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We present an approach to model articulated human movements and to analyse their behavioural semantics. First, we describe a
novel dynamic and behavioural model that uses movements, a sequence of consecutive poses, from motion captured video data
to establish priors for both tracking and behavioural analysis. Second, using that model, we show how we can both learn and
subsequently recognise human activity. Activities are modelled and recognised independently to allow concurrent and complex
actions. Finally, we combine activity recognition with tracking to produce an overall evaluation of the effectiveness of the approach

using publicly available datasets.

1. Introduction

The analysis of human activity and behaviour from video
sequences, often termed video analytics, has applications
in surveillance, entertainment, intelligent domiciles, and
medical diagnosis. Human tracking [1] is the first phase of
most video analytic systems, and indeed, we have previously
described a hierarchical particle filter to recover torso
and limb positions and movements from video sequences
[2]. However, in this paper, we focus on the behavioural
understanding of human movements or transitions between
poses.

Video analytics requires inferences on human behaviour,
but this can vary widely in complexity from simple actions
(walk, run, jump, etc.) to more complex deductions on intent
or interaction (shoplifting or holding a conversation). Turaga
etal. [3] provides an overview of recent algorithms to classify
such a range of behaviours, some classified as simple motion
patterns, the actions, and some as more complex, frequently
multiperson activities, which may be composed from simple
actions. For example, Ma et al. [4] extract motion trajectories
from human subjects (considered as single entities) and can
infer interactive behaviour (fight, chase) from the relative
motion in comparison with learnt examples. Similarly, Li
et al. [5] use the motion trajectories of football players to
determine the “plays” of activities of the football groups

from analysis of these combined tracks. The assumption in
these works is that the movement of a single entity, a human
blob, is sufficient to describe a singular motion, and that
more complex behaviour can be inferred from interactions
between trajectories. The tactical arrangement of a football
team is an obvious example of this. However, more complex
human activities may require more detailed analysis of the
structure within the human movement, as for example using
limb positions and movements in our work, and indeed in
other work such as that of Deutscher and Reid [6]. However,
whereas limbs are the building blocks of the human form,
it is also possible to analyse behaviour on the basis of more
abstract features, such as the extremities of a contour used
by Yu and Aggarwal [7], or the signed distance transform
used by Nater et al. [8]. These latter examples are effectively
forms of 2D blob analysis for action recognition and anomaly
detection, that echo the early days of binary computer vision
using extracted human silhouettes.

The novelty of this paper is that we describe complex
behavioural analysis that infers multiple conclusions using
a Movement Cluster Model (MCM). This generalises both
global actions (i.e., full body defined) such as walking and
running, and more detailed actions (i.e., body part defined)
such as forward arm movement. To achieve this, we use
sequences of human pose parameters extracted from video
data.



The work we describe has some parallels with manifold
analysis by Lui et al. [9] and with Hierarchical Gaussian
Process Latent Variable Models (HGPLVM) [10-13]. A
HGPLVM is similar to an MCM in that it decomposes the
pose-space into hierarchical subspaces. However, the key dif-
ference between our model and that of the previous examples
is that rather than use static poses, these are substituted
within an MCM with movements, that is sequences of poses.

Returning to the classification of Turaga et al. [3], the
MCM belongs to the class of parametric action detection
algorithms. This is the most complex class of action recog-
nition, followed by activity recognition algorithms. We use
movement, action and activity, defined in Section 2.2, as our
three abstraction levels of perception, similar to Bobick [14].
In [14], a movement is a continuous motion characterised
by the trajectory in some configuration space. An activity
is a statistical temporal combination of movements, and if
understood within a context, it becomes an action. ikizler
and Forsyth [15] used acts and activities as basic blocks of
recognition. Acts, similar to the actions above, are expressed
as Hidden Markov Models (HMM) with a low number of
states. Similar states are interconnected in a larger HMM
representing activities. Similarly, Green and Guan [16]
have four abstraction levels: the dyname, skill, activity and
context. The first three corresponded to movement, action
and activity while the context is a prior knowledge about the
conditional probabilities of the skills.

The MCM is introduced in Section 2. The MCM is
then trained and used for motion prediction in Section 3,
while Section 4 evaluates the semantic analysis on motion
captured (MOCAP) data. In Section 5 we present results of
behavioural analysis on video sequences using tracked data
from the HPPF [2] tracker incorporating MCM movement
prediction. In Section 6 we compare and contrast our results
with those of other workers on the basis of the published
results. Finally we conclude our paper in Section 7.

2. Behaviour Analysis and the Movement
Cluster Model

Using the Movement Cluster Model (MCM), we learn,
simulate and subsequently analyse human movement and
behaviour by extracting common poses and transitions
between those poses, leading to definitions of activities and
actions that represent similar movements and transitions
using a clustering approach.

2.1. Human Model and Tracking. Analysis may use direct
image features [17, 18] or extracted pose features [7, 13].
For MCM, the input is extracted pose sequences of the
Articulated Hierarchical Human Model (AHHM) [2, 19]. A
Pose Vector (PV) is the set of body configuration parameters
that completely define a pose. For an articulated model,
this is the torso position and the set of joint angles of the
limbs. Fixed parameters, such as body part shape and size,
are constant for an individual, and are therefore not included
into the PV.
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A Body Feature Vector (BFV) is a partition ¢ of the
PV p,b = p?. It is a subset of joint angle, body position
and orientation parameters. While a pose is completely and
uniquely defined by a PV, several BFVs prescribed by a
partition ¢ exist for a pose. This is important, since models
for individual body parts (e.g., lower leg, arm, etc.) or for the
whole body can be built from the appropriate partition and
its BFV.

The principal source of AHHM data in this paper is
the verification set of the HumanEva dataset. Later, we
use AHHM data acquired by applying an articulated body
tracker to video sequences, the Hierarchical Partitioned
Particle Filter (HPPF) [2, 19]. The HPPF recovers the
probability density of an AHHM, and each pose hypothesis,
a.k.a. particle, is a PV. Figure 1 shows some poses recovered
by the HPPF, as wireframe human bodies on top of the input
image sequence.

However, in the rest of this paper, we consider that a
tracking algorithm is already in place, and focus on the
semantic analysis of the AHHM model. The behavioural
analysis should be independent of the prior tracking, and
therefore the HPPF may be replaced with any of the recent
articulated human tracking algorithms such as those of Qu
and Schonfeld [20], Bo and Sminchisescu [21], Raskin et al.
[12], Rius et al. [22], and Taylor et al. [23].

2.2. The Movement Cluster Model. With no intentional
content, a movement is a short, continuous sequence of
poses, which are represented as a BFV. For example,

m = [blmfl,...,bl,b()] (1)

is a sequence of consecutive poses, represented by a vector
of the current by, and previous by,...,b;,_1. I, is the length
or duration of the movement. An action is a short sequence
of poses (e.g., leg rising, arm still). It is usually, but not
exclusively, defined by one or more body parts. An action
and a movement are similar, but actions have an intentional
content that can be described semantically by a label A. An
activity is a symbolic characterization of the body over a
limited time, bearing an intention.

A Movement Cluster (MC) is a set of similar movements.
MC:s are the building elements of actions, and an MC can be
part of multiple actions. If a movement is part of an MC then
the statistical probability of the MC being an Action A results
in the probability of movement being Action A.

To make an analogy with language, activities are sen-
tences, actions are words, movements are letters, and BFVs
are the sequences of curves forming the letters. This structure
is shown in Figures 2 and 3. Like previous authors [14—
16, 24], we build semantic knowledge from simpler towards
complex structures. The translation of the PV (e.g., the
tracking data) to symbolic description is performed through
MCs.

The MCM consists of an MC set and the probability
of transitions between them. The MCM can be used to
predict movement or PVs, and as such to improve tracking
with prior knowledge. Further, if an MC has an associated
probability distribution of semantic action labels, then
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Frame 4

Frame 10

Frame 16

FIGURE 1: Tracking results for the HumanEva S2 Combo I camera C4 sequence. Recovered poses of walking (frames 4-16), jogging (frames
460-475) and balance (frames 766-781) are superimposed with the input image.

this Semantic MCM (SMCM) provides the behavioural
semantics of a movement sequence.

2.3. Training Movement Clusters. The learning process
shown in Figure 4 proceeds from a set of of movements
that are acquired from an MOCAP system as input data, to
generate the dynamic MCM as output. Within the MCM,
there is a statistical description for each MC, and for each
transition between MCs.

Movements have high internal correlation, as they are
made up from consecutive, therefore related, BFVs. Further,
a single BFV has correlated parameters since body parts
have synchronised movements. Consequently, we employ
compression by principal component analysis (PCA) as the
first stage to reduce the dimensionality of movements.

Clustering with expectation maximisation is employed to
group similar [,, + 1 long compressed training movements.
This results in a set of MCs. If a movement is separated
into the first [,, and the last BFV then these define a
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TaBLE 1: The set of MCMs from partition BFV of the whole PV.
Each MCM has different complexity and refers to one or more body
parts.

, K | Model/level Description
// :‘\\\ Action B ’E M, Whole body
| / Action A @ _ ‘l\_\_\\ ______ ," Mo Head
| T Tl M Left full arm
k N My Right full arm
\\ (/ I,’ \\\__,// Action C \\‘ M Left full leg
NN @ 2 S M Right full leg
\\\:\‘\\ /,/’/ /,// M Left upper arm
T T - Ms Right upper arm
FIGURE 2: Movement clusters and actions. Action A results from My Left upper leg
any of the clusters MC; - - - MC;, Action B from MC, or MCs, Mo Right upper leg
while Action C from MC;, MC;, MC, or MCs. On the other hand a M, Left lower arm
movement classiﬁe.d. as MC,; pro’du‘ces either Action A or Action C, M Right 1
etc., with a probability characteristic to MC;. 12 ght fower ari
Mis Left lower leg
My Right lower leg

Input: M-the MCM
m-current movement
Output: b-generated BFV (NBFV)
(1) b* =ym // the last BFV of the movement
(2) ¢ =MC(m)
(3)b ~ N(b*; M.C.NBFV.u, M.C..NBFV.P)

ALGORITHM 1: NextBFV algorithm to generate the NBFV of the
current movement.

movement to a new BFV transition. Therefore in the cluster
modelling phase, for each MC, we compute a Gaussian
distribution (i.e., the mean and covariance) of the PCA
compressed [, long movements, and a similar statistical
representation of the next BFV (NBFV). The first defines the
membership of an arbitrary movement within an MC, while
the second provides the transitions to the NBEFV, as suggested
in Figure 5. This process is unsupervised and uses as input
only the set of movements.

2.4. Movement Prediction. MCM allows pose prediction
if the current movement is known. This prediction is a
necessary step for generative tracking algorithms, such as
the HPPEF, but a synthetic motion sequence can also be used
to verify if the model captures the correct dynamics of the
human body.

Let us assume that the current movement, m, is known,
with its last BFV, b*. Algorithm 1 predicts the next BFV.
First, the current movement’s cluster is found (MC, line
2). Then, a new BFV is drawn from the learnt Gaussian
distribution of the NBFV, with mean (C.NBFV.u) and
variance (C..NBFV.P) in line 3.

A repeated process of MC to MC transitions is illustrated
in Figure 5. Since the current MC is known, the statistical
model of each MC provides possible transitions to a next
MC. This next MC is explicit. A new movement is created
from circularly replacing the oldest BFV in the previous

movement with the new BFV, b. Then, the new MC is
that cluster which has the closest similarity to the new
movement. Unlike an HMM, where the new state is explicitly
defined by transition probabilities that can be drawn directly,
in the MCM the transitions are hidden by the Gaussian
model of the NBFV. However, compared to an HMM they
estimate continuous parameters and define the transitions
using movement, not just a single pose.

2.5. Model Parameters. The MCM has three parameters,
which are the number of MCs, the length of a movement
in video frames and the BFV components. A BFV can
include either the full PV, or merely a subset. The latter is
advantageous when considering the independence of limbs,
each modelled with distinct MCMs. Table 1 defines 14
MCMs (M;) with different levels of detail: the full articulated
body joint angle BFV (i.e., Whole body), the complete (Head,
Left/Right Arm/Leg), the lower and upper limbs. Duplication
(e.g., My is included in Mg, while this is a part of M, ) allows
model specialisation for individual body parts.

We have observed that the head parameters are unstable,
both in the training and tracking data. Therefore M, is not
used further in this study for prediction or analysis.

2.6. Movement Likelihood and Conditioned MC Probability.
The probability of an arbitrary movement, m, from an MC is
MC(m). To determine this value, we use the prior probability
of the cluster G;,

Pr(G;) = C,.Prior, (2)

that is learnt during the training phase. To simplify the
notation, the model M is implicit when referring to its
clusters C;.
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by by bs by bs e b; Body feature vector
my
Movement
m2
Movement cluster
m;-3
Action 1 Action
Action 3 Action 3
Action 5
Activity 1
Action 1 Activity
Action 3
Action 4
(a) (b)
FiGure 3: BFVs, movements, actions and activities. For an action primitive of length [, = 4 body features by, ..., b, result in the movement

m,. The cluster MC;, to which m; belongs, defines the possible actions (i.e., 1 and 3). Similarly, b,,...,bs define a different set of actions,
Actions 3 and 5, by means of MCs. Presence or absence of actions (over a time), or the coexistence of different actions in a temporally ordered
manner, result in activities.

MOCAP Compressed MOCAP Clusters Dynamic model
Compression |—>| Clustering Cluster modelling [——>

FIGURE 4: Motion model learning overview. First, the MOCAP training data is compressed to reduce the number of the correlated body

parameters. Then, based on similarities, clusters are formed from the alike training data. Finally, features of these cluster are learnt.

With PCA compression the probability of a movement m
conditioned by the MC is expressed by the probability of the
compressed representation:

Pr(m | G;) = Pr(pcay | G;). (3)

A normal probability density function models the cluster
of the compressed movements, therefore

Pr(m | G;) = ¢; - €% (Peam) (CcPCAR) Tdec(peam) - (4)

where ¢, (pcam) = pcam — C..PCA.p and ¢; is a constant.
Further, the probability of a movement m being cluster
C. using Bayes rule is

Pr(C. | m)

Sime, (m)
_ Pr(m | C)Pr(C,)
B Pr(m)
_ 1
-a Pr(m)

p= 6& (pcaap) - (C..PCA.P)"" - ¢, (pcaap).

(5)

- C;.Prior - €,

Finally, with maximum a posteriori likelihood, the MC
of an arbitrary movement m is the most similar cluster:

MC(m) = arg max Sime, (m). (6)
C.

2.7. Action Learning. MC formation is unsupervised, based
on clustering similar movements, but they do not necessarily
have semantics. If some movements are labelled, these are
used to assign semantic labels to MCs, as now described.

The ground truth probability P(A | m) is one if a
movement m has the action label A, and zero if not. Since
movements are defined over a duration, it is important to
specify the time of reference for A. Here, it is given by the
last frame, that is, A is defined by the previous and current
BFVs.

The probability of a label A conditioned by a movement
cluster, C;, is the frequency of the label weighted by the
movement similarity within the cluster:

2.m Sime,(m) - P(A | m)

Pr(A | G;) = > Sime (m)




Figure 5: Visual example of an MCM. The MCs are represented
by smaller continuous disks MC;. The MC generates a new BFV
suggested by larger, dotted circle and with all but the first BEV of the
the current MC results in the new movement that is classified into
an MC. MC; transforms into MC; or MCy; MC, transforms into
MC; or stays in the same state (but changes the parameter values);
MC; to MCs or MCy; MCy to MCs, MCg¢ or MC7; MCs to MCy;
MC¢ to MC; or MC,; and MC; to MCs, MCg or MC;.

The inferred probability of a label, given the current
movement m, is the integrated marginal probabilities over
all clusters:

Pr(A | m) = > Pr(}, G | m)
C;

_ %Pr(/\ | €, m)Pr(C; | m) (8)

= ZPr(A | C))Pr(C; | m),
C;

with Pr(A | G,m) = Pr(A | @;) from the functional
dependence of the cluster © on the movement m.

A MCM with allocated movement similarities Pr(A | m)
is a Semantic Movement Cluster Model (SMCM). A SMCM
can infer with (8) the probability of any action label, A, given
a movement, m.

2.8. Behavioural Analysis from Multihypothesis Tracking.
When the input to behavioural analysis is from a mul-
tihypothesis tracker, such as the HPPF [2, 19], then the
probability distribution of the AHHM recovered from the
input video sequence is represented by the set of the particles,
\Yti

¥e= (P, ©)

sty !

Tracking recovers the parameter distribution of the pose
or the movement, which is used as input to the behavioural
analysis. However, tracking benefits from the analysis of
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previous movement as inputs to the tracking process. There
are two alternatives to how the PVs produce movements that
are analysed.

First, since the particles of the HPPF can have a history in
addition to the current PV, that is, they are movements, the
movement distribution at time # becomes the current particle
distribution:

¥ = [pf(}

Therefore, the label probability from (8) is computed as the
expectation over the movement distribution, equal to the
particle distribution. Hence,

(10)

i€l,.onp

Pr(d | mf) = Eir,n, <ZPr(A |eypr(e | p?(z'))>, (11)
¢

is the probability of the label A.

With the second alternative, the movement is composed
by conjoining the I, consecutive current BFVs of the p,
estimated particle of the ¥,. The current movement for the

partition ¢ from the estimated particle is oﬁ(f, ,,+1» hence the
current movement results in:

mf = [0B} 1,1 0Py 4020+ 0Pt |- (12)

This with (8) and (9) define completely the probability of
label A.

While formulation (11) requires the same MCM to be
used for tracking and analysis, the latter allows use of an
MCM with different [,, and ne, independent of the MCM
used for tracking.

3. Analysis of a Trained MCM

In this section, to validate the MCM methodology, we analyse
a trained MCM, and predict the transitions between MCs.
For this, the MOCAP data of the HumanEva datasets [25]
is used. The training videos and motion-capture (MOCAP)
data provide ground truth on the limb positions in sequences
of Walk, Jog, Throw/Catch, Box and Gesture activities. We
follow the procedure described in Section 2.3.

3.1. Analysis of MCs. First, we analyse if the MCs resulted
from the training are consistent semantically. For this, for
each MC we show in Figures 6 and 7 the distributions of
the constituent movements classed into the five categories
Walking, Jog, Box, Gesture, Throw and Catch. For good
classification, clusters should have similar movements arising
from the same activity, while movements from different
activities are expected to fall into different clusters. For
example, in Figure 6(a) MC 13 is entirely composed of more
than 2000 movements from the Jog activity. Conversely, MC
11 has in total 883 movements from the Box, Throw/Catch
and Jog sequences. This cluster is the worst in Figure 6(a),
since the membership of a movement in a cluster provides
the least constraint on the activity of which the motion is a
member. This artefact is motivated by the similarity of the
Box, Throw/Catch and Jog sequences. For longer movements
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FIGURE 6: Movement length dependent cluster composition for the HumanEva basic activities, ne = 20 clusters and varying movement
length I,,. The number of clusters with a mix of three activities reduces from 3 in (a) and (b), to 1 in (¢) and 0 in (d).

having greater ,,, the clusters have more dominant activities.
Thus, for ne = 20 clusters an increase in [, results in
better classification, since over a longer observation period
the classification is more stable. Figure 7 shows the MC
composition for I,, = 25 long movements for several cluster
numbers. It suggests that with an increase of ne, the clusters
with larger covariance are split and hence clusters are more
discriminatory.

For objectivity, a measure of cluster uniformity is defined
as

2
y— Z (C)r(nax) /ZaeA()() C)(,(X

, (13)
gex  Zpex @

with

C)r(nax = maX) (Cx,tx))

acA(y (14)

where X is the set of MCs, A(y) is the set of activities
of cluster y, and ¢4 is the histogram value of movements
of activity « in bin (i.e., cluster) y. The uniformity u is
one if all clusters have movements from a single cluster
only; otherwise it favours clusters with a higher number
of movements, penalising those with fewer. The minimum
value is 1/|Al, the inverse of the cardinality of the activity
set, for example, the minimum uniformity for the above 5
activities is 20%. This minimum occurs when all MCs, equal
in number, are in a single bin.
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Figure 7: MC number-dependent cluster composition for the HumanEva basic activities, ,, = 25 movement length and varying cluster

number ne.

TaBLE 2: Cluster uniformity u[%], in relation to the number of
clusters ne and the sequence length [,,,.

L

ne

1 3 5 15 25 35
20 91.5 91.7 90.4 91.5 93.0 95.7
40 94.6 93.6 94.9 94.5 97.3 97.4
60 96.2 95.7 96.7 96.9 99.5 99.1
80 96.4 96.8 97.6 98.5 99.3 99.0
100 96.5 97.4 97.9 98.8 99.6 99.4

Table 2 confirms that increases in both the movement
length and the number of clusters enhance the MC uni-
formity. This is maximal for ne = 60 and [, = 25.

Summarising, we can conclude that MCs contain similar
movements and the discrimination between global actions
is enhanced with more clusters and longer movements.

One would expect the number of clusters to be equal
to the number of activities (i.e., five for HumanEva). This
is not the case for many reasons: the high dimensional
parameter space is multimodal, and clusters are used to
classify not just one cluster of exclusive activities, but also
actions, which can overlap and combine independently with
other actions. This requires a value for ne high enough to
allow combinations between different actions. Adding more
clusters is limited by the training set size; each cluster requires
training to determine its mean and covariance with a number
of member movements more than the dimensionality of the
parameter space.
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MC: 96

FIGURE 8: Left leg random motion (mode = pose only) with MCM Models. nc = 100, I, = 3. The initial MC is mcy = 1, not shown in the
figure. This model is for the left leg only, therefore all other parameters are fixed.

FIGURE 9: A leg MC transition sequence. The graph of 100 randomly generated transitions between leg MCs, with the first 12 poses shown

in Figure 8.

3.2. Synthetic Motion Generation. An effective motion
generator, Algorithm 1, with a good MCM should generate
a natural motion. To demonstrate this, we show in Figure 8
a sequence of generated leg poses (i.e., BFVs) from a single
initial pose using the left whole leg MCM (i.e., M5 from Table
1). It worth remarking that the corresponding MC transition
diagram, Figure 9, is cyclic and allows different dynamics for
the body part such as walking or other trained actions.

Transitions to the same MC are present, since consecutive
poses are similar, but the stochastic component of the MC
ensures that the poses are not identical. No interpenetration
of body parts was observed for an MCM that includes
multiple parts, however MCMs that model independent
limbs only may allow this.

4. Semantic Analysis

Next, we evaluate our approach to behavioural analysis using
the SMCM against ground truth and verification data from
MOCAP poses of the HumanEva datasets.

4.1. Action in the HumanEva Dataset. The HumanEva
dataset includes Walk, Jog, Throw/Catch, Box and Gesture
activities. A movement is part of one of the five actions
that directly corresponds to an activity that a video sequence

represents. Therefore a movement can be explicitly described
with this global label. Consequently, all 20 training sequences
of HumanEva have been labelled for subjects S1 and S2
with one of the Walk, Throw/Catch, Jog, Gesture and Box
global activity labels. Further to these global labels, five of
the HumanEva train sequences were described by us with
detailed labels from Table 3. As a result of this training phase,
we can define a SMCM, M, trained with labels from Table 3.

The global (e.g., Walk, Throw/Catch, etc.) and the
detailed labels (e.g., left stride back, left hand throw) are
considered at the same semantic action level. One can argue
that global labels are activities, however components of a
long sequence can be viewed as an action that defines the
activity with the same name. Hence, Walk is an action and
is part of the Walk activity. The Walk activity could also be
inferred using detailed labels, but this is not the current aim.
Further, a Walk action may be part of a more complex activity
such as Shopping. Here, activity description is composed
from concurrently detected global and local actions that
provide detailed behavioural information.

4.2. Behavioural Analysis of HumanEva Dataset with the
SMCM. Figures 10 and 11 show the behavioural probabil-
ities of actions resulting from (8) for up to 190 movements
per analysed HumanEva sequence.
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TaBLE 3: Detailed labels with descriptions and training sequences. For each left and right side, five pairs of action labels are trained with two

or five HumanEva sequences.

Label

Description

Sequence

Left/right stride back

Left/right leg is moving forward from behind the right/left leg

S1 Walking 1,
S1 Walking 3.

Left/right stride front

Left/right leg is moving forward ahead of the right/left leg

S1 Walking 1,
S1 Walking 3.

Left/right arm forward

Left/right arm is moving forward

S1 Walking 1,
S1 Walking 3,
S1 ThrowCatch 1,
S2 ThrowCatch 1,
S2 ThrowCatch 3.

Left/right arm backward

Left/right arm is moving back-wards

S1 Walking 1,
S1 Walking 3,
S1 ThrowCatch 1,
S2 ThrowCatch 1,
S2 ThrowCatch 3.

Left/right hand throw

Right/left hand throw

S1 Walking 1,
S1 Walking 3,
S1 ThrowCatch 1,
S2 ThrowCatch 1,
S2 ThrowCatch 3.

The model parameters from Section 2.5, that is, sequence
lengths I,,,, cluster numbers ne, and BFV partition selection
all affect recognition. The effect of these parameters are
investigated next.

First, a whole body model, M, was trained as described
in the previous section, we then used the validate HumanEva
sequences to assess the reliability of activity recognition
on unseen video sequences. While subjects S1 and S2
have training data (from the train sequences, distinct from
validate), subject S3 was not included in training. Hence, S3
evaluates recognition for an unseen subject. For each frame,
that is, each movement ending at the current frame within S1
and S3, the label probabilities resulting from (8) are shown
in Figure 10. The Walk label for the whole SI Walking 1 test
sequence is well recognised; the four stride labels and the four
arm forward and backward labels are observed with excellent
periodicity, even though neither the training nor the analysis
process was aware of this recurring nature. The least accurate
recognition is for the S3 Gesture 1 sequence, because of its
similarities with the Throw/Catch activity.

The visual evaluation of sequence lengths [,, and cluster
numbers ne of the SI Walking I sequence from Figure 11
suggests that selection of sequence length is more important
than the number of clusters. With higher sequence length,
recognition of shorter actions degrades, especially for low
cluster numbers. An increase of ne results in finer detail. The
transitions between detailed labels are smoother and have
intermediate probability values.

Finally, Figure 12 shows the confusion matrices of the
global actions, defined as

C()Laa AIa) = gme(sequences of action Ap) (P(/\a ‘ m)): (15)

the expectation of A, detected labels over all movements with
ground truth label A,

The figure represents the overall recognition perfor-
mance in classifying all movements of the validate dataset
sequences. Misclassification of Throw/Catch, Gesture and Box
activities with Gesture or Box for [, = 15, or no-detection for
(lm = 25,ne = 100) are emphasised with longer sequence
length.

Generally, the SMCM supplies independent action prob-
abilities and therefore concurrently Walk and Throw/Catch,
or even Walk and Jog can be recognised and their probabil-
ities of actions do not sum up to one. In this test, we have
exclusive actions, hence the lines of the confusion matrices
are normalised to one. However, if none of the labels are
recognised then all probabilities are zero.

4.3. Actions from Partial SMCMs. In the previous section,
the full body BFV, that is, M;, was employed. However, all
SMCMs (Table 1) provide action labels. Figure 13 shows the
recognised label probabilities for the SI Walking 1 sequence
for ne = 100 and [, = 3 for the 13 SMCMs (all except the
unreliable head MCM), and the Overall label with the overall
average label probability of the SMCMs.

The response of the limb level models to a label that
is defined by another limb confirms the strong dependence
between the parameters. However, as expected, legs, and
specifically whole legs (i.e., M5 and M), best reproduce
the periodicity of the motion. It is clear that models
with fewer parameters are more specialised and provide
finer probabilities of the detailed labels. Which model is
most successful for action analysis has not been analysed
extensively, although the averaged overall labels suggest that



EURASIP Journal on Image and Video Processing 11

Walking

Gesture

Jog
Walk Walk :
Throw/Catch Throw/Catch Throw/g;’:‘ill: 0.9
Jog Jog Jog
Gestures Gestures Gestures 0.8
Box Box Box o
Left stride (back) Left stride (back) Left stride (back) 7
Left stride (front) Left stride (front) Left stride (front) 0.6
g1 Rightstride (back) Right stride (back) Right stride (back) -
Right stride (front) Right stride (front) Right stride (front) 05
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S3 Right stride (back) Right stride (back) Right stride (back) 05
Right stride (front) Right stride (front) Right stride (front) -
Left arm forward Left arm forward Left arm forward 0.4
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FIGURE 10: Recognition with known and unknown human subjects of Walk, Jog, and Gesture activities. Subject S1 was trained, while S3 was
not. The model has ne = 100 and I,, = 5. The probability of labels (vertical) for each frame (on horizontal) is colour coded. For the first
I, — 1 frames no movement can be defined, and for frames 6—12 and 64—69 for Walk S1, frames 32—40 and 56—63 for Walk S3, frames 80-125
for Jog S1, frames 28-35, 41-55, 58—106 and 115-180 for Gesture S3 one of I, the PV is missing, therefore no recognition is possible. This is
visible by the vertical zero probability bands.
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F1GURE 11: S1 Walking 1 activity recognition for SMCMs with number of clusters ne = 20, 60, 100 and length of sequence I,, = 5, 15,25. The
zero probability vertical bands result from the missing pose information for frames 6-10 and 64—67. For these and the subsequent /,, — 1
frames a movement cannot be defined.
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FiGure 12: Confusion matrices for SMCMs with number of clusters ne = 20,60, 100 and length of sequence ,, = 5, 15, 25.

combining SMCMs from a pool enhances label detection.
However, the lower probabilities compared to individual
SMCM probabilities convey that some do not contribute.

4.4. Recognition Sensitivity. To analyse the effects of param-
eter errors caused by an inaccurate BFV or movement
recovery, the SMCM model was tested against white noise
with 0 < ¢ < 2 variance, added to ground truth (i.e.,
MOCAP) model parameters of the S1 and S2 subjects from
the HumanEva-1 dataset validate partition. The confusion
matrices in Figure 14 show that recognition degrades with
0, and a shift towards Box and Throw/Catch actions that are
similar to other activities, or have movements in common
with them. This points out the necessity of accurate model
recovery for good action recognition.

To evaluate the multiclass classification of actions, we
have used either the full confusion matrix, or, for compact-
ness, the ratio of the sum of the diagonal matrix to all matrix
elements,

> Cii
= S 16
>.ij Cij (16)

This gives a measure of classification recognition success
rate, but is not a strict percentage because the sum of all

¢

action probabilities may be greater than one, that is, actions
are not considered to be mutually exclusive.

The recognition success rate  is a function of the number
of clusters and movement length, and depends on the added
noise. For the full body SMCM, M, the recognition success
rates for several ne, I, and o are shown in Figure 15(a).
An average tracking noise standard deviation of about
100mm corresponds to a ¢ = 0.8 [19, page 151], with the
recognition success rates in Table 4. Figure 15(b) represents
the recognition success rate variation on the right leg SMCM,
Ms. Both suggest a decrease in recognition success rate with
increased noise. Similar to the results from Section 4.2, more
MCs degrade recognition, especially for long movements.
Figures show that error tolerance is best, 87%, for [, = 15
and ne = 60 or ne = 80, recognition success rate being kept
high for increased 0. While recognition success rate is higher
for I,, = 1 the tolerance increases with I,, up to I,, = 15.

On the other hand, Figure 15(b) suggests that for a model
with short BFV (i.e., right leg), the increase of either ne
or I,, improves recognition success rate subject to increased
noise. Although ( is lower, since independent limbs are less
descriptive than the whole pose for global action detection,
the drop with 0 = 2 is less significant for Mg, around 50%
compared to 10%-0% of the error-free { with M;.
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FIGURE 13: Recognition with SMCM set (Table 1, except head MCM) on the SI Walking 1 sequence. The last diagram shows the averaged
overall performance of all SMCMs. The probability of labels (vertical) for each frame (on horizontal) is colour coded. Zero probability is
shown for the first 2 frames, frames 6-12 and 64—69 with missing pose information in the [,, = 3 long movement.
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FIGURE 15: Recognition success rate { variation for added noise 0 € {0.0,0.2,..., 2.0}. With increasing noise, the recognition is

degrading.

4.5. Activities from Actions. Generally, activities are com-
posed of multiple actions, however the SMCM classifies
movement into actions only. The simplest inference of
activity is the expectation of the activity labels over several,
Naciivity > L, frames and, in the extreme, over the whole
sequence. The confusion matrices resulting from classifying

each complete sequence (i.e., not each movement individ-
ually) are shown in Figure 16. The stationary activities are
misclassified as Gesture, because of the similarities of the
long, standing poses. Arguably, diverse short actions should
be detected and assembled into activities with composition
rules (fixed or learnt), for example, with a Stochastic Context
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Figure 16: Confusion matrices of sequence classification. Each HumanEva sequence is classified into the activity which has the most

corresponding action.

TaBLE 4: Recognition success rate [%] { for ¢ = 0.8 noise of the
analysed data in relation to the number of clusters ne and the
sequence length [,.

TABLE 5: Recognition success rate [%] with identical SMCMs for
both tracking and behavioural analysis. M; SMCM is used only for
global action recognition.

lm fe lm ne
20 40 60 80 100 20 40 60 80 100
56 44 40 39 46 32 29 28 26 34
63 61 58 59 56 3 29 32 25 37 25
59 64 59 67 54 5 24 30 26 32 27
15 65 65 79 74 69 15 27 30 17 7 8
25 42 43 60 37 24 25 27 2 1 0
35 45 19 40 20 20 35 17 1 0 0 0

Free Grammar [26] as used by Ivanov and Bobick [27].
However, this raises questions about the robust recovery of
the shorter, temporal labels.

5. Behavioural Analysis from Tracked Data

5.1. The Influence of the MCM Parameters. Finally, we
evaluate behavioural analysis when the poses are provided
by a tracking algorithm, the HPPF [2, 19], rather than the
MOCAP data. The effects of ne and I, on the joint tracking-
analysis system, connected with (11), are compared for 5 X
6, ne and I,, values, Table 5, on the Walk, Throw/Catch,
Gesture and Jog sequences. Resource limits restricted tracking
tests to four out of the five HumanEva sequences, thus the
confusion matrices are 4 X 5 with no Box activity. Recall
from Section 4.2 that matrices do not normalise to one, since
labels are considered independent, each with probability
between zero and one. Null-lines are possible if no action
cluster is recognised, that is, this is the nonrecognised action.

Random guessing one of four plus an unknown action
(that includes Box) would result in a recognition success rate
of 0.20 if these actions were mutually exclusive. However,
as explained in Section 4.3 our recognition does not classify
actions into one out of five categories, but computes a
Bayesian probability that a sequence is an action, so that
random guessing would in fact result in a value less than or
equal to 0.2.

The success rates in Table 5 are greater for shorter move-
ments. However, for greater [,, none of the independent
actions is recognised and the recognition success rate is zero.
The recognition success rate decreases with I, and ne. This
was expected from Section 4.4 (Figure 15(a)).

5.2. Tracking and Analysis with Independent Models. With the
formulation of (12), the SMCM parameters for behavioural
analysis are independent of the SMCM used in the HPPF
tracker for motion prediction. Therefore the dependence of
semantic analysis by the SMCM on ne and I, is further
analysed using the same HPPF-MCM tracker with the lowest
errors (I, = 5, ne = 80). The recognition success rates,
shown in Table 6, are marginally poorer than for the HPPF
integrated model, however they show the same degrada-
tion with both [, and ne. As in Table 5, the recognition
success rates are highest with ne = 80 and ,, = 3 or
I =5.

Comparing Tables 5 and 6, one concludes that only
minor differences exist in the recognition success rates for
identical respectively independent SMCM:s used for tracking
and for analysis. For both, the recognition success rates are
low. Increasing either movement length /,,,, or cluster number
ne, degrades recognition. If both parameters are increased
concurrently, there are improvements, limited however to
ne < 5.
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TABLE 6: Recognition success rate [%] for independent SMCM:s for
both tracking and behavioural analysis. M; SMCM is used only for
global action recognition.

L e
20 40 60 80 100
30 34 31 34 35
31 23 28 35 26
27 29 22 31 33
15 29 32 25 8 4
25 23 3 0 0 0
35 18 1 0 0 0

5.3. The Influence of the SMCM Granularity. Analysis with
the full pose SMCM, M,, leads to the question whether
other models M; from Table 1, with reduced BFVs, are better
suitable. Therefore, recognition using the SMCM M7 (i.e.,
left upper arm parameters) has the recognition success rates
shown in Table 7.

Comparing the recognition success rates of M; and
M5, Tables 5 and 7 suggest that a partition of parameters
recognises actions better then the whole set; for models with
smaller partitions (i.e., M7), a higher value of I, results in
better recognition. The first observation is motivated by the
lower dimensional parameter space of the limb compared
to the full pose SMCM (i.e., two against 18 dimensions).
Since the longer MCs capture longer motion dynamics this
explains the second observation. It is also observed that the
effect of increased MC number is not visible using either of
the models.

5.4. Recognition of HumanEva Sequences. Frame-by-frame
analysis provides insight into our results, although it is
subjective and qualitative. Figure 17 shows for the SI Walking
I sequence the probability of the labels (horizontal axis) for
each frame (vertical axis). The 13 diagrams for each sequence
correspond to recognition with one of the M; SMCMs.
Both the tracking and the behavioural analysis use the same
SMCM set, with [,,, = 5 and ne = 80.

The S1 Walking 1 with the whole body SMCM recognises
correctly the Walk action in the initial input, until frame 18,
and in frames 45-72, while the other 90% of the frames have
higher Throw/Catch probabilities. However, the diagrams
show that six out of twelve local SMCMs (whole lower left
and right arms, right upper arm, left upper left and right
lower arm) produce high walking probabilities. The other
SMCMs fail, and recognise Throw/Catch or Box.

In addition to the global action labels, local labels provide
detailed description of the action. These are evaluated either
visually, comparing them frame-by-frame to the image, or
qualitatively, by their periodic alternation. The repetitive
patterns of Right stride back and front, Left stride back (least
visible) and front are best seen on the Left upper leg SMCM.
The antiphase relationship of left arm forward, right arm
backwards and right arm forward, left arm backwards is also
visible in this diagram.
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TABLE 7: Recognition success rate [%)] with M7 SMCM is used only
for global action recognition.

L, e

20 40 60 80 100

26 26 27 26 26
3 26 25 27 28 28
5 30 29 29 31 31
15 31 41 39 38 34
25 31 34 40 36 35
35 35 38 33 46 42

Figure 18 shows the labels recovered from the start of the
S1 Walking 1 sequence using the M; SMCM superimposed
on the input SI Walking 1 sequence frames. For clarity,
labels are grouped into General, Arm (left/right) and Leg
(left/right) semantics. Only labels with probability above
0.5 are displayed, in blue, and those with above 0.8, in
green. The Walk action is recognised in 11 frames, while
it is misclassified as Throw/Catch in 7 frames. Detailed
labels are correctly detected without misclassifications, if
detected, however in frames classified as Throw/Catch, they
are missed. This was expected, since labels attached to MCs
and Throw/Catch MCs, were not trained with arm and leg
actions specific to Walk.

5.5. Tracking Quality. Comparing the results in this section
to those of Section 4.4, which analysed the degradation in
behavioural recognition success rate with noise, it is clear
that the results are much poorer. Table 5 compared to Table 4
suggests a drop in the recognition success rate of about 20%
for the tracked data compared to the MOCAP sequence.
This is due primarily to the uneven distribution of the
errors for the different HumanEva sequences, which do not
follow a well-behaved Gaussian distribution as with the
simulations, but rather are prone to gross outlying errors
caused by tracker failure on limbs in particular, a far from
trivial task. For example, the lower-limb parameters are
particularly error prone when compared to the upper-limb
parameters. This suggests that more accurate and stable
tracking would greatly improve the analysis with SMCM.

5.6. Recognition of the CAVIAR Sequence. The CAVIAR
(EC Funded CAVIAR project/IST 2001 37540, found at
http://homepages.inf.ed.ac.uk/rbf/ CAVIAR) dataset, com-
pared to the HumanEva videos, is representative of real
CCTV that has increased interest for behavioural analysis.
In these lower resolution videos with high perspective,
the tracking is less stable and several frames have visual
tracking errors. This jeopardises recognition of both whole
body movements and longer movements. Similar to the
HumanEva Walk sequence, the full pose SMCM is not
effective in recovering the Walk actions. As for the S1 Walking
1, the Left upper leg, Mo, SMCM provides the most detailed
information about the visible periodic motion patterns,
while seven levels recognise Walk with higher probability
than other actions.
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Left hand catch

FiGure 17: HumanEva SI Walking 1 sequence recognition. On each of the 13 MCM levels, for all frames (on horizontal) the probability of
each label (vertical) is shown colour coded.

Since there are neither training data nor ground truth
labeled activities, we use a SMCM trained with the
HumanEva dataset and the results are evaluated visually.
Figure 19 shows the action labels, superimposed on 6 out

of the first 18 frames of the tracked sequence. Frames are
misclassified by the similar but static Throw/Catch activity.
However, the rest of the frames are classified as Walk, and
include local action descriptions.
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General:
Arm (left):
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FIGURE 18: The recovered HumanEva SI Walking I labels superimposed with the input frames. Labels are manually grouped on different
lines into General, Arm (left/right) and Leg (left/right) semantics. Only labels with probability above 0.5 are displayed, in blue, and those with

above 0.8, in green.

FIGURE 19: The recovered CAVIAR EnterExitCrossingPathsI labels superimposed with the input frames. Labels are manually grouped on
different lines into General, Arm (left/right) and Leg (left/right) semantics. Only labels with probability above 0.5 are displayed, in blue, and

those with above 0.8, in green.
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6. Discussion and Comparison with
Recent Work

Compared to trajectory analysis of the CAVIAR data [4] or
on a football video [5], the SMCM infers complex behaviour
patterns that need the dynamic analysis of body parts,
rather than treating all movements as global trajectories on
deformable regions. However SMCMs are restricted to a
single individual, and we have not modelled multiperson
interaction. In general, the SMCM would make such inter-
action very complex, for example to detect and describe
the action of a boxer in parrying a blow using his left
arm, made with the right arm of an opponent. Therefore,
it may be more tractable in future to use individual limb
movements and whole body trajectories to better model both
individual and interactive behaviour respectively, as neither
approach in isolation is effective in all situations. However,
given the difficulty in extracting reliable limb dynamics in
real data such as the CAVIAR sequence, it is understandable
that much recent work has concentrated on whole body
trajectories.

Another possibility is to find features that describe
individual pose that might be more reliably extracted than
the limbs, which have anatomical veracity but may be too
difficult to extract for rapid progress. Action manifolds [8,
18] are similar to the MC, since they have a compact repre-
sentation of actions. To compare directly their results with
our own, we observe that the action detection normalised
confidences of Gall et al. [18] are in the range of 20%—-60%
for the three action class of Walk, Jog and Balance sequences
of the HumanEva; and in the range of 0% to 40% for the
detailed, 10 action class of the TUM Kitchen dataset. The
SMCM detection probabilities, as was shown in Figures 13
and 17, are independent and cover the full range valid of 0%—
100% probabilities.

The SMCM is a multimodal action model, related to
behavioral modeling with an HMM [4, 7] or to a switching
model [17]. In this sense, the MCM is similar to the
HGPLVM of Lawrence and Moore [10]. Darby et al. [11],
Raskin et al. [12], Han et al. [13] do model the MOCAP data
from the HumanEva datasets with HGPLVM as hierarchical
latent subspaces, however they use this model for generative
tracking and not behavioural analysis, so there is no possible
direct comparison. In contrast to the MCM, the HGPLVM
does not represent movement but is composed of static poses
in 3D space.

Bo et al. [28] and Li et al. [29] use latent space only
to predict motion. Compared to these, the SMCM does
behavioural analysis as well as pose prediction, within a
global parameter space, but also on the hierarchy of different
levels of detail. This hierarchy provides the 13 MCMs for
localised body part analysis.

Motion generation with MCMs is similar to Sidenbladh
et al. [30] in the sense that both generate a new pose
completing the previous pattern (i.e., a movement) with
one new pose. However, the MCM 1is a compact, explicit
model and in contrast to [30] does not search the whole set
of training data. Our Gaussian state and transition model
allows unseen data. On the other hand [30] is more accurate
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if memory usage is not critical and the pattern matches the
training data well.

The SMCM is trained with a general set of movements
for which semantic training can be independently and incre-
mentally performed. This is preferred if semantic labelling is
labour intensive.

Compared to the all above methods, SMCM may
produce (as in Figure 18) more complex descriptions of
human action, such as walking [80%] with the right lower
leg moving forward [70%]. Each component action has an
individual probability. Numerical comparison of recognition
success rates for the complete sequence (Figure 16), with
probabilities between 0% (e.g., Throw/Catch is recognised
as Gesture) to 100%, is less well against many recent
algorithms, such as Lui et al. [9] (60%—-100% success), Yu
and Aggarwal [7] (93.6% success), Han et al. [13] (55.3%—
100% success). However the latter authors focus specifically
on the classification of one action out of a limited set, with 3
to 8 actions. On the other hand, SMCM provides a frame by
frame analysis, and it does operate concurrently as tracking
data arrives. The overall classification is given by majority,
which is unfair, for example when Throw/Catch and Gesture
activities are distinct by only a subset of frames of the whole
sequence.

We are not aware of any other algorithm that does both
global and detailed activity analysis in parallel, indepen-
dently, and with soft, probabilistic decisions. Arguably, this
is highly desirable for composite and complex behavioural
description.

7. Conclusions

We have developed a Movement Cluster Model (MCM)
for modelling and prediction. We generated MCM models
from an MOCAP sequence data by unsupervised clus-
tering. We then used these training sequences to learn
semantic labels corresponding to known activities, produc-
ing Semantic MCMs (SMCMs) for subsequent analysis of
human behaviour in unseen sequences. Such evaluation
shows that the SMCM achieves good recognition rates for
general activity, as high as 87% given the best selection
of movement length and number of clusters, and the
periodic aspects of the repetitive actions are also well
detected. This value is actually quite good, considering
that activities are independent, possibly concurrent, from
nonexclusive classes, and the classification is made instanta-
neously from a short movement vector not from the whole
sequence.

MC uniformity tests suggest that longer movements
and more clusters result in more individualised MCs,
however increasing the length of a movement, or the
number of movement clusters, has adverse effects. For low
level, detailed actions, movement length should be short
and modelled with many clusters, while for global actions
longer movements with limited numbers of clusters are
preferred.

The advantages of the SMCM are dual applicability for
prediction and recognition; prediction of both periodic and
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aperiodic actions; incremental addition or removal of action
labels (as SMCM training is separated into an unsupervised
and a supervised phase); inclusion of arbitrary features. The
SMCM set defines a pool of probabilistic labels of both
actions and simple activities with a medium duration. These
could be used in the future for abstract symbolic analysis.

Complex activities require the temporal combination of
multiple actions, each with extent. To simplify, activities are
defined by one or a set of independent actions, and activity
recognition becomes action recognition. The independent
recovery of the trained action labels provides detailed
information about the activity beyond simple classification
into a set of limited actions.

Behavioural analysis by the SMCM allows modularity
and flexibility, and abstraction from the input data, while
maintaining a probabilistic modelling strategy. When move-
ments are recovered by an articulated human body tracker,
as opposed to the MOCAP system, SMCM based analysis
provides detailed action symbols of the activity. The tests on
HumanEva and the CAVIAR sequences show that a detailed
description can be recovered. However, as evident from the
confusion matrices, and anticipated by the tests on MOCAP
data with noise added to the ground truth parameters, there
are misclassifications of actions, or failure to classify them at
all, due to model recovery errors in tracking. Hence, although
the SMCM is effective, it does require reliable estimates of the
pose from the video sequence to be used in normal CCTV
analysis, and this is not trivial in relatively low-resolution
video footage such as the CAVIAR data in particular. As
expected, since good behavioural analysis requires good
articulated tracking, performance was markedly better if
multiple camera views were available.

Further, the approach is weak in classifying activities
(i.e., whole sequences) by the majority vote of individual
actions. This is because activities have a multitude of action
components, and the most salient of these might not be the
most frequent (e.g., Throw/Catch is best defined by the short
throwing and catching action and not the most frequent
standing). Moreover, similar movements, for example, all
those that are classified as “standing”, are part of different
actions.

In this work, only articulated pose parameters were used
for analysis. Positional or velocity parameters can be highly
discriminative features of Walk and Jog and distinguish
between static and moving activities. The BFV could include
additional positional and velocity parameters. Behavioural
analysis would almost certainly benefit from parameters that
describe where and how fast the subject or subject limbs are
moving, but the particles with larger dimensionality would
increase tracking complexity.
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