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3D retrieval has recently emerged as an important boost for 2D search techniques. This is mainly due to its several complementary
aspects, for instance, enriching views in 2D image datasets, overcoming occlusion and serving in many real-world applications
such as photography, art, archeology, and geolocalization. In this paper, we introduce a complete “2D photography to 3D object”
retrieval framework. Given a (collection of) picture(s) or sketch(es) of the same scene or object, the method allows us to retrieve
the underlying similar objects in a database of 3D models. The contribution of our method includes (i) a generative approach
for alignment able to find canonical views consistently through scenes/objects and (ii) the application of an efficient but effective
matching method used for ranking. The results are reported through the Princeton Shape Benchmark and the Shrec benchmarking
consortium evaluated/compared by a third party. In the two gallery sets, our framework achieves very encouraging performance

and outperforms the other runs.

1. Introduction

3D object recognition and retrieval recently gained a big
interest [27] because of the limitation of the “2D-to-2D”
approaches. The latter suffer from several drawbacks such as
the lack of information (due for instance to occlusion), pose
sensitivity, illumination changes, and so forth. This is also
due to the exponential growth of storage and bandwidth on
Internet, the increasing needs for services from 3D content
providers (museum institutions, car manufacturers, etc.),
and the easiness in collecting gallery sets'. Furthermore,
computers are now equipped with highly performant, easy
to use, 3D scanners and graphic facilities for real-time
modeling, rendering, and manipulation. Nevertheless, at the
current time, functionalities including retrieval of 3D models
are not yet sufficiently precise in order to be available for large
usage.

Almost all the 3D retrieval techniques are resource (time
and memory) demanding prior to achieve recognition and
ranking. They usually operate on massive amount of data
and require many upstream steps including object align-
ment, 3D-to-2D projections and normalization. However

and when no hard runtime constraints are expected, 3D
search engines offer real alternatives and substantial gains
in performance, with respect to (only) image-based retrieval
approaches; mainly when the relevant informations are
appropriately extracted and processed (see, e.g., [8]).
Existing 3D object retrieval approaches can either be
categorized into those operating directly on the 3D content
and those which extract “2.5D” or 2D contents (stereo-pairs
or multiple views of images, artificially rendered 3D objects,
silhouettes, etc.). Comprehensive surveys on 3D retrieval
can be found in [6, 8, 9, 34, 35, 41]. Existing state of the
art techniques may also be categorized depending on the
fact that they require a preliminary step of alignment or
operate directly by extracting global invariant 3D signatures
such as Zernike’s 3D moments [28]. The latter are extracted
using salient characteristics on 3D, “2.5D,” or 2D shapes and
ranked according to similarity measures. Structure-based
approaches, presented in [19, 36, 37, 43], encode topological
shape structures and make it possible to compute efficiently,
without pose alignment, similarity between two global or
partial 3D models. Authors in [7, 18] introduced two
methods for partial shape-matching able to recognize similar



subparts of objects represented as 3D polygonal meshes. The
methods in [17, 23, 33] use spherical harmonics in order
to describe shapes, where rotation invariance is achieved by
taking only the power spectrum of the harmonic representa-
tions and discarding all “rotation-dependent” informations.
Other approaches include those which analyze 3D objects
using analytical functions/transforms [24, 42] and also those
based on learning [29].

Another family of 3D object retrieval approaches belongs
to the frontier between 2D and 3D querying paradigms.
For instance, the method in [32] is based on extracting
and combining spherical 3D harmonics with “2.5D” depth
informations and the one in [15, 26] is based on selecting
characteristic views and encoding them using the curvature
scale space descriptor. Other “2.5D” approaches [11] are
based on extracting rendered depth lines (as in [10, 30,
39]), resulting from vertices of regular dodecahedrons and
matching them using dynamic programming. Authors in
[12-14] proposed a 2D method based on Zernike’s moments
that provides the best results on the Princeton Shape
Benchmark [34]. In this method, rotation invariance is
obtained using the light-field technique where all the possible
permutations of several dodecahedrons are used in order to
cover the space of viewpoints around an object.

1.1. Motivations. Due to the compactness of global 3D
object descriptors, their performance in capturing the
inter/intraclass variabilities are known to be poor in practice
[34]. In contrast, local geometric descriptors, even though
computationally expensive, achieve relatively good perfor-
mance and capture inter/intraclass variabilities (including
deformations) better than global ones (see Section 5). The
framework presented in this paper is based on local features and
also cares about computational issues while keeping advantages
in terms of precision and robustness.

Our target is searching 3D databases of objects using
one or multiple 2D views; this scheme will be referred to as
“2D-t0-3D”. We define our probe set as a collection of single
or multiple views of the same scene or object (see Figure 2)
while our gallery set corresponds to a large set of 3D models.
A query, in the probe set, will either be (i) multiple pictures
of the same object, for instance stereo-pair, user’s sketches, or
(ii) a 3D object model processed in order to extract several
views; so ending with the “2D-to-3D” querying paradigm in
both cases (i) and (ii). Gallery data are also processed in order
to extract several views for each 3D object (see Section 2).

At least two reasons motivate the use of the “2D-to-3D”
querying paradigm:

(i) The difficulty of getting “3D query models” when
only multiple views of an object of interest are
available (see Figure2). This might happen when
3D reconstruction techniques [21] fail or when 3D
acquisition systems are not available. “2D-to-3D”
approaches should then be applied instead.

(ii) 3D gallery models can be manipulated via different
similarity and affine transformations, in order to
generate multiple views which fit the 2D probe

EURASIP Journal on Image and Video Processing

data, so “2D-to-3D” matching and retrieval can be
achieved.

1.2. Contributions. This paper is a mnovel “2D-to-3D”
retrieval framework with the following contributions.

(i) A new generative approach is proposed in order
to align and normalize the pose of 3D objects
and extract their 2D canonical views. The method
is based on combining three alignments (identity
and two variants of principal component analysis
(PCA)) with the minimal visual hull (see Figure 1 and
Section 2). Given a 3D object, this normalization is
achieved by minimizing its visual hull with respect
to different pose parameters (translation, scale, etc.).
We found in practice that this clearly outperforms the
usual PCA alignment (see Figure 10 and Table 2) and
makes the retrieval process invariant to several trans-
formations including rotation, reflection, translation,
and scaling.

(ii) Afterwards, robust and compact contour signatures
are extracted using the set of 2D canonical views.
Our signature is an implementation of the multiscale
curve representation first introduced in [2]. It is
based on computing convexity/concavity coefficients
on the contours of the (2D) object views. We also
introduce a global descriptor which captures the
distributions of these coefficients in order to perform
pruning and speed up the whole search process (see
Figures 3 and 12).

(iii) Finally, ranking is performed using our variant of
dynamic programming which considers only a subset
of possible matches thereby providing a considerable
gain in performance for the same amount of errors
(see Figure 12).

Figures 1, 2, and 3 show our whole proposed matching,
querying, and retrieval framework which was benchmarked
through the Princeton Shape Benchmark [34] and the
international Shrec’09 contest on structural shape retrieval
[1]. This framework achieves very encouraging performance
and outperforms almost all the participating runs.

In the remainder of this paper, we consider the following
terminology and notation. A probe (query) data is again
defined either as (i) a 3D object model (denoted #,, or &)
processed in order to extract multiple 2D silhouettes, (ii)
multiple sketched contours of the same mental query (tar-
get), or (iii) simply 2D silhouettes extracted from multiple
photos of the same category (see Figure 2). Even though
these acquisition scenarios are different, they all commonly
end up by providing multiple silhouettes describing the
user’s intention.

Let X be a random variable standing for the 3D
coordinates of vertices in any 3D model. For a given object,
we assume that X is drawn from an existing but unknown
probability distribution P. Let us consider §, = {X1,...,X,}
as n realizations of X, forming a 3D object model. 4§, or
g will be used in order to denote a 3D model belonging
to the gallery set while @ is a generic 3D object either
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FiGUrek 1: “Gallery Set Processing.” This figure shows the alignment process on one 3D object of the gallery set. First, we compute the smallest
enclosing ball of this 3D object, then we combine PCA with the minimal visual-hull criterion in order to align the underlying 3D model.
Finally, we extract three silhouettes corresponding to three canonical views.

Pictures

"\"“\., B Alignment
7 .
B projections

. J
Or

Sketches )

Silhouettes

o |183)

Q|

o J

FIGURE 2: “Probe Set Processing.” In the remainder of this paper, queries are considered as one or multiview silhouettes taken from different
sources either (i) collections of multiview pictures, (ii) 3D models, or (iii) hand-drawn sketches (see experiments in Section 5).

belonging to the gallery or the probe set. Without any
loss of generality 3D models are characterized by a set of
vertices which may be meshed in order to form a closed
surface or compact manifold of intrinsic dimension two.
Other notations and terminologies will be introduced as
we go through different sections of this paper which is
organized as follows. Section 2 introduces the alignment and
pose normalization process. Section 3 presents the global and
the local multiscale contour convexity/concavity signatures.
The matching process together with pruning strategies
are introduced in Section 4, ending with experiments and
comparison on the Princeton Shape Benchmark and the very
recent Shrec’09 international benchmark in Section 5.

2. Pose Estimation

The goal of this step is to make retrieval invariant to 3D
transformations (including scaling, translation, rotation, and

TaBLE 1: This table describes the average alignment and feature
extraction runtime in order to process one object (with 3 and 9
silhouettes).

Alignment Extraction Total
3 silhouettes 1.7s 0.3s 2s
9 silhouettes 1.7s 0.9s 2.6s

reflection) and also to generate multiple views of 3D models
in the gallery (and possibly the probe?) sets. Pose estimation
consists in finding the parameters of the above transforma-
tions (denoted resp. s € R, (ty, t,) € R, (6,p,¥) € R? and
(resty,12) € {=1,+1 }3) by normalizing 3D models in order
to fit into canonical poses. The underlying orthogonal 2D
views will be referred to as the canonical views (see Figure 1).

Our alignment process is partly motivated by advances in
cognitive psychology of human perception (see, e.g., [25]).
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FiGure 3: This figure shows an overview of the matching framework. First, we compute distances between the global signature of the query
and all objects in the database. According to these distances, we create a ranked list. Then, we search the best matching between the local

signatures of the query and the top k ranked objects.

TaBLE 2: Results for different settings of alignment and pruning on the two datasets (W for Watertight, P for Princeton). The two rows
shown in bold illustrate the performances of the best precision/runtime trade-off.

NN (%) FT (%) ST (%) DCG (%)

Align (None), W 92.5 51.6 65.6 82.1
3 Views, Prun (k = 50) p 60.4 30.5 41.8 60.1
Align (NPCA), w 93,5 60.7 71.9 86

3 Views, Prun (k = 50) P 62.7 37.1 492 64.1
Align (PCA), w 94.7 61.5 72.8 86.5
3 Views, Prun (k = 50) P 65.4 38.2 49.7 64.7
Align (Our), w 95.2 62.7 73.7 86.9
3 Views, Prun (k = 50) P 67.1 39.8 51 66.1
Align (Our), w 95.2 65.3 75.6 88

9 Views, Prun (k = 50) p 71.9 45.1 55.6 70.1
Align (Our), w 89.5 57.8 72.3 83.9
3 Views, Prun (k = 0) p 60.5 345 47.2 61.8
Align (Our), W 95.5 62.8 73.7 86.9
3 Views, Prun (k = max) P 66.1 40.1 51 66

These studies have shown that humans recognize shapes
by memorizing specific views of the underlying 3D real-
world objects. Following these statements, we introduce a
new alignment process which mimics and finds specific views
(also referred to as canonical views). Our approach is based
on the minimization of a visual-hull criterion defined as
the area surrounded by silhouettes extracted from different
object views.

Let us consider ® = (s, Ly, t, 0, p, ¥, 7y, 7y, 77) and given a
3D object @, our normalization process is generative, that is,
based on varying and finding the optimal set of parameters

©® =argmin Y (f,o

P, 0 Te)(0O),
© vel{xy,xz,yz} Y (1)
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TaBLE 3: This table shows the comparison of dynamic programming w.r.t adhoc matching on the two datasets (W for Watertight, P
for Princeton). We use our pose estimation and alignment technique and we generate 3 views per 3D object. DP stands for dynamic

programming while NM stands for naive matching.

NN (%) FT (%) ST (%) DCG (%)

DP + pruning (k = 50) w 95.2 62.7 73.7 86.9

P 67.1 39.8 51 66.1
NM + pruning (k = 50) w 92 57.7 71.9 84.5

P 65.8 37.7 48.7 64.6
DP + pruning (k = max) w 95.5 62.8 73.7 86.9

P 66.1 40.1 51 66
NM + pruning (k = max) w 91.5 52.6 63.8 81.1

P 62.9 35.4 45.2 62.6

Not g P T~
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FIGURe 4: This figure shows examples of alignments with our
proposed methods.

(a) (b)

Ficure 5: This figure shows viewpoints when capturing
images/silhouettes of 3D models. The left-hand side picture
shows the three viewpoints corresponding to the three PCA axes
while the right-hand side one, contains also six bisectors. The latter
provides better viewpoint distribution over the unit sphere.

here Te = F, . o Is o Rgpy ot denotes the global
normalization transformation resulting from the combina-
tion of translation, rotation, scaling, and reflection. P,, v €
{xy,xz, yz}, denote, respectively, the “3D-to-2D” parallel
projections on the xy, xz, and yz canonical 2D planes.
These canonical planes are, respectively, characterized by
their normals n,, = (0 0 1), 1, = (0 1 0)’, and n,, =
(1 0 0)'. The visual hull in (1) is defined as the sum of
the projection areas of O using P, o Tg. Let #,(0) = (P, o
Tg)(OQ) C R, v € {xy,xz,zy}, here f, € R*(®) provides
this area on each 2D canonical plane.

The objective function (1) considers that multiple 3D
instances of the same “category” are aligned (or have the
same pose), if the optimal transformations (i.e., P, o Tg),

(c)

Ficure  6: Example of extracting the  Multiscale
Convexity/Concavity (MCC) shape representation: original
shape image (a), filtered versions of the original contour at different
scale levels (b), final MCC representation for N = 100 contour
points and K = 14 scale levels (c).

applied on the large surfaces of these 3D instances, minimize
their areas. This makes the normals of these principal
surfaces either orthogonal or collinear to the camera axis.
Therefore, the underlying orthogonal views correspond
indeed to the canonical views® (see Figures 1 and 4) as also
supported in experiments (see Figure 10 and Table 2).

It is clear that the objective function (1) is difficult
to solve as one needs to recompute, for each possible
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FiGure 7: This figure shows dynamic programming used in order to find the global alignment of two contours.
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Figure 8: This figure shows an example of a matching result,
between two contours, using dynamic programming.

©® the underlying visual hull. So it becomes clear that
parsing the domain of variation of ® makes the search
process tremendous. Furthermore, no gradient descent can
be achieved, as there is no guarantee that f, is continuous
w.r.t., ©. Instead, we restrict the search by considering few
possibilities; in order to define the optimal pose of a given

object O, the alignment, which locally minimizes the visual-
hull criterion (1), is taken as one of the three possible
alignments obtained according to the following procedure.

Translation and Scaling. t ., and T are recovered simply
by centering and rescaling the 3D points in @ so that they
fit inside an enclosing ball of unit radius. The latter is
iteratively found by deflating an initial ball until it cannot
shrink anymore without losing points in O (see [16] for more
details).

Rotation. R, is taken as one of the three possible candi-
date matrices including (i) identity* (i.e., no transformation,
denoted none), or one of the transformation matrices
resulting from PCA either on (ii) gravity centers or (iii) face
normals, of @. The two cases (ii), (iii) will be referred to as
PCA and normal PCA (NPCA), respectively, [39, 40].

Axis Reordering and Reflection. This step processes only 3D
probe objects and consists in re-ordering and reflecting the
three projection planes {xy, xz, yz}, in order to generate 48
possible triples of 2D canonical views (i.e., 3! for reordering
%23 for reflection). Reflection makes it possible to consider
mirrored views of objects while reordering allows us to
permute the principal orthogonal axes of an object and
therefore permuting the underlying 2D canonical views.
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Figurg 10: This figure shows the percentage of good alignments
with respect to the tolerance (angle € in radian) on a subset of the
Watertight dataset.

For each combination taken from “scaling X translation
X 3 possible rotations” (see explanation earlier), the objective
function (1) is evaluated. The combination ® that minimizes
this function is kept as the best transformation. Finally, three
canonical views are generated for each object §, in the gallery
set.
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FiGure 11: This figure shows examples of 3D object alignment with
different error angles (denoted &, see also Figure 10).
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FiGure 12: This figure shows the evolution of the NN, FT, ST, and
DCG measures (in %) w.r.t. the pruning size k, on the two datasets
(Watertight (a)) and Princeton (b). We found that k = 75 makes it
possible to reject almost all the false matches in the gallery set. We
found also that the CPU runtime scales linearly with respect to k.
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FiGure 13: This figure shows comparison of precision versus recall
(with our pose estimation method + pruning threshold k = 50),
using 3 silhouettes (in blue) and 9 silhouettes (in red) per object, on
the Watertight dataset.

3. Multiview Object Description

Again, we extract the three 2D canonical views correspond-
ing to the projection of an object @, according to the
framework described earlier. Each 2D view of O is processed
in order to extract and describe external contours using
[2]. Our description is based on a multiscale analysis which
extracts convexity/concavity coefficients on each contour.
Since the latter are strongly correlated through many views
of a given object 0, we describe our contours using three
up to nine views per reordering and reflection. This reduces
redundancy and also speeds up the whole feature extraction
and matching process (see Figure 5).

In practice, each contour, denoted C, is sampled with N
(2D) points (N = 100) and processed in order to extract
the underlying convexity/concavity coefficients at K different
scales [2]. Contours are iteratively filtered (K times) using
a Gaussian kernel with an increasing scale parameter ¢ €
{1,2,...,0k}. Each curve C will then evolve into K different
smooth silhouettes. Let us consider a parameterization of
C using the curvilinear abscissa u as C(u) = (x(u), y(u)),
u € [0,N — 1], let us also denote C, as a smooth version of
C resulting from the application of the Gaussian kernel with
a scale o (see Figure 6).

We use simple convexity/concavity coefficients as local
descriptors for each 2D point p,, on C, (puo = C(u)).
Each coefficient is defined as the amount of shift of p,,
between two consecutive scales 0 and o — 1. Put differently,
a convexity/concavity coefficient denoted d,, is taken as
IPuo — Pug-1ll2, here fIrllz = (7)) denotes the L,
norm.

Runtime. Even though multiview feature extraction is off-
line on the gallery set, it is important to achieve this step
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TABLE 4: This table shows precision and recall using NN, first-tier:
10 and second-tier: 20. Our results are shown in bold under the
name MCC. These results may be checked in the Shrec’09 Structural
Shape challenge home pages (see [1] and Table 7).

Methods Precision Recall Precision Recall
FT (%) FT (%) ST (%) ST (%)
MCC3 81 54 51 68
CSID- CMVD 3 77 52 52 70
CSID- CMVD 2 76 51 51 68
MCC2 74 49 48 64
CSID- CMVD 1 74 49 48 64
MRSPRH-UDR 1 74 49 48 64
BFSIFT 1 72 48 48 64
MCC4 71 48 45 60
CMVD 1 69 46 47 62
MCC1 68 46 45 61
ERG 2 61 41 40 53
ERG 1 56 37 36 49
BOW 1 29 19 17 23
CBOW 2 25 17 16 21

in (near) real time for the probe data. Notice that the
complexity of this step depends mainly on the number
of silhouettes and their sampling. Table 1 shows average
runtime for alignment and feature extraction, in order to
process one object, and for different numbers of silhouettes.
These experiments were achieved on a standard 1Ghz
(G4) Power-PC including 512 MB of Ram and 32 MB of
VRam.

4. Coarse-to-Fine Matching

4.1. Coarse Pruning. A simple coarse shape descriptor is
extracted both on the gallery and probe sets. This descriptor
quantifies the distribution of convexity and concavity coetfi-
cients through 2D points belonging to different silhouettes
of a given object. This coarse descriptor is a multiscale
histogram containing 100 bins as the product of 10 scales
of the Gaussian kernel (see Section3) and Q = 10
quantification values for convexity/concavity coefficients.
Each bin of this histogram counts, through all the viewpoint
silhouettes of an object, the frequency of the underlying
convexity/concavity coefficients. This descriptor is poor in
terms of its discrimination power, but efficient in order to
reject almost all the false matches while keeping candidate
ones when ranking the gallery objects w.r.t. the probe ones
(see also processing time in Figure 9).

4.2. Fine Matching by Dynamic Programming. Given are two
objects P, G, respectively, from the probe and the gallery sets
and the underlying silhouettes/curves {C;}, {CJ'»}. A global
scoring function is defined between #, § as the expectation
of the matching pseudodistance involving all the silhouettes
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FI1GURE 14: Precision/recall plot for different photo sets (fish and feddy classes) queried on the Watertight dataset (Setting includes 3 views,

our alignment and pruning with k = 50).

{Ci}, {Cj} as

Ns
S(P,4) = NLZDSW(C,-, c), 2)

Si=1

here N; is the number of silhouettes per probe image (in
practice, Ny = 3 or 9, see Section 5).

Silhouette matching is performed using dynamic pro-
gramming. Given two curves C;, C;, a matching pseudodis-
tance, denoted DSW, is obtained as a sequence of operations
(substitution, insertion, and deletion) which transforms C;
into C; [43]. Considering the N samples from C;, C; and the

underlying local convexity/concavity coefficients F, F* C RX,
the DSW pseudodistance is

N
ol ,
DSW(C;, C}) = Nzl‘ Fu = Fg) v 3
-
here |[rlli = 2;Iri| denotes the Li-norm, F, € F and

g + {,...,N} — {l1,...,N} is the dynamic program-
ming matching function, which assigns for each curvilinear
abscissa u in C; its corresponding abscissa g(u) in C;. Given
the distance matrix D with D,,, = ||F, — F,, ||1, the matching
function g is found by selecting a path in D. This path
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(b)

[y

(d)

FIGURE 15: Precision/recall plot for different hand-drawn sketches (chair and human classes) queried on the Watertight dataset (Setting

includes 3 views, our alignment and pruning with k = 50).

minimizes the number of operations (substitution, deletion,
and insertion in order to transform C; into C;) and preserves
the ordering assumption (i.e., if u is matched with u" then
u+1 should be matched only with v’ +1, 1 > 0). We introduce
a variant of the standard dynamic programming; instead of
examining all the possible matches, we consider only those
which belong to a diagonal band of D, that is, [ is allowed to
take only small values (see Figures 7 and 8).

Dynamic programming pseudodistance provides a good
discrimination power and may capture the intraclass
variations Dbetter than the global distance (discussed
in Section 4.1). Nevertheless, it is still computationally

expensive but when combined with coarse pruning the
whole process is significantly faster and also precise (see
Figure 9 and Table 2). Finally, this elastic similarity measure
allows us to achieve retrieval while being robust to intraclass
object articulations/deformations (observed in the Shrec
Watertight set) and also to other effects (including noise)
induced by hand-drawn sketches (see Figures 14, 15, 16, and
17).

Runtime. Using the coarse-to-fine querying scheme
described earlier, we adjust the speedup/precision trade-off
via a parameter k. Given a query, this parameter corresponds
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FIGURE 16: Precision/recall plot for different photo sets (commercial and hand classes) queried on the Princeton dataset (Setting includes 3

views, our alignment and Pruning with k = 50).

to the fraction of nearest neighbors (according to our global
descriptor) used in order to achieve dynamic programming.
Lower values of k make the retrieval process very fast at the
detriment of a slight decrease of precision and vice versa.
Figure 9 shows runtime performance with respect to k on
the same hardware platform (with 9 views).

5. Experiments

5.1. Databases. In order to evaluate the robustness of the
proposed framework, we used two datasets. The first one
is the Watertight dataset of the Shrec benchmark while the

second one is the Princeton Shape Benchmark, widely used
in the 3D content-based retrieval community.

Shrec Watertight Dataset. This dataset contains 400 “3D”
objects represented by seamless surfaces (without defective
holes or gaps). The models of this database have been divided
into 20 classes each one contains 20 objects. The 3D models
were taken from two sources: the first one is a deformation
of an initial subset of objects (octopus, glasses, .. .), while the
second one is a collection of original 3D models (chair, vase,
four legs,...).
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FIGURE 17: Precision/recall plot for different hand-drawn sketches (glass with stem and eyeglasses classes) queried on the Princeton dataset

(Setting includes 3 views, our alignment and pruning with k = 50).

Princeton Shape Benchmark. This dataset contains 907 “3D”
objects organized in 92 classes. This dataset offers a large
variety of objects for evaluation.

For the two datasets, each 3D object belongs to a
unique class among different semantic concepts with strong
variations including human, airplane, chair, and so forth.
For instance, the human class contains persons with different
poses and appearances “running, seating, walking, etc.,
globally the two databases are very challenging.

5.2. Evaluation Criteria. We evaluated our method using
recall-precision. Precision is defined as the fraction of

relevant retrieved objects over the number of displayed 3D
models while recall is defined as the fraction of relevant
retrieved objects over the total number of relevant 3D models
in the dataset. A plot that approaches the 1-1 corner indicates
better retrieval results. In addition to recall/precision plot, we
use several quantitative statistics to evaluate the results.

(i) The nearest neighbor (NN). It represents the fraction
of the first nearest neighbors which belong to the
same class as the query.

(ii) The first-tier (FT) and the second-tier (ST). These
measures give the percentage of objects in the same
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FIGURE 18: Retrieval results with different scenarios, sketch, photos, and 3D models. In case of photos, queries may correspond to one or

multiple views of the same or different objects.

class as the query that appear in the k best matches.
For a given class C containing |C| objects, k is set
to |G| — 1 for the first-tier measure while k is set to
2(|€| — 1) for second-tier (ST).

(iii) Finally, we use the discounted cumulative gain (DCG)
measure which gives more importance to well-ranked
models. Given a query and a list of ranked objects, we
define for each ranked object a variable r; equal to
1 if its class is equal to the class of the query and 0
otherwise. The DCG measure is then defined as.

DCGiy + —— if(i#1),
log, () (4)

T otherwise.

DCG; =

We take the expectation of these measures on the entire
database, that is, by taking all the possible object queries.

5.3. Performance and Discussion

Alignment. Figure 10 shows the performance of our align-
ment method presented in Section2 on the Watertight
dataset. For that purpose, we define a ground truth, by
manually aligning 100 “3D” models® (20 categories each one
has 5 objects) in order to make their canonical views parallel
to the canonical planes xy, xz, and yz (see Figure 11, ¢ = 0
and also Figure 4). The error is then defined as the deviation
(angle in degrees or radians) of the automatically aligned
objects w.r.t. the underlying ground truth (see Figure 11,
£=5,...,20).

Different alignment methods were compared including
the classic (PCA), normal PCA (NPCA), and our method.

TaBLE 5: This table shows performance and comparisons, on the
Shape Princeton Benchmark. Our method is shown in bold under
the name MCC (see [4, 10, 34] and Table 7).

Methods NN (%) FT (%) ST (%) DCG (%)
MCC 3 71.9 472 58.6 71.5
MCC 2 71.9 45.1 55.6 70.1
MCC 4 67.1 39.8 51 66.1
MCC1 65.9 39.4 50.7 65.8
LFD 65.7 38 48.7 64.3
EDBA 65.4 38.3 49.8 64.1
AVC 62 35.5 455 63
ESA 57.8 32.6 44.4 60.2
REXT 60.2 32.7 432 60.1
DBD 59.2 32.9 418 58.9
SHD 55.6 30.9 41.1 58.4
GEDT 60.3 313 40.7 58.4
SIL 52.8 285 38.8 56.3
EXT 54.9 28.6 37.9 56.2
SECSHEL 54.6 26.7 35 54.5
VOXEL 54 26.7 35.5 54.3
SECTORS 50.4 24.9 334 52.9
CEGI 42 21.1 28.7 47.9
EGI 37.7 19.7 27.7 47.2
D2 31.1 15.8 235 434
SHELLS 22.7 11.1 17.3 38.6

We also show the alignment error of the initial (not) aligned
database (None). The plot in Figure 10 shows a comparison
of the percentage of 3D objects in the database, which are
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TaBLE 6: This table shows the evolution of the NN, FT, ST, and DCG
measures (in %) for photos and hand-drawn sketches queries. Each
row corresponds, respectively, to the query presented in Figures 14
to 17 with 1, 2, and 3 views per query.

Query Number of -\ (94) FT (%) ST (%) DCG (%)
views
, 1 0 35 60 55
Watertight-
Photos-Fish 2 100 65 85 83.2
3 100 80 85 95.8
, 1 0 15 55 50.8
Watertight- 100 %0 6.6
Photos-Teddy 2 2> 76.
3 100 65 75 91.5
X 1 100 30 35 74.3
Watertight- 100 %0 % 9%
Sketches-Chair 2 '5
3 100 90 920 97.8
Watertight- 1 100 40 50 79.7
Sketches- 2 100 50 60 86.1
Human 3 100 55 55 89.1
Princeton- 1 100 45.4 45.4 75.6
Photos- 2 100 45.4 63.6 84
Commercial 3 100 545 63.6  87.8
. 1 100 17.6 23.5 61.3
Princeton-
Photos-Hand 2 100 35.3 35.3 75.1
3 100 41.2 41.2 75.4
Princeton- 1 100 44 .4 44 .4 70
Sketches-Glass 2 66.7 66.7 76.7
with stem 3 778 889 835
Princeton- 1 28.6 28.6 38.6
Sketches- 2 28.6 28.6 58.8
Eyeglasses 3 100 571 571 827

automatically and correctly aligned up to an angle ¢ w.r.t. the
underlying 3D models in the ground truth.

Table 2 illustrates the statistics defined earlier. We clearly
see that our new alignment method gives better results
compared to the classical PCA and NPCA. Again our pose
estimation method makes it possible to extract several
canonical 2D views and for each one we compared results
using either three or nine 2D views per object (see results
in Figure 13 and rows 4 and 5 of Table 2). Regarding the
influence of the number of views, the performances increase
for the two datasets.

Coarse-to-Fine Retrieval. In order to control/reduce the
runtime to process and match local signatures, we used our
pruning approach based on the global signature discussed in
Section 4.1. The parameter k allows us to control the trade-
off between robustness and speed of the retrieval process. A
small value of k gives real-time (online) responses with an
acceptable precision while a high value requires more pro-
cessing time but gives better retrieval performance. Figure 12
shows the NN, FT, ST, and DCG measures for different
pruning thresholds k. Table 2 shows different statistics for
k = 0, 50, and max.
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TaBLe 7: This table describes the significance of different
acronyms/methods which participate in the Watertight and the
Princeton benchmarks.

Compact shape impact
descriptor and multi view
descriptor [1]

CSID-CMVD 1, 2,3

Unsupervised dimension

MRSPRH-UDR reduction approach [1]
BFSIFT Bag-of-local visual feature [1]
ERG 1, 2 Enhanced reeb graph [1]
BOW, CBOW (Concentric) bag of words [1]
LFD Light field descriptor [12-14]
EDBA Flrg}anced depth buffer approach
AVC Adaptive view clustering [15]
ESA I[Eﬁ)}ianced silhouettes approach
REXT Elarjlcizl(i;ec[isssp]herical extent
DBD Depth buffer descriptor [39]
SHD [Sgl]erical harmonic descriptor
Gaussian euclidean distance
GEDT transform [23]
SIL Silhouettes approach [39]
EXT Spherical extent function [33]
SECSHEL Shape histogram [3]
VOXEL 3D shape voxelization [39]
SECTORS Shape histogram [3]
CEGI ﬁ:;gl{e;ze]:xtended gaussian
EGI Extended gaussian image [20]
D2 D2 shape distribution [31]
SHELLS Shape histogram [3]

Table 3 shows also the performance of matching using
dynamic programming versus adhoc naive matching (i.e.,
through the curvilinear abscissa, g(1) = u in (2). Dynamic
programming outperforms the naive matching by allowing
g(u) to be equal to u + 1 (I > 0) in contrast to naive
matching (I = 0); this clearly makes dynamic programming
more flexible in order to handle Jocal deformations (see again
Table 3).

5.4. Benchmarking and Comparison

Shrec Watertight Dataset. First, comparisons of our ap-
proach with respect to different methods/participants are
available and were generated by a third party in the Shrec’09
Structural Shape Retrieval contest (see Table 4). This dataset
contains 200 objects and results were evaluated on 10
queries. The performance of this shape retrieval contest were
measured using 1st (10 objects) and 2nd (20 objects) tier
precision and recall, presented as the F-measure. This is
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a global measure which provides us with the overall retrieval
performance.
We submitted in this benchmark four runs.

(i) Run 1 (MCC 1): 9 silhouettes and pruning threshold
k = 0. The average runtime for each query is 0.03s.

(ii) Run 2 (MCC 2): 9 silhouettes and pruning threshold
k = 50. The average runtime for each query is 9.4s.

(iii) Run 3 (MCC 3): 9 silhouettes and pruning threshold
k = 200. The average runtime for each query is 36.2s.

(iv) Run 4 (MCC 4): 3 silhouettes and pruning threshold
k = 50. The average runtime for each queryis 3.1s.

We can see in Table 4 that the third run of our method
(shown in bold) outperforms the others for the first-tier and
is equivalent to the C SID CMVD 3 for the second-tier (see
Table 7 for the significance of method acronyms). The results
for the second run are similar to the BF SIFT 1 and to the C
SID CMVD 1 methods.

Princeton Shape Benchmark Dataset. Table 5 shows a com-
parison of the four runs of our approach on the Princeton
Shape Benchmark; these runs outperform the other partici-
pating methods (described in [4, 10, 34]).

Hand-Drawn Sketches and Photos. Finally, we compared our
approach with respect to two querying schemes including
(i) 2 hand-drawn sketches per mental category® or (ii)
silhouettes from multiview real pictures. In both scenarios,
gallery data are processed in the same way as in Table 4 (MCC
4), that is, by aligning 3D objects using our pose estimation
method and processing them in order to extract 3 views. The
results on the two databases, in Figures 14 to 17, Table 6 and
Figure 18, show very encouraging performances on real data
(sketches and real pictures) and clearly open very promising
directions for further extensions and improvements.

6. Conclusion

We introduced in this paper a novel and complete frame-
work for “2D-to-3D” object retrieval. The method makes
it possible to extract canonical views using a generative
approach combined with principal component analysis. The
underlying silhouettes/contours are matched using dynamic
programming in a coarse-to-fine way that makes the search
process efficient and also effective as shown through exten-
sive evaluations.

One of the major drawbacks of dynamic programming
resides in the fact that it is not a metric, so one cannot
benefit from lossless acceleration techniques which provide
precise results and efficient computation. Our extension is
to tackle this issue by introducing new matching approaches
that allow us to speedup the search process while keeping
high precision.
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Endnotes

1. Even though in a chaotic way because of the absence of
consistent alignments of 3D models.

2. Obviously, normalization is achieved on the probe set
only when queries are 3D models. As for the 2D
photo or the sketch scenarios, one assumes that at least
three silhouettes are available corresponding to three
canonical views.

3. Again, this is in accordance with cognitive psychology of
human perception (defined, e.g., in [25]).

4. The initial object pose is assumed to be the canonical
one.

5. http://perso.enst.fr/~sahbi/file/Watertight_Alignment
GroundTruth.zip.

6. The user will imagine a category existing in the Water-
tight gallery set and will draw it.

References

[1] J. Hartveldt, M. Spagnuolo, A. Axenopoulos, et al., “SHREC’09
track: structural shape retrieval on watertight models,” in
Proceedings of Eurographics Workshop on 3D Object Retrieval,
pp- 77-83, Munich, Germany, March 2009.

[2] T. Adamek and N. E. O’Connor, “A multiscale representation
method for nonrigid shapes with a single closed contour,”
IEEE Transactions on Circuits and Systems for Video Technology,
vol. 14, no. 5, pp. 742-753, 2004.

[3] M. Ankerst, G. Kastenmiiller, H. P. Kriegel, and T. Seid],
“Nearest neighbor classification in 3D protein databases,” in
Proceedings of the 7th International Conference on Intelligent
Systems for Molecular Biology (ISMB ’99), pp. 34-43, Heidel-
berg, Germany, August 1999.

[4] T.FE Ansary, Model retrieval using 2d characteristic views, Ph.D.
thesis, 2006.

[5] R. Bellman, “Dynamic programming,” Science, vol. 153, no.
3731, pp. 34-37, 1966.

[6] S. Biasotti, D. Giorgi, S. Marini, M. Spagnuolo, and B. Falci-
dieno, “A comparison framework for 3D object classification
methods,” in Proceedings of the International Workshop on
Multimedia Content Representation, Classification and Security
(MRCS °06), vol. 4105 of Lecture Notes in Computer Science,
pp. 314-321, 2006.

[7] S. Biasotti, S. Marini, M. Spagnuolo, and B. Falcidieno, “Sub-
part correspondence by structural descriptors of 3D shapes,”
Computer Aided Design, vol. 38, no. 9, pp. 1002-1019, 2006.

[8] A. Del Bimbo and P. Pala, “Content-based retrieval of
3D models,” ACM Transactions on Multimedia Computing,
Communications and Applications, vol. 2, no. 1, pp. 20-43,
2006.

[9] B. Bustos, D. Keim, D. Saupe, T. Schreck, and D. Vrani¢, “An
experimental comparison of feature-based 3D retrieval meth-
ods,” in Proceedings of the 2nd International Symposium on



16

(24]

3D Data Processing, Visualization, and Transmission, pp. 215—
222, IEEE Computer Society, Thessaloniki, Greece, September
2004.

M. Chaouch and A. Verroust-Blondet, “Enhanced 2D/3D
approaches based on relevance index for 3D-shape retrieval,”
in Proceedings of IEEE International Conference on Shape
Modeling and Applications (SMI ’06), p. 36, Matsushima,
Japan, June 2006.

M. Chaouch and A. Verroust-Blondet, “A new descriptor
for 2D depth image indexing and 3D model retrieval,”
in Proceedings 14th IEEE International Conference on Image
Processing (ICIP °07), vol. 6, pp. 373-376, September 2006.

D. Chen, Three-dimensional model shape description and
retrieval based on lightfield descriptors, Ph.D. thesis, Depart-
ment of Computer Science and Information Engineer,
National Taiwan University, Taipei, Taiwan, June 2003.

D. Chen and M. Ouhyoung, “A 3d model alignment and
retrieval system,” in Proceedings of the International Workshop
on Multimedia Technologies, pp. 1436—1443, December 2002.
D.-Y. Chen, X.-P. Tian, Y.-T. Shen, and M. Ouhyoung, “On
visual similarity based 3D model retrieval,” Computer Graphics
Forum, vol. 22, no. 3, pp. 223-232, 2003.

T. E Ansary, M. Daoudi, and J.-P. Vandeborre, “A Bayesian
3-D search engine using adaptive views clustering,” IEEE
Transactions on Multimedia, vol. 9, no. 1, pp. 78-88, 2007.

K. Fischer and B. Girtner, “The smallest enclosing ball of balls:
combinatorial structure and algorithms,” International Journal
of Computational Geometry and Applications, vol. 14, no. 4-5,
pp. 341-378, 2004.

T. Funkhouser, P. Min, M. Kazhdan, et al., “A search engine for
3D models,” ACM Transactions on Graphics, vol. 22, no. 1, pp.
83-105, 2003.

T. Funkhouser and P. Shilane, “Partial matching of 3d
shapes with priority-driven search,” in Proceedings of the 4th
Eurographics Symposium on Geometry Processing, pp. 131-142,
Cagliari, Italy, June 2006.

M. Hilaga, Y. Shinagawa, T. Kohmura, and T. L. Kunii,
“Topology matching for fully automatic similarity estimation
of 3D shapes,” in Proceedings of the 28th Annual Conference
on Computer Graphics and Interactive Techniques (SIGGRAPH
’01), pp. 203-212, Los Angeles, Calif, USA, August 2001.

B. K. P. Horn, “Extended Gaussian images,” Proceedings of the
IEEE, vol. 72, no. 12, pp. 16711686, 1984.

H. Jin, S. Soatto, and A. J. Yezzi, “Multi-view stereo reconstruc-
tion of dense shape and complex appearance,” International
Journal of Computer Vision, vol. 63, no. 3, pp. 175-189, 2005.
S. B. Kang and K. lkeuchi, “Determining 3-d object pose using
the complex extended Gaussian image,” in Proceedings of the
IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pp. 580-585, Maui, Hawaii, USA, June
1991.

M. M. Kazhdan, T. A. Funkhouser, and S. Rusinkiewicz,
“Rotation invariant spherical harmonic representation of 3d
shape descriptors,” in Proceedings of the Eurographics/ACM
SIGGRAPH Symposium on Geometry Processing (SGP ’03), pp.
156-165, Eurographics Association, Aachen, Germany, June
2003.

H. Laga, H. Takahashi, and M. Nakajima, “Spherical wavelet
descriptors for content-based 3D model retrieval,” in Proceed-
ings of IEEE International Conference on Shape Modeling and
Applications (SMI °06), p. 15, Matsushima, Japan, June 2006.
E. C. Leek, “Effects of stimulus orientation on the identifica-
tion of common polyoriented objects,” Psychonomic Bulletin
and Review, vol. 5, no. 4, pp. 650-658, 1998.

(26]

[29]

(35]

(36]

(41]

EURASIP Journal on Image and Video Processing

S. Mahmoudi and M. Daoudi, “3D models retrieval by using
characteristic views,” in Proceedings of the 16th International
Conference on Pattern Recognition (ICPR °02), no. 2, pp. 457—
460, Quebec, Canada, August 2002.

NIST, “Shape retrieval contest on a new generic shape bench-
mark,” 2004, http://www.itl.nist.gov/iad/vug/sharp/bench-
mark/shrecGeneric/Evaluation.html.

M. Novotni and R. Klein, “3D Zernike descriptors for content
based shape retrieval,” in Proceedings of the 8th Symposium
on Solid Modeling and Applications, pp. 216-225, ACM Press,
Seattle, Wash, USA, 2003.

R. Ohbuchi and J. Kobayashi, “Unsupervised learning from a
corpus for shape-based 3D model retrieval,” in Proceedings of
the ACM International Multimedia Conference and Exhibition,
pp- 163—172, Santa Barbara, Calif, USA, October 2006.

R. Ohbuchi, M. Nakazawa, and T. Takei, “Retrieving 3d shapes
based on their appearance,” in Proceedings of the 5th ACM
SIGMM International Workshop on Multimedia Information
Retrieval (MIR °03), N. Sebe, M. S. Lew, and C. Djeraba, Eds.,
pp. 39-45, 2003.

R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin, “Match-
ing 3d models with shape distributions,” in Proceedings of the
International Conference on Shape Modeling and Applications
(SMI °01), B. Werner, Ed., pp. 154-166, IEEE Computer
Society, Los Alamitos, Calif, USA, May 2001.

P. Papadakis, I. Pratikakis, S. Perantonis, T. Theoharis, and
G. Passalis, “SHREC’08 entry: 2D/3D hybrid,” in Proceedings
of IEEE International Conference on Shape Modeling and
Applications (SMI ’08), pp. 247-248, June 2008.

D. Saupe and D. V. Vranic, “3d model retrieval with spherical
harmonics and moments,” in Proceedings of the 23rd DAGM-
Symposium on Pattern Recognition, B. Radig and S. Florczyk,
Eds., vol. 2191 of Lecture Notes in Computer Science, pp. 392—
397, Springer, 2001.

P. Shilane, P. Min, M. Kazhdan, and T. Funkhouser, “The
Princeton shape benchmark,” in Proceedings of the Shape
Modeling International (SMI ’04), pp. 167—178, Washington,
DC, USA, 2004.

J. W. H. Tangelder and R. C. Veltkamp, “A survey of content
based 3D shape retrieval methods,” in Proceedings of the Shape
Modeling International (SMI’04), pp. 145-156, June 2004.

J. Tierny, J.-P. Vandeborre, and M. Daoudi, “3d mesh skeleton
extraction using topological and geometrical analyses,” in
Proceedings of the 14th Pacific Conference on Computer Graphics
and Applications, pp. 85-94, Taipei, Taiwan, October 2006.

T. Tung and F. Schmitt, “The augmented multiresolution Reeb
graph approach for content-based retrieval of 3D shapes,”
International Journal of Shape Modeling, vol. 11, no. 1, pp. 91—
120, 2005.

D. V. Vrani¢, “An improvement of rotation invariant 3D-
shape descriptor based on functions on concentric spheres,”
in Proceedings of IEEE International Conference on Image
Processing, vol. 3, pp. 757-760, 2003.

D. V. Vranic, 3D model retrieval, Ph.D. thesis, University of
Leipzig, 2004.

D. V. Vrani¢, D. Saupe, and J. Richter, “Tools for 3D-
object retrieval: Karhunen-Loeve transform and spherical
harmonics,” in Proceedings of the 4th IEEE Workshop on
Multimedia Signal Processing, J.-L. Dugelay and K. Rose, Eds.,
Pp- 293-298, Budapest, Hungary, September 2001.

T. Zaharia and F. Préteux, “3D versus 2D/3D shape descrip-
tors: a comparative study,” in Imaging Processing: Algorithms
and Systems III, vol. 5298 of Proceedings of SPIE, pp. 47-58,
San Jose, Calif, USA, January 2004.



EURASIP Journal on Image and Video Processing

[42] D. Zarpalas, P. Daras, A. Axenopoulos, D. Tzovaras, and M. G.
Strintzis, “3D model search and retrieval using the spherical
trace transform,” EURASIP Journal on Advances in Signal
Processing, vol. 2007, Article ID 23912, 14 pages, 2007.

[43] J. Tierny, J.-P. Vandeborre, and M. Daoudi, “Invariant high
level reeb graphs of 3D polygonal meshes,” in Proceedings
of the 2rd International Symposium on 3D Data Processing,
Visualization, and Transmission (3DPVT ’06), pp. 105-112,
Chapel Hill, NC, USA, June 2007.

17



	1. Introduction
	1.1. Motivations
	1.2. Contributions

	2. Pose Estimation
	3.Multiview Object Description
	4. Coarse-to-FineMatching
	4.1. Coarse Pruning
	4.2. Fine Matching by Dynamic Programming

	5. Experiments
	5.1. Databases
	5.2. Evaluation Criteria
	5.3. Performance and Discussion
	5.4. Benchmarking and Comparison

	6. Conclusion
	Acknowledgment
	Endnotes
	References

