-
tional Symposium on Cirquits and Systems (ISCAS ’04), pp.
453–456, May 2004.

[14] M. Massie, C. Baxter, J. P. Curzan, P. McCarley, and R. Etienne-
Cummings, “Vision chip for navigating and controlling micro
unmanned aerial vehicles,” in Proceedings of IEEE International
Symposium on Circuits and Systems (ISCAS ’03), vol. 3, pp.
786–789, May 2003.

EURASIP Journal on Image and Video Processing 13

[15] A. Verdant, A. Dupret, H. Mathias, P. Villard, and L.
Lacassagne, “Adaptive multiresolution for low power CMOS
image sensor,” in Proceedings of the 14th IEEE International
Conference on Image Processing (ICIP ’06), vol. 5, pp. 185–188,
San Antonio, Tex, USA, September-October 2007.

[16] J. Black, T. J. Ellis, and P. Rosin, “A novel method for video
tracking performance evaluation,” in Proceedings of the IEEE
Workshop on Performance Analysis of Video Surveillance and
Tracking (PETS ’03), pp. 125–132, October 2003.

[17] A. Verdant, P. Villard, A. Dupret, and H. Mathias, “SystemC
validation of a low power analog CMOS image sensor
architecture,” in Proceedings of the IEEE North-East Workshop
on Circuits and Systems (NEWCAS ’07), pp. 903–906, August
2007.

[18] L. Lacassagne, M. Milgram, and P. Garda, “Motion detection,
labeling, data association and tracking, in real-time on RISC
computer,” in Proceedings of International Conference on Image
Analysis and Processing (ICIP ’99), pp. 520–525, Venice, Italy,
1999.

[19] J. Denoulet, G. Mostafaoui, L. Lacassagne, and A. Mérigot,
“Implementing motion Markov detection on general purpose
processor and associative mesh,” in Proceedings of the 7th
International Workshop on Computer Architecture for Machine
Perception (CAMP ’05), pp. 288–293, Palermo, Italy, July 2005.

	1. Introduction
	2. Constraints and Targeted Architecture
	2.1. Programmable Architecture.
	2.2. Methodology.
	2.3. Metrics Choice and Performance Evaluation.

	3. Starting Point: ΣΔ and RA Algorithms
	3.1. Background Estimation Using ΣΔ and Recursive Average Algorithms.
	3.1.1. Recursive Average: Principle.
	3.1.2. ΣΔ: Principle.
	3.1.3. Recursive Average and ΣΔ Performance.

	4. Algorithms
	4.1. Scene-Based Adaptive Algorithm (SBA).
	4.2. Recursive Average with Estimator Algorithm (RAE).
	4.3. Recursive Average with Estimator Algorithm (RAE).
	4.4. Adaptive Wrapping Thresholding Algorithm (AWT).

	5. Results
	5.1. Algorithms Performance.
	5.2. Discussion.

	6. Conclusion
	References

