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This paper presents an audiovisual quality model for IPTV services. The model estimates the audiovisual quality of standard and
high definition video as perceived by the user. The model is developed for applications such as network planning and packet-layer
quality monitoring. It mainly covers audio and video compression artifacts and impairments due to packet loss. The quality tests
conducted for model development demonstrate a mutual influence of the perceived audio and video quality, and the predominance
of the video quality for the overall audiovisual quality. The balance between audio quality and video quality, however, depends
on the content, the video format, and the audio degradation type. The proposed model is based on impairment factors which
quantify the quality-impact of the different degradations. The impairment factors are computed from parameters extracted from
the bitstream or packet headers. For high definition video, the model predictions show a correlation with unknown subjective
ratings of 95%. For comparison, we have developed a more classical audiovisual quality model which is based on the audio and
video qualities and their interaction. Both quality- and impairment-factor-based models are further refined by taking the content-
type into account. At last, the different model variants are compared with modeling approaches described in the literature.

1. Introduction

In order to achieve a high degree of user satisfaction for
current and upcoming video services like video on demand
(VoD), internet protocol television (IPTV), and mobile
television (MoTV), perceived quality needs to be estimated
both in the network planning phase and as part of the service
monitoring. Quality assessment can be achieved using
audiovisual subjective tests or by instrumental methods,
which yield estimates of audiovisual quality as perceived by
the user. If properly conducted, quality tests with human
subjects are the most valid way to assess quality, since it is
about human perception. However, since subjective tests are
time consuming, costly, and do not allow to assess the quality
during real-time service operation, instrumental assessment
methods are often preferred. Those instrumental methods
are based on audiovisual quality models.

Several studies on audiovisual perception have been
conducted starting in the 80s (summarized in Kohlrauch

and van de Par [1]). However, the first audiovisual quality
models to be found in the literature appeared as late as in the
90s. At this time, they addressed either analog degradations,
such as audio and video noise—this is the case for Bellcore’s
[2, 3] and Beerends’ models [4]—or compression artifacts,
such as blockiness—this is the case for France Telecom’s [5],
NTIA-ITS’ [6, 7], and Hands’ [8] models. For an overview of
audiovisual quality models covering analog and compression
degradations, see [9]. The interest in modelling audiovisual
quality is currently rising again, reflected, for instance, by
standardization activities such as the Multimedia Phase
II project of the Video Quality Expert’s Group (VQEG),
which intends to evaluate audiovisual quality models for
multimedia applications (unfortunately, to the knowledge
of the authors, no citable document describing the VQEG
Multimedia Phase II has been published at the time of
writing this paper). In addition, Ries et al. [10] and Winkler
and Faller [11] have recently developed audiovisual quality
models for mobile applications, but the reported model
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versions do not yet cover the effect of transmission errors.
This latter point is problematic since, in the case of the time-
varying degradation due to transmission errors, the impact
of audio and video quality on the overall audiovisual quality
as well as their interaction might differ from the case of
compression artifacts. In [12], Belmudez et al. address the
impact of transmission errors in addition to compression
and frame rate artifacts but for interactive scenarios and
small video resolutions, which is not suitable for our
application. None of the above-mentioned models addresses
HD video, a format for which we expect video quality to
play a more important role than for smaller formats. As a
consequence, we have developed a new audiovisual quality
model which covers all IPTV-typical degradations—mainly
audio and video compression artifacts and packet loss—and
which is applicable to both SD and HD. Based on the quality
perception tests conducted during model development, we
have analyzed the influence of the degradation type and of
the audiovisual content on the quality impact of audio and
video.

For modeling audiovisual quality, we will follow a new
approach in which audiovisual quality is computed from
audio and video impairment factors instead of audio and
video qualities, as it is done in most previous studies.
The impairment factors are the quality-related counterpart
of technical degradations, that is, the transformation of
technical degradations onto a perceptual quality scale in
terms of impairments. In the following, we will use the
term “impairment-factor-based”—or “IF-based”—for the
model based on impairment factors, and the term “quality-
based”—or “Q-based”—for the model based on audio and
video qualities. The concept of impairment factors is based
on the findings by Allnatt for broadcast TV [13], yielding
the assumption that certain kinds of impairment factors may
be considered as additive on an appropriate (perceptual)
quality rating scale. This impairment factor principle has
been adopted by the so-called E-model, a parameter-based
network planning quality model standardized by the ITU-
T [14] for speech services. More recently, it has been used
in the so-called T-V-Model developed by our group [15, 16]
for predicting video quality in the case of network planning
and quality monitoring of IPTV services. NTT followed a
similar approach in [17], but their model has been developed
for interactive multimedia services such as video telephony,
yielding psychological factors not applicable in the case of
IPTV, such as “feeling of activity”.

The remainder of this paper is structured as follows.
Section 2 details the audio, video, and audiovisual subjective
tests we conducted to obtain the data the models are based
on. Test results are analyzed in Section 3, and the audiovisual
quality models developed using the results are presented
in Section 4. In this section, the impairment-factor-based
models are evaluated against both known (training) and
unknown (evaluation) subjective test data, and are compared
with quality-based models trained on the same subjective
data. The performances of our models are compared with
the performances of other quality-based models as they are
reported in the literature. Finally, in Section 5 we conclude
and give an outlook on future modeling steps. This paper

Table 1: Audiovisual content descriptions.

ID Video Audio

A Movie trailer Speech on music

B Interview Speech

C Soccer Speech on noise

D Movie Classical music

E Music video Pop music with singer

extends the work presented in [18] by providing a deeper
insight on the comparison of the models’ performance, by
addressing the SD resolution in addition to the HD one, by
sharpening the analysis of the degradation-type impact on
audiovisual quality, and by analyzing the quality impact of
the audiovisual content type.

2. Experimental Design

Audio, video, and audiovisual subjective tests have been
conducted using audio-only, video-only, and audiovisual
sequences, respectively. The source material consists of five
audiovisual contents of 16 s duration each. Video-only and
audiovisual tests were conducted separately for the two
video resolutions SD and HD. The audiovisual contents are
representative of different TV programs. The video contents
differ in their amount of details and complexity of structures
and movements, and the audio contents in terms of audio
category and genre. The resulting audiovisual content types
are described in Table 1.

In order to simulate typical IPTV degradations, the five
source contents were processed offline according to the test
conditions listed in Table 2. This results in 49 audio test
conditions for each of the five audio contents, leading to
245 audio sequences to be rated by the subjects; 36 video
test conditions for each of the five video contents, leading
to 180 video sequences; 49 audiovisual conditions for each
of the five audiovisual contents, leading to 245 audiovisual
sequences. Apart from the audio-only test, all numbers are
given separately per video resolution. As it is typical of
IPTV services, we have used an MPEG2-TS/RTP/UDP/IP
packetization scheme. Here, seven MPEG2 transport stream
(TS) packets are contained in one RTP packet, and each
contains either audio or video. For our tests, multiplexing
was done for the already decoded files, instead of using
ecologically valid multiplexing at TS-level. Note that this
choice was made to ensure that the resulting model will be
valid in a variety of situations with different levels of audio
and video degradations. This is especially reflected in the
combinations of loss rates, where different settings have been
used for audio and video.

Listening and viewing conditions were compliant to
ITU-T Recommendation P.800 [21], and Recommendations
ITU-R BT-500-11 [22] and ITU-T P.910 [20], respectively.
To ensure that the processed, but uncompressed, material
could be played out without playback artifacts, professional
high-performance systems were used for audio and video
presentation. Between 23 and 29 subjects participated in
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Table 2: Test conditions used in the audio-only, video-only and audiovisual tests. CBR: constant bit rate, PLR: uniform packet loss rate,
processing was done generating different loss traces; PLC: packet loss concealment.

Parameters Video Audio

Video-/audio-only test

Format HD (1920× 1080 pixels) wav (48 kHz, 16 bit, stereo)

SD (720× 576 pixels)

Codec H.264; MPEG2 MPEG-2 AAC LCa (aac); MPEG-1 LII (mp2)

MPEG-4 HE-AACv2b (heaac); MPEG-1 LIII (mp3)

CBR H.264: {2, 4, 8, 16, 32}Mbps (HD) aac: {48, 64, 96} kbps

{0.5, 1, 2, 4, 8}Mbps (SD) heaac: {32, 48, 64} kbps

MPEG2: {4, 8, 16, 32, 64}Mbps (HD) mp2: {48, 96, 192} kbps

{1, 2, 4, 8, 16}Mbps (SD) mp3: {64, 96, 128} kbps

PLR {0, 0.02, 0.06, 0.125, 0.25}% (freezing) {0, 1, 4, 8}% (frame loss ≡ 1 frame per packet)

{0, 0.125, 0.25, 0.5, 1, 2, 4}% (slicing) codec-built-in (for details, see [19])

PLC Freezingc; slicingd

Audiovisual test

Format HD (1920× 1080 pixels) wav (48 kHz, 16 bit, stereo)

SD (720× 576 pixels)

Codec H.264 MP2; AAC

CBR {2, 4, 8, 16}Mbps (HD) aac: 48 kbps

{0.5, 1, 2, 4}Mbps (SD) mp2: {48, 96, 192} kbps

PLR {0, 0.02, 0.06, 0.25}% (freezing) {0, 1, 4, 8}% (frame loss ≡ 1 frame per packet)

{0, 0.125, 0.5, 4}% (slicing)

PLC Freezing; slicing codec-built-in (for details, see [19])
aAAC: advanced audio coding; LC: low complexity.
bHE-AAC: high efficiency advanced audio coding.
cIn case of packet loss, the picture freezes until the next intact I-frame arrives; the frames in between are skipped in our case.
dA slice typically corresponds to a certain area of the image that—if affected by loss—the decoder fills with data from the same, previous, or following video

frame.

each test, and each subject was allowed to participate in
only one test (audio, video, or audiovisual). An absolute
category rating (ACR) was used for collecting subjective
quality judgements. The subjects rated the quality using
the continuous 11-point quality scale recommended in
ITU-T Recommendations P.910 [20] and shown (attributes
“schlecht”, “dürftig”, “ordentlich”, “gut”, and “ausgezeichnet”
correspond to “bad”, “poor”, “fair”, “good”, and “excellent”
in the English version of the scale) in Figure 1. The
uncompressed original audio and video were used as hidden
references in the tests, but the scores for the hidden reference
were not subtracted from the scores, that is, no hidden-
reference removal was applied.

3. Subjective Test Results

For each of the five subjective tests (one audio, two video, two
audiovisual), the scores were averaged over subjects, yielding
mean opinion scores (MOS), were linearly transformed to
the 5-point ACR MOS scale by aligning the numbers of the
scales, and further transformed to the 100-point model scale
using the conversion defined in ITU-T Recommendation
G.107 [14].

Note that in the following, and unlike [18], we do not
average the ratings across all contents but per content. This
choice is motivated by two reasons: (a) the audiovisual
quality model is to be applied on audiovisual sequences with
various contents, and a predicted quality value per sequence
is required; we thus want to capture the quality variation due
to content; (b) the audiovisual quality model developed for
all contents, that is, with one set of coefficients valid for all
contents, is to be compared to an audiovisual quality model
with different sets of coefficients for each content.

In order to have a first impression of the quality impact
of audio and video on the overall audiovisual quality,
we conducted a correlation analysis, correlating the audio
qualityQa, the video qualityQv, and their interactionQa·Qv
with the audiovisual quality Qav (see Table 3, column “All”).
It can be observed that for both SD and HD, the interaction
term is predominant (SD: correlation = 0.94; HD: correlation
= 0.92). The video quality seems to have more impact on the
overall audiovisual quality than the audio quality, especially
for HD (SD: video correlation = 0.75, audio correlation =
0.51; HD: video correlation = 0.80, audio correlation = 0.47).
This finding is expected, and it shows that the impact of video
quality increases with the video format.
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Figure 1: 11-point quality scale (ITU-T Recommendations P.910
[20]) used in audio, video, and audiovisual subjective tests.

Moreover, the individual impact of the audio and of
the video quality on the overall audiovisual quality depends
on the quality of the other modality (video and audio).
This is reflected by the slopes of the edges in Figure 2:
the audio quality Qa has a decreasing influence on the
overall HD audiovisual quality Qav for decreasing HD video
quality. In turn, the HD video quality Qv has a less strongly
declining influence on the overall HD audiovisual quality
with decreasing audio quality. Similar observations have
been made for SD. Note that, for the sake of clarity, Figure 2
shows the ratings averaged over all subjects and over all
contents, that is the per-condition ratings instead of the per-
sequence ratings.

Using the results for all contents might hide that for some
contents, the above statements are not valid anymore. As a
consequence, we computed the same correlations as above,
but used ratings per content (see Table 3, columns “A” to
“E”). For the contents “A” to “D”, the same observation as for
“all” contents can be made. For content “E” (music video),
the quality impact of audio seems to be higher than for the
other contents, and closer to the quality impact of video (SD:
correlation (Qav,Qa) = 0.61; HD: correlation (Qav,Qa) =
0.57). This observation especially applies to SD, confirming
the impact of the video format.

One more aspect to be considered is how the degradation
type influences the quality impact of audio and video on
the overall audiovisual quality. In our case, the employed
degradation types were audio and video compression, audio
frame loss, and video packet loss. We want to know, for
instance, if for a given level of audio and video qualities
we obtain different audiovisual quality values for audio
compression than for audio packet loss, even though both
have resulted in the same audio-only quality in the audio
test. This aspect will be discussed further in the following
modeling section.
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Figure 2: Audiovisual quality (Qav) as a function of audio quality
(Qa) and video quality (Qv).

4. Modeling

From now on, we will refer to the quality impact of audio
and video degradations as impairment factors. Therefore, we
define

(i) IcodX : the quality impact of video (X ≡ V) or audio
(X ≡ A) compression,

(ii) ItraX : the quality impact of video- or audio-trans-
mission errors, that is, video packet or audio frame
loss.

4.1. Impairment Factors and Quality Models. As mentioned
in the introduction, it is assumed that certain kinds of
impairment factors may be considered as additive on an
appropriate rating scale. Following this assumption, the
audio- and video-only quality models are decomposed as
follows (for details on the audio and video quality models
see [15, 16, 23]):

QX = QoX − IcodX − ItraX , (1)

where QX is the predicted audio or video quality, and QoX
is the base quality level the transmitted audio or video
signal can reach for the respective target service. In our
experiments, QoX is the maximum quality rating obtained
in the audio- or video-only subjective tests. IcodX thus
is derived from subjective tests for transmission error-free
conditions as follows: IcodX = QoX − QX . Using all
conditions, we obtain ItraX by computing ItraX = QoX −
IcodX −QX .

4.2. Content and Quality Models. The influence of the
content on the perceived quality plays a role at different
levels. For instance, in the video-only case, it is well known
that the quality impact of the bitrate is highly content
dependent [24–28], especially at low bitrates. This result can
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Table 3: Correlation of the audio and video quality, and their interaction with the overall quality (SD and HD).

Qav All A B C D E

HD

Qa 0.47 0.49 0.46 0.45 0.45 0.57

Qv 0.80 0.87 0.80 0.86 0.84 0.69

Qa ·Qv 0.92 0.94 0.94 0.94 0.95 0.92

SD

Qa 0.51 0.57 0.52 0.48 0.48 0.61

Qv 0.75 0.73 0.77 0.81 0.79 0.67

Qa ·Qv 0.94 0.94 0.95 0.92 0.96 0.96

be captured by developing video quality models that are
explicitly taking video content characteristics into account.
In the present work, we focus on the influence of the
audiovisual content on the balance between audio and video
quality (see Section 3), and on how this variation can be
captured in the audiovisual quality modeling. The impact of
the video content on video quality has been addressed, for
example, in [24–28], and respective models for audio quality
are currently under study.

4.3. Audiovisual Quality-Based Model. Similarly to other
studies [2–8, 10, 11, 17], we now model the audiovisual
quality Qav based on the audio quality Qa, the video quality
Qv and the interaction between Qa, and Qv

Qav = α + β ·Qa + γ ·Qv + ζ ·Qa ·Qv. (2)

This model is called a “quality-based” model, or “Q-
based” model. The coefficients α, β, γ, and ζ of (2) vary
from one research to the other, depending on the application,
the resolution of the video, and the audiovisual content. By
applying the quality-based model on SD and HD ratings
averaged over all subjects, we obtain the coefficients dis-
played in Table 4, rows “all”. The content-based audiovisual
quality model with different coefficients per content is
obtained by applying the quality-based model to ratings
averaged over all subjects for each content separately. The
obtained coefficients are listed in rows “A” to “E” of Table 4.

The regression coefficients are compared taking into
account their 95% confidence intervals: if the confidence
intervals of two regression coefficients overlap, the regres-
sions coefficients are considered to not be different. If the
confidence interval of a coefficient overlaps the value zero,
the regression coefficient is considered as nonsignificant, that
is, not different from zero.

In our case for HD, and similarly to [8] for high-
motion video, the dominance of the video quality over the
audiovisual quality leads to β = 0. For SD, β = 0, and
γ = 0, confirming that audio quality and video quality are
more balanced for this resolution. This is in accordance with
the observations made on the correlation values shown in
Table 3, Section 3.

When modeling the per-content data (coefficients of
rows “A” to “E”), we observe that the model pattern depends
on the content. Indeed, for HD, γ is significantly different
from zero for all contents except content E (music video).
This result was expected from the observation we made

Table 4: Regression coefficients of the quality-based model for HD
and SD, across all contents (rows “all”) and per content (rows “A” to
“E”).

α β γ ζ

HD all 28.49 0 0.13 0.006

HD A 24.57 0 0.28 0.006

HD B 27.50 0 0.11 0.006

HD C 24.37 0 0.21 0.005

HD D 27.85 0 0.17 0.005

HD E 32.59 0 0 0.007

SD all 30.99 0 0 0.006

SD A 32.77 0 0 0.006

SD B 30.21 0 0 0.006

SD C 25.83 0 0.15 0.005

SD D 32.06 0 0 0.006

SD E 30.83 0 0 0.006

on the correlations between audio and video qualities (see
Section 3): the impact of audio and video quality is more
balanced for content E than for the other contents. Similarly,
we had observed in Section 3 that the audio and video quality
was more balanced for SD than for HD. This balance is
less respected in case of content C (soccer), for which the
correlation between video and audiovisual qualities is higher
than for the other contents. This is translated into a nonzero
value of γ found in the regression analysis.

4.4. Audiovisual Impairment-Factor-Based Model. The ad-
vantage of the quality-based model variant is that it can
easily be used with audio and video quality models coming
from other laboratories provided they are based on similar
types of network conditions and services, and deliver quality
estimates on the same scale. The flipside to this advantage
is that the quality-based model does not allow for a fine-
grained diagnosis of the cause for nonoptimum quality.
Indeed, using (2), we only know if a low audiovisual quality
Qav is caused by a low audio quality Qa, a low video quality
Qv, or both. For diagnostic purposes, we can compute the
audio and video impairment factors IcodX and ItraX and
thus, using (1), know what the audio (Qa) and video (Qv)
quality impact due to audio and video degradations is.
However, we do not know if these degradations have a similar
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Table 5: Regression coefficients of the IF-based model for HD and SD, for all contents (row “all”) and per content (rows “A” to “E”).

Qavo cac cvc cavcc cat cvt cavtt cavtc cavct

HD all 94.33 0.466 0.713 −0.008 0.652 0.712 −0.007 −0.009 −0.007
HD A n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.

HD B 94.33 0.539 0.814 −0.010 0.752 0.727 −0.009 −0.017 −0.008

HD C 94.33 0 0.786 0 0.685 0.724 −0.007 −0.012 0

HD D 94.33 0.416 0.851 −0.007 0.601 0.724 −0.007 −0.013 −0.007

HD E 94.33 0.560 0.519 −0.009 0.711 0.667 −0.008 −0.011 −0.009

SD all 82.90 0.387 0.511 −0.004 0.539 0.507 −0.005 −0.006 −0.006
SD A 82.90 0.333 0.411 0 0.471 0.523 −0.004 0 −0.008

SD B 82.90 0.510 0.521 −0.006 0.677 0.522 −0.004 −0.012 −0.007

SD C 82.90 0 0.657 0 0.567 0.462 −0.002 −0.010 0

SD D 82.90 0.324 0.472 −0.004 0.559 0.492 −0.005 −0.005 −0.004

SD E 82.90 0.309 0.398 0 0.613 0.484 −0.006 −0.007 0

impact in an audiovisual perception context. If we insert (1)
for both audio and video into (2), we obtain the following

Qav=(α + β ·QoA + γ ·QoV + ζ ·QoA ·QoV
)

− (β + ζ ·QoV
) · IcodA −

(
β + ζ ·QoV

)·ItraA

− (γ + ζ ·QoA
) · IcodV −

(
γ + ζ ·QoA

)·ItraV

+ ζ · IcodA · IcodV + ζ · ItraA · ItraV

+ ζ · ItraA · IcodV + ζ · IcodA · ItraV .

(3)

Identical coefficients in (3) imply a similar impact on
audiovisual quality. This is, for example, the case for all
interaction terms between impairment factors IcodX and
ItraX , which are all multiplied by the same coefficient ζ .
Thus, this model assumes that all interaction terms between
impairment factors have the same weight for audiovisual
quality. Similarly, (3) suggests that for each modality (audio
and video), the individual terms IcodX and ItraX with equal
X (audio or video) have the same impact on audiovisual
quality.

To verify the validity of this assumption, which we
will call assumption “A”, we express the audiovisual quality
directly as a function of the impairment factors, leading to
the following model:

Qav = Qavo

− cac · IcodA − cat · ItraA

− cvc · IcodV − cvt · ItraV

− cavcc · IcodA · IcodV − cavtt · ItraA · ItraV

− cavtc · ItraA · IcodV − cavct · IcodA · ItraV .

(4)

As for QoX in (1), Qavo is the base audiovisual quality
level. During the modeling, Qavo is fixed to the maximum
audiovisual quality rating obtained in our subjective tests.
The name convention for the coefficients is as follows: the
subscripts a, v, c, and t stand for audio, video, coding, and

transmission, respectively. When c and t are both present in
the coefficient name, the first of those two letters is related to
audio, the second to video. As an example, cavct represents
the coefficient of the interaction between the audio coding
impairment IcodA and the video transmission impairment
ItraV .

Note that the interactions between IcodA and ItraA, and
between IcodV and ItraV , are implicitly taken into account
by including them in ItraA and ItraV (see Section 4.5). As a
consequence, (4) does not explicitly contain the interaction
terms IcodA · ItraA and IcodV · ItraV .

If the regression coefficients cac and cat, or cvc and cvt , or
cavcc, cavtt, cavtc, and cavct are significantly different, we can not
validate assumption “A”, that is, the respective impairments
have the same impact on overall quality. As for the quality-
based model, the regression coefficients are compared taking
into account their confidence intervals.

Applying multiple regression analysis using the results
of the audio-only, the video-only, and the audiovisual
subjective tests with (4), we obtain the regression coefficients
shown in Table 5, row “HD all” for HD, row “SD all” for SD.
Due to processing issues (only one video file, present in both
the video and audiovisual tests, was corrupted. However, it
was crucial for computing the IcodV value of several video
files with transmission errors and having the same bitrate
using the equation ItraV = QoV − IcodV − QV as shown
in Section 4.1.) the coefficients for the impairment-factor-
based model could not be developed for content A, HD
resolution.

Regression coefficients and their confidence intervals
are displayed in Figures 3 and 4 for, respectively HD
and SD. Significance-related information for the regression
coefficients are shown in Table 6, rows “HD all” and “SD
all”. Coefficients not significantly different from zero and
coefficients significantly different from the other coefficients
are indicated in the columns “Nonsign. coeff.” and “sign. diff.
coeff.-pairs”.

It can be seen, in both Figures 3 and 4 and Table 6,
that all regression coefficients are significantly different from
zero. A remarkable behavior can be observed in the case
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Figure 3: Regression coefficients and 95% confidence intervals. HD IF-based model.
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Figure 4: Regression coefficients and 95% confidence intervals. SD IF-based model.

of coefficients cac and cat, which are linked to the quality
impact of audio only. As apparent from Figures 3 and 4, and
Table 6, these coefficients are statistically different both for
SD and HD. This means that (a) audio quality alone shows a
significant impact on audiovisual quality, when the coding-
and packet-loss-related contributions to audio quality are

separated, and (b) the impairment due to audio packet
loss impacts audiovisual quality differently from that due to
audio coding. Hence, when a coding-only audio impairment
and a transmission-related audio impairment of equal value
IcodA = ItraA are presented to users in an audiovisual
context, the packet-loss-related impairment plays a larger
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Table 6: Significance of regression coefficients and of differences
between regression coefficients, for HD and SD, from (4).

Nonsign. coeff. Sign. diff. coeff.-pairs

HD all None {cac, cat}
HD A N.A. N.a.

HD B None {cac, cat}
HD C cac, cavcc, cavct {cac, cat}

{cavcc, cavtt}, {cavcc, cavtc}
{cavct , cavtt}, {cavct , cavtc}

HD D None {cac, cat}
HD E None None

SD all None {cac, cat}
SD A cavcc, cavtc {cavcc, cavtt}, {cavcc, cavct}

{cavtc, cavtt}, {cavtc, cavct}
SD B None None

SD C cac, cavcc, cavct {cac, cat}, {cvc, cvt}, {cavtc, cavtt}
{cavcc, cavtt}, {cavcc, cavtc}
{cavct , cavtt}, {cavct , cavtc}

SD D None {cac, cat}
SD E cavcc, cavct {cac, cat}

{cavcc, cavtt}, {cavcc, cavtc}
{cavct , cavtt}, {cavct , cavtc}

role for audiovisual quality than the coding-related one.
Both of these effects cannot be captured by the quality-based
model, where the audio-only quality was not found to have
a significant impact on the overall audiovisual quality. Since
cac is significantly different from cat, assumption “A” can be
rejected, confirming that the degradation type does have an
influence on how the audio component impacts audiovisual
quality. This supports the idea of impairment-factor-based
modeling approach.

No significant difference was found between the regres-
sion coefficients of IcodV and ItraV , and between the
regression coefficients of all the interaction terms. This may
mean that the impact of video on audiovisual quality is
independent of the video degradation type, and that the
impact of the interaction between audio and video qualities
on the audiovisual quality is independent of the audio
and video degradation types. This may also mean that the
influence of the audio and video degradation types has been
compensated by the influence of the content type during
the modeling process. Indeed, if the analysis is done per
content, IcodV is shown to have a higher impact on the
audiovisual quality than ItraV , but for another content, the
opposite is observed; on average, IcodV and ItraV will have
the same impact on audiovisual quality, and will thus not
have significantly different regression coefficients.

All these results provide us with interesting insights into
the subjects’ attention in the context of audiovisual quality
assessment. Indeed, in an audiovisual test the subjects seem
to focus more on video, as in a video-only test, while the
audio is only subconsciously attended to. With their main

attention on the video, the subjects pay similar attention
to stationary degradations such as compression artifacts as
to more time-varying degradations such as transmission
errors, just as in a video-only test. The users’ attention is
attracted more to the audio only in case of transient audio
degradations such as audio frame loss. This may explain
why—across contents—the coefficients of IcodV and ItraV
are not significantly different while the coefficient of ItraA is
significantly bigger than the one of IcodA.

For investigating the impact of the content on audiovi-
sual quality, we rerun the regression analysis on ratings aver-
aged per content over all subjects. The obtained regression
coefficients are shown in Table 5, rows “A” to “E”. Coefficients
not significantly different from zero are shown in column
“Nonsign. coeff.” of Table 6 for each resolution (referred to
by “HD” and “SD”), and separately for each content (rows
“A” to “E”). Moreover, we want to verify if assumption “A”
still can be rejected when modeling the audiovisual quality
per content. For this purpose, in column “sign. diff. coeff.-
pairs”, we indicate for each resolution and content, if cac /= cat,
or cvc /= cvt , or if one of the coefficients of the multiplicative
terms of (4) is significantly different from any other.

It can be observed that, for some of the contents, some
regression coefficients are nonsignificant (e.g., coefficient
cac, cavcc, cavct of content C for HD) but, for other contents,
they are (e.g., contents B, D, and E for HD). This implies
that different model patterns for different contents may
increase the overall performance of the model. Moreover,
for several contents, cac is significantly different from cat,
confirming that the audio-only quality does have an impact
on the perceived audiovisual quality, and that this impact
depends on the audio degradation type. This is especially
true for content C, for both SD and HD, for which regression
coefficients for the terms containing IcodA (cac, cavcc, cavct) are
all nonsignificant, contrary to the regression coefficients of
the terms containing ItraA (cat, cavtt, cavtc).

In addition, cvc is significantly different from cvt for
the content C (soccer) of the SD model, highlighting the
importance of the video degradation type for this content
on the overall audiovisual quality. Note that we already
observed in the quality-based model that for SD and content
C, γ /= 0 in (2). The video-only quality and degradation type
seem to play a bigger role for content C than for the other
contents. Regarding the coefficients of the multiplicative
terms (cavcc, cavtt, cavtc, cavct), they are significantly different
for several contents (content C for HD, contents A, C,
and E for SD). This confirms that assumption “A” needs
to be rejected also when modeling the audiovisual quality
per content. All those results are in favor of developing an
impairment-factor based model, which, in addition, takes
into account the audiovisual content type.

4.5. Estimation of Impairment Factors. In a real instrumental
assessment situation, the impairment factors are computed
from measurements done on the audio and video streams
and not from subjective tests. The model input information
can either be the decoded audio and video (i.e., input
to a signal-based model) or information extracted from
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the bitstream, or, in a more light-weight fashion, from
transport-header information, requiring much lower pro-
cessing resources. As input, our model takes parameters
extracted from transport-header information, such as audio
and video bitrates or packet-loss rates. A more detailed
list of the employed parameters is given in the column
“Parameters” of Table 2.

In a leastsquare curve fitting procedure using separately
the subjective audio and video test results described in
Section 2 as target values, we have identified the following
relations for the different impairment factors IcodX and
ItraX :

IcodX = a1 · exp(a2 · bitrate) + a3, (5)

ItraA = (b0− IcodA) · P f l
(
b1 + P f l

) , (6)

ItraV f =(c0− IcodV ) · Ppl
(
IcodV ·

(
c1·μ + c2

)
+Ppl

) (7)

ItraVs=d0 · log
(
d1 · Ppl · bitrated2 · μd3 + 1

)
. (8)

Here, ai, i ∈ {1, 2, 3}, b j, j ∈ {0, 1}, ck, k ∈ {0, 1, 2},
dl, l ∈ {0, 1, 2, 3} are the curve-fitting coefficients. The
coefficients ai depend on the used codec and on the video
resolution. The coefficients b j depend on the audio codec
and packet loss concealment. The coefficients ck and dl
depend on the codec and on the video resolution. ItraV f and
ItraVs are the quality impact due to video packet loss with,
respectively freezing and slicing as packet loss concealment.
P f l is the audio frame-loss rate in percentage, and Ppl is
the packet-loss-rate in percentage. μ is the number of video
packets lost in a row. In the audiovisual tests we conducted,
we used uniform loss.

Thus, for predicting the audiovisual quality of IPTV
services using the impairment-factor-based model, we first
extract parameters from the audio and video packet trace,
insert these into (5), (6), (7), and (8), and finally insert the
predicted impairment factors into (4).

It should be noted that changing the configuration of
the video encoder, for example in terms of the group of
picture (GOP) structure properties or the number of slices
per frame, will affect the perceived quality. However, these
changes do not introduce new types of degradations. As
a consequence, they can be captured by simply modifying
the video-quality model (Equations (5), (7), and (8)). For
instance, additional parameters such as the GOP length
could implicitly or explicitly be included in this model. As
long as the changed settings do not introduce new types of
degradations, there is no need to modify either of the two
variants of the audiovisual quality model.

4.6. Model Evaluation. The impairment-factor- and quality-
based models have been evaluated against the audiovisual
subjective test dataset used for developing the model, the
“training” dataset, as well as a subjective test dataset not
used for training the model, the “evaluation” dataset. The
latter contains sources B, C, and E listed in Section 2 as
well as the processed versions of those videos, using the

same conditions as listed in Table 2, except for the freezing
conditions (due to processing issues, freezing packet loss
concealment was present only in the anchor conditions,
making the test database still balanced in terms of quality
range and perceptual dimensions, but the ratings for freezing
conditions could not be used for evaluating the model.
Further, note that loss processing was done independently
for the training and evaluation datasets, yielding different
loss instances in the decoded audio and video). The same test
procedure and set-up as the ones described in Section 2 were
followed. 18 naı̈ve subjects participated in the evaluation test.

Four model variants are compared for each resolution:
the content-blind (Q) and -aware (Qc) quality-based models,
and the content-blind (IF) and -aware (IFc) impairment-
factor-based models. The content-blind models use the same
set of coefficients for all contents (see rows “HD all” and “SD
all” in Tables 4 and 5). The content-aware models use one set
of coefficients per content (see rows “H” D B to E and “SD”
A to E in Tables 4 and 5).

4.6.1. Performance Indicators. The performance of the mod-
els is evaluated by computing the Pearson correlation
coefficient (R) and the so-called modified root mean square
error (rmse∗) between the predicted and the subjective
quality values. These quality values have been previously
converted from the 100-point model scale back to the 11-
point scale used in the subjective tests by applying reverse
transforms of the conversions described at the beginning
of Section 3. rmse∗ has been used to evaluate the model
candidates in the development of the new ITU-T standard for
full-reference speech quality assessment P.OLQA (objective
listening quality assessment, future ITU-T Recommendation
P.863). It explicitly takes the degree of uncertainty of subjects’
judgments into account and is defined as follows:

rmse∗ =
√

1
N − d

∑
Perror(i)2, (9)

with

Perror = max
(
0,
∣∣Q(i)−Qp(i)

∣∣− ci95(i)
)
. (10)

Here, N is the number of audiovisual sequences, i is the
index of the audiovisual sequence, ci95 is the 95% confidence
interval of the sequence i, Q is the subjective audiovisual
quality, and Qp is the predicted audiovisual quality.

Since the rmse∗ is not commonly used in previous
research work, the root mean square error rmse is also given.
This may ease the comparison with the performance of other
models in the literature.

The significance of the difference of the correlation and
rmse∗ (but not rmse for clarity purposes) is further tested
following the VQEG HDTV evaluation procedure described
in [29].

Performance results are summarized in Tables 7 and
8 for, respectively, HD and SD, for the content-blind (Q)
and, -aware (Qc) quality-based models according to (2), and
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Table 7: Performance for HD, for the training (t) and evaluation (e) data; audio and video quality and impairment factors are derived
from subjective tests (Subj.) or predicted from audio and video quality models (Pred.); Q: content-blind Q-based model, Qc: content-aware
Q-based model, IF: content-blind IF-based model, IFc: content-aware IF-based model; in italic: the respective model performs significantly
better than the corresponding basic model Q; in bold: significantly better performing model between IF and IFc.

Subj. Rt rmset rmse∗t Re rmsee rmse∗e

Q 0.94 0.68 0.30 0.94 0.71 0.28

Qc 0.94 0.60 0.21 0.94 0.64 0.22

IF 0.96 0.53 0.15 0.95 0.57 0.14

IFc 0.98 0.39 0.07 0.95 0.58 0.24

Pred. Rt rmset rmse∗t Re rmsee rmse∗e

Q 0.91 0.67 0.26 0.91 0.71 0.26

IF 0.93 0.63 0.20 0.92 0.70 0.25

Table 8: Performance for SD. See Table 7 caption for more details.

Subj Rt rmset rmse∗t Re rmsee rmse∗e

Q 0.94 0.56 0.20 0.92 0.65 0.26

Qc 0.95 0.52 0.18 0.92 0.64 0.26

IF 0.94 0.55 0.18 0.93 0.58 0.20

IFc 0.95 0.48 0.14 0.92 0.64 0.22

Pred. Rt rmset rmse∗t Re rmsee rmse∗e

Q 0.91 0.63 0.23 0.86 0.72 0.26

IF 0.91 0.65 0.28 0.87 0.73 0.25

for the content-blind (IF) and, -aware (IFc) impairment-
factor-based models according to (4). Table 7 (resp., 8) shows
the performance of the HD (resp., SD) audiovisual quality
models on the training (Rt, rmset, rmse∗t ) and evaluation
(Re, rmsee, rmse∗e ) dataset, when the impairment factors and
audio and video qualities are either derived from subjective
tests (section “Subj.”), or predicted by the audio and video
quality models defined in (5), (6), (7), (8) and (1) (section
“Pred.”). If a model performs significantly better than the
content-blind quality-based model Q, the corresponding
performance indicator (Ry , rmse∗y , y ∈ {t, e}) is marked in
italic; if one of the two impairment-factor-based models is
performing better than the other, the respective performance
values are printed in bold. Since the audio- and video-
quality models are not content-dependent, the second part
of Tables 7 and 8 only shows the performance numbers for
the content-blind models Q and IF. Indeed, having one set of
coefficients per content can be a benefit only if the predicted
impairment factors and audio and video qualities are content
dependent.

The subjective results (“Subj.” in Tables 7 and 8) are used
for validating the impairment-factor versus quality-based
approach and the content-based approach versus content-
blind approach while the data referred to as “Pred.” are
used for checking how robust our models are against the
prediction error introduced by the audio- and video-quality
models. Note that for both “Subj.” and “Pred.” parts, the
audiovisual quality models have been trained on the audio
and video qualities and impairment factors derived from the

subjective tests, not quality values predicted by the audio and
video quality models.

Figures 5 and 6 show the performance of the content-
blind impairment-factor-based model on the evaluation
dataset for HD and SD, when the impairment factors are
derived from the subjective tests. This corresponds to the
most valid way of evaluating the audiovisual impairment-
factor-based model, since the evaluation data are unknown
to the model, and for audiovisual quality prediction the
model directly uses the subjective results from the audio- and
video-only tests, instead of the audio- and video-only quality
models with their possible prediction errors.

We will start the model performance comparison with
general observations for all results, then continue by evalu-
ating the benefit of taking the degradation type into account.
In a third stage, we will analyze the advantage of considering
the content type in the model. At last, we will analyze
the robustness of the models against the prediction errors
introduced by the audio- and video-quality models.

Performance indicators used in the following analysis are
the Pearson correlation R and the rmse∗ values reported in
Tables 7 and 8.

We can first observe that all model variants obtain good
performance results, especially for HD, where the models
always obtain correlations above 0.91, up to 0.98, rmse∗

is between 0.07 and 0.30 (on the 11-point scale used in
the tests). The SD model variants obtain slightly lower
performance, with correlation values ranging from 0.86 to
0.95, and rmse∗ is between 0.14 and 0.28. As expected,
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Figure 5: Performance of the content-blind HD impairment-
factor-based model on unknown subjective data. Impairment
factors are derived from the subjective tests.

the rmse∗ is the most discriminative performance measure
between models.

4.6.2. Model Evaluation for HD. For HD, the content-blind
impairment-factor-based model (IF) always performs better
then the content-blind quality-based model (Q). This best
performance is always significant, except for unknown data
when the impairment-factors are predicted from the audio
and video quality models. A possible explanation for this
exception is the slightly lower performance of the audio
and video quality models on the evaluation data compared
to the training data. Since the rmse∗ takes into account
the confidence interval of each sequence (see (10)), the
slightly higher confidence interval values of the evaluation
data compared to the training data ease obtaining good
performance for all models and thus increase the difficulty
of achieving significant difference between the rmse∗ of
different models. A promising result is that the impairment-
factor-based model variants IF and IFc in all cases perform
better than the quality-based model variants Q and Qc.
Considering the content in the modeling further improves
the performance of the models in all cases except for the
evaluation data with the impairment-factor-based model,
this may be due to an overtraining of the model. Indeed,
even though contents used in the evaluation dataset are
identical to some of the contents of the training dataset,
different conditions were used between the two sets. More-
over, the processing chains were different, yielding different
perceptual impacts for similar conditions. As a consequence,
the evaluation set can be considered to represent a case
where we use different contents between the datasets. Since
the coefficients are content specific, the prediction for one
content can even be worse than when using the coefficient set
of “row all”, which were obtained using ratings from several
contents.
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Figure 6: Performance of the content-blind SD impairment-factor-
based model on unknown subjective data. Impairment factors are
derived from the subjective tests.

4.6.3. Model Evaluation for SD. The advantage of using the
impairment-factor-based approach is not as clear for SD
as for HD. However, we can notice that the impairment-
factor-based model IF performs better than the quality-
based model Q in all cases, except for the training data, where
the audio and video quality are predicted from the audio and
video quality models. A small more detailed diagnosis shows
that this exception may be explained by a lower performance
of the video quality model and respective impairment factors
on the training data (R = 0.90) than on the evaluation data
(R = 0.94). This lower performance affects the impairment-
factor-based audiovisual quality model IF more because,
contrary to the quality-based model Q (see Table 4, row “SD
all” and (2)), it contains video-only terms (IcodV and ItraV ,
see Table 5, row “SD all” and (4)). In other words, the video
quality prediction error may propagate more in case of the
impairment-factor-based model than in case of the quality-
based model. As in the case of HD, considering that the
influence of the content further improves the performance
of the models in all cases, except for the evaluation data with
the impairment-factor-based model.

4.6.4. Comparison with Models Described in the Literature.
We wish to compare the performance of our models to the
performance of models described in the literature. Note that,
in almost all studies, the models are quality based, their
performance is computed using the training dataset, and the
audio and video quality terms Qa and Qv of the models
are fed with the subjective test values. Since validating the
models on unknown data is considered to be more suitable,
we prefer to show the performance of our best-performing
models, that is, the content-blind impairment-factor-based
models for both SD and HD, on the evaluation dataset. As a
comparison point, we also depict the performance results for
our content-blind quality model variants. This leads to the
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Table 9: Models performance comparison, “Cod.” compression artifacts, “trans.”: transmission errors. In italic: model performance
evaluation on training data.

Model Degradation type α β γ ζ Correlationa Scaleb

Bellcore93 [2] Analog 1.33 0 0 0.11 0.99 9

Bellcore94 [3] Analog 1.07 0 0 0.11 0.99 9

NTIAITU98 [6] Cod. 1.54 0 0 0.12 0.93 9

NTIAJones98 [7] Cod. −0.677 0.217 0.888 0 0.98 5

Beerends99 v1 [4] Analog 1.12 0.007 0.24 0.09 0.98 9

Beerends99 v2 [4] Analog 1.45 0 0 0.11 0.97 9

FT98 [5] Compression 1.76 0 0 0.10 0.96 9

BT04 (head and shoulder) [8] Cod. 1.15 0 0 0.17 0.85 0–100

BT04 (high motion) [8] Cod. 0.95 0 0.25 0.15 0.82 0–100

Ries07 (fast movement) [10] Cod. −0.922 0.569 0.506 0.170 0.91 c 5

Ries07 (video call) [10] Cod. −0.631 0.214 0.012 0.118 0.90 c 5

Winkler06 v1 [11] Cod., frame-rate −1.51 0.456 0.770 0 0.94 11

Winkler06 v2 [11] Cod., frame-rate 1.98 0 0 0.103 <0.94 11

NTT05 [17] Compr., frame-rate, delay N.A. N.A. N.A. N.A. 0.94 5

Impairment-based T-V-Md HD Cod., trans. N.A. N.A. N.A. N.A. 0.95 11

Quality-based T-V-Md HD Cod., trans. 28.49 0 0.13 0.006 0.94 11

Impairment-based T-V-Md SD Cod., trans. N.A. N.A. N.A. N.A. 0.92 11

Quality-based T-V-Md SD Cod., trans. 30.99 0 0 0.006 0.91 11
aCorrelation coefficients are assumed to be Pearson correlation coefficients.
bNumber of categories.
cAudio and video quality predicted from models.
dProposed model.

correlations listed in Table 9. Degradation types addressed by
each model are also shown, indicating that all other data has
been obtained without considering transmission errors.

The content-blind impairment-factor-based model
obtains high correlation values, similar to most of the other
models. This is even more valuable since our model can be
applied to both coding and transmission errors, that is a
wider range of degradation types. However, since the models
from the literature have been derived for different video
formats and applications, comparing correlation coefficients
does not allow any conclusions to be drawn on which model
performs the best, but rather gives us an indication of
relative performance of our model. Moreover, we did not
have access to the rmse∗ (neither the rmse) for most of the
models found in the literature. This measure would have
been more appropriate for comparing the models, since, as
previously mentioned, it is more discriminative, also in the
light of the underlying test data.

A brief summary of the results discussed here in detail is
given at the beginning of the conclusion.

5. Conclusions and Outlooks

Based on the results of five quality perception tests, we
have presented different audiovisual quality models for IPTV
services for each SD and HD video resolution: a content-
blind and a content-aware quality-based model, and a

content-blind and a content-aware impairment-factor-based
model. By definition, the content-blind models use the same
set of coefficients for all contents while the content-aware
models have one set of coefficients per content (see Tables
4 and 5). All models have been developed using the same
subjective test data. Based on a correlation analysis of the
test results (see Table 3) and the comparison of regression
coefficients for different model variants, we have shown that
both the audiovisual content type and the degradation type
have an influence on the perceived audiovisual quality, with
different effects between SD and HD.

As shown by regression analysis of our data in terms of
the quality-based model, the audiovisual quality interaction
plays the main role for audiovisual quality, both in case of SD
and HD. However, a clear difference can be observed for the
role of the video-only quality: while a nonzero coefficient was
found for one content only in case of SD, all but one content
lead to nonzero coefficients for video-only quality in the case
of HD. Obviously, the video part has more importance in this
case.

The advantage of an impairment-factor-based rather
than a quality-based approach could be substantiated by
our regression analysis for both SD and HD, mainly due to
the more fine-grained inclusion of audio: while audiovisual
quality was not found to be dependent on the degradation
type for video, it was shown to be more affected by audio
frame loss than by audio coding, in spite of the equal
role of the two degradation types for audio-only quality.
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This difference is assumed to be due to the video-only-like
perception mode in an audiovisual context, where the users’
attention is explicitly drawn to the audio quality only when
transient events such as loss events occur.

These findings are directly linked with the performance
of the respective models: the SD and HD content-blind
impairment-factor-based models perform better than the
other models on unknown data with, for HD, a Pearson
correlation of 0.95 and an rmse of 0.57 on the 11-point scale
used in the subjective tests. Both impairment-factor-based
variants perform better than the quality-based variants, and
they provide a more fine-grained diagnosis of the audiovisual
quality.

However, the proposed models have some limitations:
when the audio and video qualities and impairment factors
are predicted from audio and video quality models, the
impairment-factor-based variants are less robust to audio
and video quality prediction errors than the quality-based
variants. More studies are necessary for identifying the
thresholds of audio and video quality prediction errors at
which the impairment-factor-based variants start to perform
worse than the quality-based variants.

The main limitation may, however, be the fact that
content-dependent models also require content-specific
datasets from which they are derived. Of course the question
arises at what point of specificity to stop to avoid overfitting
of the models and to cease the otherwise neverending task
of subjective tests. We tried to overcome this limitation
by focussing on the content types that so far appear to
be the most popular ones broadcasted via IPTV: movies,
sports, music videos, and so forth. With regard to video
quality degradation type, we would like to differentiate
slicing and freezing for the interaction between video
and audio qualities. At last, more analyses are necessary
for extending the audio- and video-model components to
more diverse degradations such as other loss distributions,
video and audio encoder and decoder settings, and the
audiovisual model to audiovisual synchronization artifacts.
Since the impairment-factor-based approach was developed
for a range of coding and loss settings, however, it is
expected that it will be applicable to many of these cases as
well.
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