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This paper proposes a method to recognize scene categories using bags of visual words obtained by hierarchically partitioning
into subregion the input images. Specifically, for each subregion the Textons distribution and the extension of the corresponding
subregion are taken into account. The bags of visual words computed on the subregions are weighted and used to represent the
whole scene. The classification of scenes is carried out by discriminative methods (i.e., SVM, KNN). A similarity measure based
on Bhattacharyya coefficient is proposed to establish similarities between images, represented as hierarchy of bags of visual words.
Experimental tests, using fifteen different scene categories, show that the proposed approach achieves good performances with

respect to the state-of-the-art methods.

1. Introduction

The automatic recognition of the context of a scene is a
useful task for many relevant computer vision applications,
such as object detection and recognition [1], content-based
image retrieval (CBIR) [2], or bootstrap learning to select
the advertising to be sent by Multimedia Messaging Service
(MMS) [3, 4].

Existing methods work on extracting local concepts
directly on spatial domain [2, 5-7] or frequency domain
[8, 9]. A global representation of the scene is obtained
by grouping together local information in different ways
(e.g., histogram of visual concepts, spectra templates, etc.).
Recently, the spatial layout of local features [10-13] as
well as metadata information collected during acquisition
time [14] have been exploited to improve the classification
task. Typically, memory-based recognition algorithms (e.g.,
Support Vector Machine [15], K-nearest neighbors [16]),
etc.) are employed, together with holistic representation, to
classify scenes skipping the recognition of the objects within
the scene [9].

In this paper, we propose to recognize scene categories
by means of bags of visual words [17] computed after hier-
archically partitioning the images in subregions. Specifically,

each subregion is represented as a distribution of Textons
[7, 18, 19]. A weight inversely proportional to the extension
of the related subregion is assigned to every distribution.
The weighted Textons distributions are concatenated to
compose the final representation of the scene. Like in [10],
we penalize distributions related to larger regions because
they can involve increasingly dissimilar visual words. The
scene classification is achieved by using a discriminative
method (i.e., SVM or KNN). Differently than [10-13], we
use Textons rather than SIFT based features [20] and an
augmented spatial pyramid involving together three subdi-
vision schemes: horizontal, vertical, and regular grid. Also
we use a linear kernel (rather than a pyramid one) during
SVM classification, whereas a similarity measure based on
Bhattacharyya coefficient [21] (instead of y? distance) when
KNN is employed for classification purpose.

To allow a straightforward comparison with state-of-
the-art methods [6, 8-10] the proposed approach has been
experimentally tested on a benchmark database of about
4000 images belonging to fifteen different basic categories of
scene. In spite of the simplicity of the proposal, the results
are promising: the classification accuracy obtained closely
matches the results of other state-of-the-art solutions [6, 8—
10].



The rest of the paper is organized as follows: Section 2
briefly reviews related works in the field. Section 3 describes
the model we have used to represent images. Section 4
illustrates the dataset, the setup involved in our experiments,
and the results obtained using the proposed approach.
Finally, in Section 5 we conclude with avenues for further
research.

2. Related Works

Scene understanding is a fundamental process of human
vision that allows us to efficiently and rapidly analyze our
surroundings. Humans are able to recognize complex visual
scenes at a single glance, despite the number of objects
with different poses, colors, shadows, and textures that may
be contained in the scenes. Understanding the robustness
and rapidness of this human ability has been a focus of
investigation in the cognitive sciences over many years.
Seminal studies in computational vision [22] have portrayed
scene recognition as a progressive reconstruction of the input
from local measurements (e.g., edges, surfaces). In contrast,
some experimental studies have suggested that recognition
of real world scenes may be initiated from the encoding of
the global configuration, ignoring most of the details about
local concepts, and object information [23]. This ability is
achieved mainly by exploiting the holistic cues of scenes
that can be processed as single entity over the entire human
visual field without requiring attention to local features
(24, 25].

The advancements in image understanding have inspired
computer vision researchers to develop computational sys-
tems capable of automatically recognizing the category of
scenes. The recognition of the context of a scene is a useful
task for many relevant computer vision applications:

(i) context driven focus attention, object priming, and
scale selection [1];

(ii) content-based image retrieval (CBIR) [2];

(iii) semantic organization of databases of digital pictures
(815
(iv) robot navigation systems [26];
(v) scene depths estimation [27, 28];

(vi) bootstrap learning to select the best advertising to be
sent by Multimedia Messaging Service [3, 4].

Recent studies suggested that humans rely on local
information as much as on global information to recognize
the scene category. Specifically, the Human Visual System
seems to integrate both type of information during the
categorization of scenes [29].

In building scene recognition systems some consider-
ation about the spatial envelope properties (e.g., degree
of naturalness, degree of openness, etc.) and the level
of description (e.g., subordinate, basic, superordinate) of
the scenes should be taken into account [9]. Levels of
description that use precise semantic names to categorize
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an environment (e.g., beach, street, forest) do not explicitly
refer to the scene structure. Hence, the spatial envelop of
a scene should be taken into account and encoded in the
scene representation model independently from the required
level of scene description. Moreover, the scene representation
model and the related computational approach depend
on the task to be solved and the level of description
required.

Different methods have been proposed to model the
scene in order to build an expressive description of the
content. Existing methods work on extracting local concepts
directly on spatial domain [2, 6, 7] or frequency domain
[9, 30]. A global representation of the scene may be obtained
by grouping together these information in different ways.
Recently, the spatial layout of the local information [10-
13, 31] as well as metadata information collected during
acquisition time [14] have been used to improve the
classification accuracy.

The final descriptor of the scene is eventually exploited
by some pattern recognition algorithms to infer the scene
category, skipping the recognition of the objects that are
present in the scene [9]. Machine learning procedures
are employed to automatically learn commonalities and
differences between different classes.

In the following, we will illustrate in more details some
of the state-of-the-art approaches working with features
extracted on spatial domain.

2.1. Scene Classification Extracting Local Concepts on Spatial
Domain. Several studies in Computer Vision have con-
sidered the problem of discriminating between classes at
superordinate level of description. A wide class of scene
recognition algorithms use color, texture, or edge features.
Gorkani and Picard used statistics of orientation in the
images to discriminate a scene into two categories (cities and
natural landscapes) [32]. Indoor versus Outdoor classification
based on color and texture was addressed by Szummer and
Picard [33]. Many other authors proposed to organize and
classify images by using the visual content encoded on spatial
domain. In this section, we review some existing works for
scene classification focusing on methods that use features
extracted on spatial domain. Other related approaches are
reviewed in [34].

Renninger and Malik employed a holistic representation
of the scene to recognize its category [7]. The rationale in
using a holistic representation was that the holistic cues are
processed over the entire human visual field and do not
require attention to analyze local features, allowing humans
to recognize quickly the category of the scene. Taking into
account that humans can process texture quickly and in
parallel over the visual field, a global representation based
on Textons [18, 24] has been used. The main process
used to encode textures started by building a vocabulary
of distinctive patterns, able to identify properties and
structures of different textures present in the scenes. The
vocabulary was built using K-means clustering on a set of
filter responses. Using the built vocabulary, each image is
represented as a frequency histogram of Textons. Images
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of scenes used in the experiments were within ten basic-
level categories: beach, mountain, forest, city, farm, street,
bathroom, bedroom, kitchen, and living room. A x* similarity
measure was coupled with a K-nearest neighbors algorithm
to perform classification. The performances of the proposed
model stayed nearly at 76% correct.

Fei-Fei and Perona suggested an approach to learn
and recognize natural scene categories with the interesting
peculiarity that it does not require any experts to annotate
the training set [6]. The dataset involved in their exper-
iments contained thirteen basic level categories of scenes:
highway, inside of cities, tall buildings, streets, forest, coast,
mountain, open country, suburb residence, bedroom, kitchen,
living room, and office. The images of scenes were modeled
as a collection of local patches automatically detected on
scale invariant points and described by a features vector
invariant to rotation, illumination, and 3D viewpoint [20].
Each patch was represented by a codeword from a large
vocabulary of codewords previously learned through K-
means clustering on a set of training patches. In the
learning phase a model that represents the best distribution
of the involved codewords in each category of scenes
was built by using a learning algorithm based on Latent
Dirichlet Allocation [35]. In recognition phase, first the
identification of all the codewords in the unknown image
was done. Then the category model that best fitted the
distribution of the codewords of a test image was inferred
comparing the likelihood of an image given each category.
The performances obtained by authors reaches 65.2% of
accuracy.

The goal addressed by Bosch et al. in [5] was to discover
the objects in each image in an unsupervised manner, and to
use the distribution of objects to perform scene classification.
To this aim, probabilistic Latent Semantic Analysis (pLSA)
[36] was applied to a bag of visual words representation of
each image. A new visual vocabulary for the bag of visual
word model exploiting the SIFT descriptor [20] on HSV
colour domain has been proposed. As usual, K-means was
employed to build the vocabulary. The scene classification
on the object distribution was carried out by a K-nearest
neighbors classifier. The combination of (unsupervised)
pLSA followed by (supervised) nearest neighbors classifica-
tion proposed in [5] outperformed previous methods. For
instance, the accuracy of this approach was 8.2% better with
respect to the method proposed in [6] when compared on
the same dataset.

One of the most complete scene category dataset at
basic level of description was exploited by Lazebnik et al.
[10]. The dataset they used is an augmented version of the
dataset used in [5, 6] in which two basic level categories
have been added: industrial and store. The proposed method
exploits a spatial pyramid image representation building
on the idea proposed in [37] in which a Pyramid Match
Kernel is used to find an approximate correspondence
between two sets of elements. For a kind of visual words
(e.g., corner [38], SIFT [20], etc.), it first identifies where
spatially the visual word appears in the image. Then at
each level of the pyramid, the subimages of the previous
level are splitted in four subimages. A histogram for each

subimage in the pyramid is built containing for each bin
the frequency of a specific visual word. Finally, the spatial
pyramid image representation is obtained as the vector
containing all histograms weighted taking into account
the corresponding level. The weights associated to each
histogram are used to penalize the match of two corre-
sponding histogram bins related to a larger subimage and
emphasizes match when bins refer to a smaller subimage.
The authors employed a SVM using the one-versus-all rule to
perform the recognition of the scene category. This method
obtained 81.4% when SIFT descriptors of 16 X 16 pixels
patches computed over a grid with 8 pixels spacing were
employed in building the visual vocabulary through K-
means clustering. Although the spatial hierarchy we propose
in this paper in some sense resembles the work in [10], it
introduces a different scheme of splitting the image in the
hierarchy, a different way to weight the contribution of each
subregion, as well as a different similarity criterion between
histograms.

Vogel and Schiele considered the problem of identifying
natural scenes within six different basic level categories [2].
The basic involved category in the experiments was related
to costs, rivers/lakes, forests, plains, mountains, and sky/clouds.
A novel image representation was introduced. The scene
model takes into account nine local concepts that can be
present in Natural scenes (sky, water, grass, trunks, foliage,
field, rocks, flowers, sand) and combines them to a global
representation used to address the category of the scenes. The
descriptor for each image scene is built in two stages. First,
local image regions are classified by a concept classifier taking
into account the nine semantic concept classes. The region-
wise information of the concept classifier is then combined to
a global representation through a normalized vector in which
each component represents the frequency of occurrence of
a specific concept taking into account the image labeled
in the first stage. In order to model information about
which concept appears at any specific part of the image
(e.g., top, bottom), the vector of frequency concepts was
computed on several overlapping or nonoverlapping image
areas. In this manner a semilocal spatial image representation
by computing and concatenating the different frequency
vectors can be obtained. To perform concept classification
each concept patch of an image was represented by using
low level features (HIS color histogram, edge directions
histogram, and gray-level co-occurrence). A multiclass SVM
using a one-against-one approach was used to infer local
concepts as well as the final category of the scene. The
best classification accuracy obtained with this approach was
71,7% for the nine concepts and 86,4% for the six classes of
scene.

Recently, Bosch et al., inspired by previous works [5,
10], presented a method in which the pLSA model was
augmented using spatial pyramid in building the distribution
of latent topics [39]. The final scene classification was
performed using the discriminative classifier SVM on the
learned distribution obtaining 83.7% of accuracy on the
same dataset used in [10].

In sum, all of the approaches above share the same basic
structure that can be schematically summarized as follows.



(1) A suitable features space is built (e.g., visual words
vocabulary). The space emphasizes specific image
cues such as, for example, corners, oriented edges,
textures, and so forth.

(2) Each image is projected into this space. A descriptor,
as a whole entity, of the image projection in the
feature space is built (e.g., visual words histograms).

(3) Scene classification is obtained by using pattern
recognition and machine learning algorithms on the
holistic representation of the images.

A wide class of classification algorithms based on the
above scheme work on extracting features on perceptually
uniform color spaces (e.g., CIELab). Typically, filter banks
or local invariant descriptors are employed to capture image
cues and to build the visual vocabulary to be used in a bag of
visual words model. An image is considered as a distribution
of visual words and this holistic representation is used to
perform classification. Eventually, local spatial constraints
are added in order to capture the spatial layout of the visual
words within images [2, 10].

Recent works [11-13] demonstrated that augmenting
the spatial pyramid image representation proposed in [10]
through a horizontal subdivision scheme is useful to improve
the recognition accuracy when SIFT-based descriptors are
employed as local features. In this paper, we propose a new
framework involving together three different subdivision
schemes to build a hierarchy of bags of Textons.

3. Weighting Bags of Textons

Scene categorization is typically performed describing
images through feature vectors encoding color, texture,
and/or other visual cues such as corners, edges, or local inter-
est points. These information can be automatically extracted
using several algorithms and represented by many different
local descriptors. A holistic global representation of the scene
is built by grouping together such local information. This
representation is then used during categorization task. Local
features denote distinctive patterns encoding properties
of the region from which they have been generated. In
Computer Vision these patterns are usually referred to as
“visual words” [5, 10, 17, 40]: an image may hence be
considered as a bag of “visual words.”

To use the bag of “visual words” model, a visual
vocabulary is built during the learning phase: all the local
features extracted from the training images are clustered.
The prototype of each cluster is treated as a “visual word”
representing a “special” local pattern. This is the pattern
sharing the main distinctive properties of the local features
within the cluster. In this manner, a visual-word vocabulary
can be properly built. Through this process, all images
from the training and the test sets may be considered as
a “document” composed of “visual words” from a finite
vocabulary. Indeed, each local feature within an image
is associated to the closest visual word within the built
vocabulary. This intermediate representation is then used to
obtain a global descriptor. Typically, the global descriptor
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encodes the frequencies of each visual word within the image
under consideration.

This type of approach leaves out the information about
the spatial layout of the local features [10-13]. Differently
than in text documents domain, the spatial layout of local
features for images is crucial. The relative position of a
local descriptor can help in disambiguate concepts that
are similar in terms of local descriptor. For instance, the
visual concepts “sky” and “sea” could be similar in terms
of local descriptor, but are typically different in terms of
position within the scene. The relative position can be
thought as the context in which a visual word takes part
respect to the other visual words within an image. To
overcome these difficulties we augment the basic bag of
visual words representation combining it with a hierarchical
partitioning of the image. More precisely, we partition an
image using three different modalities: horizontal, vertical,
and regular grid. These schemes are recursively applied
to obtain a hierarchy of subregions as shown in Figure 1.
Despite spatial pyramid with different subdivision schemes
have been already adopted [10-13], the three subdivision
schemes proposed here have been never used together before.
Experiments confirm the effectiveness of such strategy as
reported by the measured performances reported into the
experimental section.

The bag of visual words representation is hence com-
puted in the usual way on each subregion, using a set of
prebuilt vocabularies corresponding to different levels in
the hierarchy. Specifically, for each level of the hierarchy
a corresponding vocabulary is built and used. In our
experiments we use Textons as visual words. The proposed
augmented representation hence, keeps record of the fre-
quency of Textons in each subregion (Figure 2), taking into
account the vocabulary corresponding to the level under
consideration. In this way we take into account the spatial
layout information of local features.

A similarity measure between images is defined as
follows. First, a similarity measure between histograms of
visual words relative to corresponding regions is computed
(as reported in Section 3.2). The connection of similarity
values of each subregion are then combined into a final
distance by means of a weighted sum. The choice of weights
is justified by the following rationale: the probability to
find a specific visual word in a subregion at fine resolution
is sensibly lower than finding the same visual word in a
subregion with higher resolution. We penalize similarity in
larger subregion defining weights inversely proportional to
the subregions size (Figures 1 and 2).

Formally, denoting with ;s the number of subregions at
level I in the scheme s, the distance between corresponding
subregions of two different images considered at level / in the
scheme s, is weighted as follows:

Sl,s
b
MaxXpevel,Scheme (SLevel,Scheme )

(1

Wis =

where Level and Scheme span on all the possible level and
schemas involved in a predefined hierarchy.
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FIGURE 2: A toy example of the similarity evaluation between two images I; and I, at level 2 of the subdivision schema 2. After representing
each subregion 1, as a distribution of Textons B(r3 ,,), the distance D, (I, I,) between the two images is computed taking into account the

defined weight w,,.

The similarity measure on the weighted bags of Textons
scheme can be used with a K-nearest neighbors algorithm for
classification purposes. In performing categorization with
SVM, the weighted bags of Textons of all subregions are
concatenated to form a global feature vector.

Considering a hierarchy with L levels and a visual vocab-
ulary V; with T; Textons at level /, the feature vector associ-
ated to an image has dimensionality To + >, Ty(2!*! +41).

In the experiments reported in Section 4, effective results
have been obtained by considering L = 2, and the vocab-
ularies Vy, Vi, V, with, respectively, T,=400, T; =200,
and T,=100 Textons, resulting in a 4400 dimensional
feature vector containing the histograms of all subregions
involved in the considered hierarchy. We have used integral
histograms [41] to reduce both the space used to store
an image represented as bags of Textons, and the time
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FiGure 3: Example of integral histogram representation used at level I = 2 of the scheme 3. The ith subregion level I = 2 of the scheme 3 in
Figure 1 is associated to a histogram h; computed on the red area taking into account the vocabulary with T, Textons.

= L

FIGURE 4: Histograms related to subregions in the hierarchy are computed exploiting the integral histogram representations. In this example
the histogram H, 3¢ related to the subregion ;35 in the hierarchy with L = 2 levels is computed considering the integral histogram

representation at level I = 2 as Hy 36 = he + hy — hs — hy.

needed in building all the histograms involved in the
hierarchy from the stored information. Specifically, to store
the overall representation of an image, we use the histogram
at level I = 0, the integral histograms at level /=1 of the
Scheme 3, and the integral histograms at level /=2 of the
Scheme 3 (Figure 3). In this way we need to store 212:0 4l
histograms resulting in a feature vector of dimensionality
i, Ti4' = 2800. All the histograms related to subregions
in the hierarchy are computed by using basic operations on
the integral histograms representations (Figure 4).

In the following subsections we provide more details
about the local features used to build the bag of visual words
representation as well as on the similarity between images.

3.1. Local Feature Extraction. Previous studies emphasize the
fact that global representation of scenes based on extracted
holistic cues can effectively help to solve the problem of
rapid and automatic scene classification [9]. Because humans
can process texture quickly and in parallel over the visual
field, we considered texture as a good holistic cue candidate.
Specifically, we choose to use Textons [7, 18, 19] as the
visual words able to identify properties and structures of
different textures present in the scene. To build the visual
vocabulary each image in the training set is processed with a
bank of filters. All responses are then clustered, pointing out
the Textons vocabulary, by considering the cluster centroids.

Each image pixel is then associated to the closest Texton
taking into account its filter bank responses.

More precisely, results presented in Section 4 have been
obtained by considering a bank of 2D Gabor filters (In our
experiments 2D Gabor filters slightly outperformed the bank
of filters used in [42].) and the K-means clustering to build
the Textons vocabulary. Each pixel has been associated with a
24-dimensional feature vector obtained processing each gray
scaled image through 2D Gabor filters:

G(x,y,fo,G, a,ﬁ) _ e—(a2x§+ﬁ2yé) % ejzfrfox”

x" =xcos@+ ysiné, (2)

’

y' = —xsinf+ y cos 6.

The 24 Gabor filters (Figure 5) have size 49 <49, obtained
considering two different frequencies of the sinusoid (fy =
0.33,0.1), three different orientations of the Gaussian and
sinusoid (0 = —60°, 0, 60°), two different sharpnesses of
the Gaussian major axis (a = 0.5, 1.5), and two different
sharpnesses of the Gaussian minor axis (f = 0.5, 1.5).
Each filter is centered at the origin and no phase-shift is
applied. Since the used filter banks respond to basic image
features (e.g., edges, bars) considered at different scales and
orientations, they are innately immune to most changes in
an image [7, 24, 43].
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FIGURE 5: Visual representation of the 2D Gabor filter banks used in our experiments.

3.2. Similarity between Images. The weighted distance that
we use is founded on similarity between two corresponding
subregions when the bag of visual words have been computed
on the same vocabulary.

Let B(r,{ls)i) and B(rllfs)i) be the bags of visual words
representation of the ith subregion at level / in the schema
s of two different images I; and I,. We use the metric based
on Bhattacharyya coefficient to measure the distance between
B(rl{ i) and B(r,l, %i)- Such distance measure has several
desirable properties [44]: it imposes a metric structure, it
has a clear geometric interpretation, it is valid for arbitrary
distributions, and it approximates the y? statistic avoiding
the singularity problem of the y? test when comparing empty
histogram bins.

The distance between two images I, and I, at level [ of the
schema s is computed as follows:

Dy, Ib) = wiy * Z\/ 1-p|B(r).B(r) ],
i

p[B(rlI,‘S’i),B(rlI’ii)] = > \/B(rlL), * B(rl%),,

teVy

where B(r,{ ,;)+ indicate the frequency of a specific Texton ¢
within the vocabulary V; in the subregion r;5; of the image
I. The final distance between two images I, and I, is hence
calculated as follows:

D(I;,I,) = Doy + > > Dy (4)
I s

Observe that the level I = 0 of the hierarchy (Figure 1)
corresponds to the classic bag of visual word model in which
the metric based on Bhattacharyya coefficient is used to
establish the distance between two images.

Considering a hierarchy with L levels and a visual
vocabulary V; with T; Textons at level I, the number of
operations involved (i.e., addition, substraction, multiplica-
tion, and root square) in the computation of the similarity
measure in (4) is [(2Ty + 2) + 1] + ZILZI[(ZTZ +2)(2H! +
4% + 3]. In the experiments reported in Section 4, we used
a hierarchy with L = 2, and vocabularies V,, Vi, V,
with, respectively, Tp =400, T} =200, and T> = 100 Textons.
The average computational time needed to compute the
above similarity measure between two images was 1.30300
milliseconds considering a matlab implementation running
on an Intel Core Duo 2.53 GHz.

The similarity measure above outperformed other simi-
larity measures proposed in literature (e.g., ¥* used in [7, 13])
as reported in Section 4.

4. Experiments and Results

To allow a straightforward comparison with state-of-the-
art methods [6, 8-10] the proposed approach has been
experimentally tested on a benchmark database of about
4000 images collected by the authors of [6, 9, 10]. Images are
grouped in fifteen basic categories of scenes (Figure 6): coast,
forest, bedroom, kitchen, living room, suburban, office, open
countries, mountains, tall building, store, industrial, inside
city, and highway. These basic categories can be ensembled
and described with a major level of abstraction (Figure 6):
In versus Out, Natural versus Artificial. Moreover, some
basic categories (e.g., bedroom, living room, kitchen) can be
grouped and considered belonging to a single category (e.g.,
house).

In our experiments we splitted the database in ten
different nonoverlapped subsets. Each subset was created in
order to have approximately 10% of images of a specific class.
The classification experiments have been repeated ten times
considering the ith subset as training and the remaining
subsets as test.

A »-SVC [45] was trained at each run and the per-class
classification rates were recorded in a confusion matrix in
order to evaluate the classification performance at each run.
The averages from the individual runs obtained employing
SVM as a classifier are reported through confusion matrices
in Tables 1, 2, and 3 (the x-axis represents the inferred classes
while the y-axis represents the ground-truth category).
The overall classification rate is 79.43% considering the
fifteen basic classes, 97.48% considering the superordinate
level of description Natural versus Artificial, and 94.5%
considering the superordinate level of description In versus
Out.

We compared the performances of the classic bag of
visual words model (corresponding to the level 0 in the
hierarchy of Figure 1) with respect to the proposed hier-
archical representation taking into account different levels,
as well as the impact of the different subdivision schemes
involved in the hierarchy. Results are reported in Tables 4 and
5. Experiments confirm that the proposed model achieves
better results (8% on average) with respect to the standard
bag of visual word model (corresponding to the level 0 of the
hierarchy). Considering more than two levels in the hierarchy
does not improve the classification accuracy, whereas the
complexity of the model increases becoming prohibitive with
more than three levels.

Experiments demonstrate also that the best results in
terms of overall accuracy are obtained considering all three
schemes together as reported in Table 5.
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FIGURE 6: Some examples of images used in our experiments considering basic and superordinate levels of description.

TaBLE 2: Natural versus Artificial results obtained considering the
proposed representation and SVM classifier.

Natural Artificial
Natural 97.27 2.74
Artificial 2.28 97.71

TABLE 3: In versus Out results obtained considering the proposed
representation and SVM classifier.

In Out
In 96.41 3.59
Out 7.41 92.59

TaBLE 4: Results obtained considering different levels in the
hierarchy.

Level 0 71.39
Level 1 75.58
Level 2 79.43
Level 3 79.67

The obtained results are comparable and in some cases
better than the state-of-the-art approaches working on basic
and superordinate level description of scenes [6, 8—10]. For
example, in [6] the authors considered thirteen basic classes

TaBLE 5: Results obtained considering different schemes in the
hierarchy. The best results are obtained by using the three schemes
together.

Scheme 1 2 3
74.50  75.61

1+3
76.34

2+3
76.89

1+2+3
79.43

Accuracy 71.92

obtaining 65.2% classification rate. We applied the proposed
technique to the same dataset used in [6] achieving a classi-
fication rate of 84% (Figure 7). Obviously, the classification
accuracy of the proposed approach increases (=89%) if the
images belonging to the categories bedroom, kitchen, and
living room are grouped and described as house scene.

Another way to measure the performances of the
proposed approach is to use the rank statistics [2, 6] of
the confusion matrix results. Rank statistics shows the
probability of a test scene to correctly belong to one of the
most probable categories. Using the two best choices on the
fifteen basic classes, the mean categorization result increases
t0 86.99% (Table 6). Taking into account the rank statistics, it
is straightforward to show that most of the images which are
incorrectly categorized as first match are on the borderline
between two similar categories and therefore most often
correctly categorized with the second best match (e.g., Coast
is classified as Open Country).
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Classification accuracy

100 97.71

Correct (%)
wul
o

Suburb

Coast

Forest
Highway
Inside city
Mountain
Open country

Street

Tall building
Office
Bedroom
Kitchen
Living room

F1Gure 7: Classification accuracy on the thirteen basic categories used in [6] obtained considering the proposed representation and SVM.

TaBLE 6: Rank statistics of the two best choices on the fifteen
basic classes obtained considering the proposed representation and
SVM.

1 2
Suburban 97.72 98.29
Cost 81.76 96.04
Forest 92.23 95.26
Highway 89.00 92.30
Inside city 76.06 84.81
Mountain 89.15 94.41
Open country 74.27 89.94
Street 90.04 93.37
Tall building 82.19 86.55
Office 92.86 97.40
Bedroom 62.62 74.04
Industrial 61.23 71.05
kitchen 61.23 72.79
Living room 63.59 76.39
Store 77.52 82.28
Overall 79.43 86.99

Finally, the proposed representation coupled with SVM
outperforms the results obtained in our previous work [31]
where KNN was used together with the similarity measure
defined in Section 3.2. In [31] the overall classification rate
was 75.07% considering the ten basic classes (Accuracy
is 14% less than the ones obtained using SVM on the
same dataset.), 90.06% considering the superordinate level

of description In versus Out, and 93.4% considering the
superordinate level of description Natural versus Artificial.
Confusion Matrix obtained using KNN are reported in
Tables 7, 8, and 9. As shown by Table 10, the proposed
similarity measure achieves better results with respect to
other similarity measures.

In Figure 8 are reported some examples of images
classified employing a K-nearest neighbors and the similarity
measure described in Section 3.2. In particular the images
to be classified are depicted in the first column, whereas
the first three closest images used to establish the proper
class of test image are reported in the remaining columns.
The results are semantically consistent in terms of visual

content (and category) to the related images to be classi-
fied.

5. Conclusion and Future Works

This paper has presented an approach for scene catego-
rization based on bag of visual words representation. The
classic approach is augmented by computing it on subre-
gions defined by three different hierarchically subdivision
schemes and properly weighting the Textons distributions
with respect to the involved subregions. The weighted bags of
visual words representation is coupled with a discriminative
method to perform classification. Despite its simplicity,
the proposed method has shown promising results with
respect to state-of-the-art methods. The proposed hierarchy
of features produces a description of the image only slightly
heavier than the classical bag of words representation,
both in terms of storage as well as in terms of time
complexity allowing at the same time to obtain effective
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FIGure 8: Examples of images classified with KNN and the similarity measure based on Bhattacharyya coefficient. The test images are on the
left, and top three closest images used for classification are shown on the right.

TaBLE 7: Confusion matrix obtained considering the proposed representation and KNN on the basic level of description of the scenes. The
average classification rates for individual classes are listed along the diagonal.

Suburban  Store  Buildings = Highway = Mountains  Open country = Coast  Forest  Office =~ House
Suburban 98.29 0.00 0.57 0.00 0.00 0.00 0.00 0.57 0.00 0.57
Store 9.35 75.83 2.16 0.00 0.00 0.00 0.00 7.48 0.43 4.75
Building 4.48 13.70 63.34 2.33 1.33 3.48 0.54 5.38 0.65 5.77
Highway 2.28 0.00 1.14 88.03 0.00 3.99 2.85 1.14 0.00 0.57
Mountains 2.40 1.13 2.41 3.81 49.06 31.36 5.08 8.33 0.00 0.42
Open country 0.58 0.00 1.01 4.60 1.58 76.68 11.51 5.04 0.00 0.00
Coast 0.43 0.00 0.85 9.53 1.70 27.69 58.95 0.85 0.00 0.00
Forest 0.43 0.86 0.00 0.00 0.86 4.71 0.00 93.14 0.00 0.00
Office 5.25 1.42 1.42 0.00 0.00 0.00 0.00 0.00 76.03 15.88
House 4.09 9.13 3.09 1.14 0.14 1.20 0.00 1.00 8.84 71.37

TaBLE 8: Natural versus Artificial results obtained considering the
proposed representation and KNN classifier.

TaBLE 9: In versus Out obtained considering the proposed repre-
sentation and KNN classifier.

Natural Artificial Out In
Natural 92.88 7.12 Out 91.63 8.37
Artificial 5.98 94.02 In 11.50 88.50

results. Future works should be devoted to perform a depth
comparison between different kinds of features used to build
the visual vocabulary (e.g., Textons versus SIFT) for scene
classification. Moreover, since subregions characterized by

different visual appearance but similar statistics of visual
words may be confused in the proposed model, future works
will be devoted in augmenting the model to capture the co-
occurrences of visual words by means of correlograms taking



12

Tas

LE 10: Classification accuracy taking into account different

similarity measures used by K-nearest neighbors algorithm. The
similarity measure based on Bhattacharyya coefficient outperforms
the other similarity measures in terms of classification accuracy.

Similarity measure Accuracy
Bhattacharyya 75.07
¥ 72.51
Absolute difference 71.30
Kullback-Leibler 71.14
Jeffrey 71.28
Euclidean 56.14

into account spatial constraints (like correlatons [46]) and
computing the relationship between visual words directly on

the

feature domain. Although recent advances in the field,

different challenges are still open in this research area; among
others we highlight the following topics.

(i) Studies on how to produce powerful visual vocabu-
laries to better discriminate between different classes
are becoming more appealing [47, 48].

(ii) Models that exploit local and global information
to better discriminate complex scenes environments
(e.g., indoor scenes) are under consideration [49].

(iii) Very large datasets of images are already available

[49-51] and there is the need to develop advanced
techniques to scale with large dataset [52].
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