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The chroma noise effect seriously reduces the quality of digital images and videos, especially if they are acquired in low-light
conditions. This paper describes the DCT-CNR (Discrete Cosine Transform-Chroma Noise Reduction), an efficient chroma noise
reduction algorithm based on soft-thresholding. It reduces the contribution of the DCT coefficients having highest probability
to be corrupted by noise and preserves the ones corresponding to the details of the image. Experiments show that the proposed
method achieves good results with low computational and hardware resources requirements.

1. Introduction

Noise is one of the most critical problems in digital images,
especially in low-light conditions. The relative amount of
“chroma” and “luminance” noise varies depending on the
exposure settings and on the camera model. In particular,
low-light no-flash photography suffers from severe noise
problems. A complete elimination of luminance noise can
be unnatural and the full chroma noise removal can
introduce false colors; so the denoising algorithms should
vary properly the filtering strength, depending on the input
local characteristics.

In literature there are several techniques for chroma
noise reduction. Some of them make use of optical filters
installed in the digital cameras to avoid aliasing [1-3].
Other approaches manage the high frequencies only and are
ineffective against low-frequency chroma noise.

Another common and simple way to address the prob-
lem consists of converting the input image to luminance-
chrominance space, blurring the chroma planes and trans-
forming the image back to the original color domain [4].
The main weakness of this technique is the inability to
discern between noise and genuine color details; so, when the
blurring becomes strong, color bleeding along edges can be

introduced. Moreover, large blurring kernels are needed to
remove low-frequencies chroma blobs. Another fast solution
consists of applying standard greyscale image algorithms to
each color plane of the input image independently, but the
risk of artefacts or false colors introduction is very high
because the correlation among color channels is ignored [5].

The solution proposed by Kodak [6] promises to over-
come the limitation of the methods described above. The
basic idea behind the algorithm is to identify the edges of the
input image and to use variable shaped blur kernels to reduce
the noise. This strategy allows managing low-frequencies
blobs and avoiding color bleeding. It can be summarized in
four steps. The input image is firstly converted to the CIELAB
[7] color space. An edge map is then built convolving four
5 x 5 truncated pyramid filters [8] with luminance and
chrominance channels and summing the results to obtain a
single edge map. Then four filters capture high frequencies
corresponding to horizontal, vertical, and diagonals edges.
The chrominance channels are smoothed to remove noise.
For each pixel of the image, the corresponding edge map
value is taken as reference. Then the algorithm moves in
each of the eight preferred directions (North, North-East,
East, South-East, South, South-West, West, North-West),
one pixel at a time, comparing the edge map values with



the reference value. If the difference between the current
and the reference values is lower than a threshold, the
current pixel is added to the smoothing neighbourhood
region and the process continues; otherwise the growth of
the region along the current direction is stopped. When the
blur kernel shape is computed, the chrominance values are
replaced with the average of the neighbouring pixels falling
in the kernel. The threshold can be fixed by the user or
computed adaptively in run-time, for example, by calculating
the standard deviation of the edges map values in a flat
region of the image. The final step consists of converting the
resulting image back to the original color space.

Another classic and well-known approach consists of
removing noise by considering a proper domain transform
(Figure 1). The basic idea is to perform a soft or hard
thresholding [9] on the wavelet [10] or on Discrete Cosine
Transform (DCT) coefficients [11]. The wavelet transform
decomposes the signal into low-frequencies and high-
frequencies subbands. Since most of the image information
is concentrated in a few coefficients, the high-frequencies
subbands are processed with hard- or soft-thresholding
operations. Several strategies have been proposed to solve the
critical problem of threshold selection [12—14] and one more
approach based on fuzzy logic is presented in this paper. A
recent alternative technique is the bilateral filter [15]. The
bilateral filter takes a weighted sum of the pixels in a local
neighbourhood; the weights depend on both the spatial and
the intensity distances and are tuned to preserve edges and
reduce noise. Mathematically, for every pixel x, the output of
the bilateral filter is calculated as follows:

1
I(x) = . z e—H,‘v—tz/aje—II(,‘V)—I(x)IZ/a,zI(y), (1)
yeN(x)

where 04 and o, are parameters controlling the fall-off of the
weights, respectively, in spatial and intensity domains, N(x)
is a spatial neighbourhood of x, and C is the normalization
constant defined as follows:

C= Z e—Hy—xnz/aje—u(y)_z(xw/a,zl(y)_ 2)
y€eN(x)

The multiresolution bilateral filtering and the wavelet thresh-
old are then combined to provide a new and effective chroma
noise reduction framework in [16], where an empirical study
of optimal bilateral filter parameters selection is provided.

Chroma noise reduction has application in astrophotog-
raphy too. PixInsight [17] is an advanced image process-
ing platform produced by the Spanish company Pleiades
Astrophoto. It is a modular application for chroma noise
reduction based on two principal algorithms: the SGBNR
(Selective Gaussian Blur Noise Reduction) and the SCNR
(Subtractive Chromatic Noise Reduction). The first one is
an efficient method to reduce the noise in the medium and
large-dimensional scales, while the second one is a technique
developed to remove noise in the green channel of coloured
deep-sky astrophotos.

The SGBNR is designed to smooth image areas where
there are few or no details, but preserving small structures
and contrast. In order to achieve this goal it uses a lowpass
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filter with a strength that depends on edge features of the
image. The filtering intensity is driven by the filter size,
the “Amount” parameter, which fixes the percentage of
the original pixel value to be preserved, and the “Edges
Protection Threshold”, which evaluates the “edgeness” degree
of each pixel (also depending on the luminance level) and
modulates the filter strength consequently.

If S is the SGBNR-processed pixel value corresponding to
an original pixel value f and a is the “Amount” parameter,
then the resulting pixel value g is given by

g=a-S+(1—-a)-f, (3)

where pixel values are in the normalized [0, 1] interval.

During low-pass filtering, each pixel is assigned to a
neighborhood of surrounding pixels. Edge protection works
by first estimating a significant brightness level for the
neighborhood. Then it compares the central pixel with
each neighbor and computes a weighted difference. When
a neighbor pixel, whose difference with the central pixel
exceeds the corresponding edges protection threshold (either
for bright or dark sides, depending on the sign of the
difference), is found, then a corrective function is applied to
the neighbor pixel in order to give it more opportunities to
survive after the low-pass filtering. This allows to preserve
small-scale image features and contrast. Note that too high
value of the threshold can allow excessive low-pass filtering,
whilst too low value of the threshold can generate artifacts.
The SGBNR can also be applied recursively. In this case the
threshold parameters are less critical and the edge protection
mechanism is more efficient.

The SCNR process has been designed mainly to remove
green noisy pixels. With the exception of some planetary
nebulae, there is no green object in the deep-sky: there
are no green stars and emission nebulae are deeply red,
whilst reflection nebulae are blue; so if there are green
pixels on a color balanced, deep-sky astrophoto, they will
be noise; consequently such kind of noise can be removed
easily and very efficiently. The SCNR process is defined by
two parameters: the “Protection Method” and “Amount”. In
order to avoid destroying correct green data, four protection
methods have been implemented. They perform a weighted
average on the new green value depending on the red
and blue values. The parameter “Amount” controls the
contribution of the original green value.

The main drawback of the SCNR is that it can introduce
a magenta cast to the sky background, which must be
controlled by a careful dosage of the Amount parameter.
PixInsight contains also the “ATrousWaveletTransform”, a
rich tool able to reduce the high-frequencies chroma noise
using the wavelet decomposition. It exploits median and
erosion/dilation morphological filters for specific noise
reduction tasks, such as impulsive noise removal.

The panorama of consumer solutions available as plug-
in or as standalone application includes also Noise Ninja [18]
and Dfine [19]. Noise Ninja is a powerful software produced
by the PictureCode LLC that removes chroma noise with
an algorithm in the wavelet domain. It is a good trade-off
between noise reduction and details preservation. The main
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FIGURE 1: Soft-thresholding coring function.

feature is the ability to limit the introduction of edge blurring
and color bleeding, which are defects not properly managed
by conventional wavelets.

Dfine is made for both amateurs and experts. The
automatic process consists of two steps: to measure the
noise and to remove the noise. The application allows the
full control of the noise reduction process, too. The entity
of the noise can be measured manually depending on the
features of the image under processing, by selecting a region
of the image affected by noise and then by filtering only a
specific color range or a specific object. The default noise
reduction method is named “Control Points” and it allows
the user to select different parts of the image and to tune
the filter strength. The statistics collected on the selected
data are used to perform the noise reduction on the whole
image. The Control Points method allows the user also to
manage separately the chroma and contrast noise. Moreover,
the so-built noise profile can be saved and applied for
further executions. The “Color Range” method is designed
to preserve specific colors. It is also possible to apply the
algorithm only to specific objects, for example, on the skin,
or processing the background of the image only.

All the algorithms discussed above require interac-
tion with the user. This paper presents the DCT-CNR
(Discrete Cosine Transform-Chroma Noise Reduction), an
efficient chroma noise reduction algorithm based on soft-
thresholding on DCT data and designed to be integrated in
the Image Generation Pipeline (IGP) [20], which allows any
image system to yield the final color image starting from
sensor data. Each step of the chain affects the noise level
in the image; so reducing the noise during the generation
process is a crucial step to improve the output quality. The
DCT-CNR allows to limit chroma noise locally without using
interaction and it can be easily embedded in JPEG encoders,
which usually is the final step of the IGP, with negligible
computational overload.

The rest of the paper is organized as follows: Section 2
briefly describes the problem of the noise reduction in the
DCT domain; Section 3 presents the DCT-CNR in details;
Section 4 discusses experimental results and comparative
tests; the last section contains conclusion and final remarks.

2. Noise Reduction and DCT

The (white) noise affects all the DCT coefficients and it
implies not only a degradation of the image but also a
reduction of the efficiency of the encoding process performed
both in still image and in video sequences. The number of
DCT zero-coefficients decreases due to noise; so the run-
length coding used in JPEG [21] and MPEG [22] standards
suffers a loss in terms of compression rate.

A widely used technique for noise reduction consists
of adjusting each frequency component of the noisy sig-
nal accordingly with a function properly defined, usually
called coring function [11]. The basic idea is that low-
energy DCT coefficients bring small information and are
highly influenced by noise. On the other hand, high-
energy DCT coefficients carry high information and are
slightly influenced by noise. Thus, the coefficients with large
amplitudes can be considered reliable and they should be
preserved; on the contrary, coefficients with small amplitude
are considered not reliable and their contribution should be
reduced or discarded.

The following coring function (Figure 1), known as soft-
threshold, formalizes the concept:

, sign(Z(i)) - (1Z()| = T), if |Z(G)] > T,
Y(i) = (4)

0, otherwise,

where Z(i) is one of the DCT coefficients of the noisy signal;
Y (i) is the noise-reduced DCT coefficient; T is the coring
threshold.

3. Chroma Noise Reduction in DCT Domain

The proposed algorithm, named DCT-CNR (Discrete Cosine
Transform-Chroma Noise Reduction), consists of performing
a soft-threshold to the chrominance components of the
image preserving the luminance and the DC coefficients of
each DCT 8 x 8 chrominance block of the image to be coded.

Any image device contains an IGP [20], which trans-
forms the sensor data in the final RGB image. Each step of
the pipeline affects the output noise level, which depends
on many factors, including sensor type, pixel dimensions,
temperature, exposure time, and ISO speed. An effective
noise reduction strategy should be distributed (limiting the
noise introduction or amplification in each block of the
chain). The DCT-CNR has been developed to be easily
integrated into the JPEG encoder, which is placed at the
end of the pipeline to perform the compression, providing
chroma noise reduction without resources overload.

The crucial step of the algorithm is the coring threshold
definition. It should be big enough to reduce the noise and
small enough to preserve the details. Moreover, it should be
different for each block to take into account the information
content, avoiding texture or detailed regions destruction and
performing a strong noise reduction in the flat areas, where
the chroma noise is more visible. A fixed threshold definition
may not be a good solution because it could not manage
differently the details in regions with different features.



An appropriate threshold definition has to exploit local
measures able to provide a reliable color noise characteriza-
tion. Moreover, each 8 X 8 block of DCT coefficients must
be classified. To achieve such results the threshold has been
defined using the following measures.

(i) “Robustness” to noise: a statistical analysis of a large
set of images affected by color noise showed that
some AC coefficients are more sensitive to noise
than others. A constant weight has been assigned to
each AC coefficient in dependence on its position
in the block, in order to preserve the most robust
coefficients (which carry suitable information) and
discard the ones that, with high probability, are
corrupted by noise.

(ii) “Edgeness” of the block: if a block contains an
edge or a detail, its information content should
be maintained untouched, whilst a homogeneous
block should be strongly corrected. In this paper an
edgeness measure has been used. It is basically a
fuzzy measure describing the probability that a block
contains an edge.

An adaptive threshold, varying for each DCT block, is
defined combining robustness and edgeness, as described in
the following subsections.

3.1. Block Classification: Coefficients Robustness to Noise.
Battiato et al. [23, 24] proposed a method that combines
a theoretical/statistical approach with the Human Visual
System response function to optimizes the JPEG quan-
tization tables for specific classes of images and specific
viewing conditions [25]. The optimal parameters for tables’
modification are learned, after an extensive training phase,
for three classes: document, landscape, and portrait. Such
methodology has been employed to process two set of images
of the same scene. First, the images have been acquired at
low-light conditions, in order to collect a sufficient noise
statistics; then the ideal luminance conditions have been
used to acquire the corresponding “clean” images. Analyzing
the quantization coefficients modified by the algorithm, the
robustness of each DCT AC value has been estimated. The
table of the coefficients weights is shown in Figure 2. As
visible, the higher the weight is, the more robust is the
coefficient (the DC value is not modified) and the higher is
its probability to remain unchanged.

3.2. Block Classification: Edgeness. Generally speaking, we
can assume that, in the chroma components of an image, two
adjacent DCT blocks belong to a monochromatic region if
they have a similar DC value and only few AC coefficients are
not zero. Instead, blocks with different DC values and many
nonzero AC coefficients correspond to zones with color
transitions. Since the noise affects all the DCT values, the
basic problem is to extract each block’s features to correctly
classify it. A single value varying in the range [0, 1] and
describing the degree of edgeness of a block is computed in
four steps:
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F1GUre 2: DCT coefficients “robustness” weights.

(1) energy estimation along directions,
(2) energy cross-analysis,
(3) fuzzy estimation of the block activity,

(4) edgeness computation.

Coudoux et al. in [26] use a block classification based
on AC energies of DCT coefficients. In particular, the DCT
block coefficients are divided into four classes: low activity,
vertical, horizontal, and diagonal. Such strategy has been
implemented to perform the first step. The directional
indexes max H, max V, and max D described in Figure 3 are
computed.

The “energy cross-analysis” is needed to check if a
preferred direction exists in the block under examination.
The following values are computed:

H—max(maXH maxH)
a max V’ maxD /)’
max V' maxV
V= , R 5
ax(maxH maxD) (5)
D—max(maXD maxD)
B maxH maxV /)’

Three fuzzy sets are then defined to describe the edgeness of
the block:

1, if (dir = 2),
w(dir) =40, if (dir< 1), (6)
dir — 1, otherwise,

where dir € {H, D, V}.

w(H), w(D), and w(V) represent the degree of member-
ship to the fuzzy sets describing the horizontal, diagonal and
vertical edgeness, respectively (Figure 4).

Given the “direction vectors”:

DIR = [w(H), w(V), w(D)], (7)

the final step consists of computing the edgeness as follows:

ay+ap

Edgeness = ) (8)
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ABLE 1: DCT-CNR computational complexity. O Median (DIR)
Operations per pixel QO Max (DIR)

DIV 0.047
SUM 1.023
MULT 0.141
SHIFT 0.008
COMP 0.836
where
a; = max(DIR) — min(DIR),
)

a, = max(DIR) — median(DIR).

a; and a, estimate the distance among the edgeness mea-
sures, which are indicator of the presence of a master
direction in the block under examination.

The edgeness value is used to drive the noise reduction
intensity, which depends on the threshold computation
defined in the following subsection. Several cases could
happen.

(a) Very HIGH values of edgeness: both a; and a;
have values close to 1. This means that a dominant

(c)

FIGURE 5: Edgeness computation: some possible case. (a) Very high
edgeness; (b-c) very low edgness.

direction exists and the block contains an edge, and
so it has to be preserved (Figure 5(a)).

(b) Very LOW values of edgeness (close to zero): one has
the following.

(i) Both a; and a, are low, but the values in DIR are
high. In this case all the directions are strong,
so the block has probably fine textures or noise
fluctuations, and a strong filtering is required.
In other words, most of its coefficients have to
be reduced or discarded.

(ii) a; and a, are low and the DIR values are
low. The block has very low activity (Figures
5(b) and 5(c)), so it belongs probably to a
homogeneous region, and a strong filtering can
be performed.
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FIGURE 7: Set of clean images used as references for PSNR computation.
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FiGure 8: Performances of the DCT-CNR in dependence of noise amount.

(c) Average value of edgeness: two directions are greater
than the third one, and so a sort of media filtering is
needed.

3.3. Threshold Definition. For each 8 x 8 DCT block, the
threshold is given by

th = [(1 — Robustness(AC(i, j)) - Edgeness) - max Dir] - k,
(10)

where

(i) i,j € [1,...,8] are the indexes of the table containing
the robustness weights (Figure 2);

(ii) maxDir is the maximum of the vertical, horizontal
and diagonal AC coefficients (Figure 6);

(iii) k € PR+ drives the filtering strength. Usually it varies
in the range [0, 1].

The threshold computation is the key step of the algorithm.
The higher the threshold is, the bigger is the number of DCT
coefficients whose contribution is reduced or discarded. The
real parameter k allows to increase or to reduce the threshold
which drives the filter strength.

3.4. Complexity. The computational cost of the algorithm
has been estimated considering the operations per pixel
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TaBLE 2: PSNR performances of DCT-CNR.

PSNR (dB)

Noise amount o=7 o=10 o =30

Image Noisy Clean Noisy Clean Noisy Clean
Lena 30.81 30.53 29.97 29.88 28.83 28.98
Baboon 26.45 26.24 26.11 26.00 25.71 25.73
Fruits 31.81 31.86 30.56 30.86 29.12 29.64
Girl 32.71 32.93 31.39 31.82 29.57 30.23
Ship 34.99 35.50 33.15 33.96 31.03 32.00
Cat 30.78 30.94 29.78 30.18 28.65 29.23
Dogs 36.16 36.96 34.10 35.11 31.67 32.92
Flowers 32.02 32.30 30.91 31.40 29.67 30.35
Sea 29.89 29.98 28.76 28.98 27.66 27.95
Parrot 35.21 35.50 33.11 33.86 31.09 32.09
Average 32.08 32.27 30.78 31.21 29.30 29.91

FIGURE 9: An example of DCT-CNR output. The 200% enlarged
details show the effect of the algorithm (the input is in the left
image, the output is in the right image). In both the squares the
homogeneous region have been cleaned, but a slight blocking effect
is introduced along strong edges.

needed to process 4:2:0 subsampled images. The DCT
complexity is not included in the count, and so the major
cost of the algorithm is limited to the threshold computation
defined in (1). Table 1 summarizes the results in terms of

operations per pixel. The computational cost is obtained
dividing the number of operations required by the size of
the 4:2:0 subsampled DCT block. Note that the complexity
is very low: less than one expensive operation per pixel
(division and multiplication) has to be performed.

4. Experiments

Several tests have been done to evaluate the performances
of the DCT-CNR. The results are described in the following
subsections. The objective metric Peak Signal-to-Noise Ratio
(PSNR) has been used to estimate the effectiveness of the
algorithm as discussed in Section 4.1. Section 4.2 explains
the algorithm effects on the JPEG compression. Section 4.3
presents comparative tests with other color noise reduction
techniques.

4.1. DCT-CNR Performances Evaluation Using PSNR. In
order to proof the effectiveness of the DCT-CNR, chroma
noise has been added to a set of ten “clean” images and
the Peak Signal-to-Noise Ratio (PSNR) has been computed
before and after the application of the algorithm. The
cleaned input images (shown in Figure7) are used as
references for PSNR computation. Since chroma noise affects
predominantly the low frequencies, it has been generated
with Photoshop Gaussian noise tool and performing a low-
pass filtering in order to spread the blobs. A set of images
affected by “synthetic” chroma noise has been obtained by
varying the amount of input Gaussian noise. Then the DCT-
CNR has been applied and the PSNR of the input and the
output images have been compared. Table 2 summarizes
the results obtained as the noise amount grows. The most
appreciable results are achieved with added noise with 0 =
30. In such case the improvement on average is of 0.61 dB.
For lower noise amount (¢ = 7) the PSNR increase is lower
(about 0.2 dB on the average). “Lena” and “Baboon” images
suffer of a reduction of the measured quality in the cases of
noise with ¢ = 7 and o = 10, due to the slight blocking effect



EURASIP Journal on Image and Video Processing

f =100

f=90

f=70

F1GURE 10: This example shows a critical case. The images are 200% zoomed. On the left there are the images obtained by applying the JPEG
encoder and by disabling the chroma denoiser; on the right are show the outputs of the JPEG with the chroma noise reduction enabled. As
visible, some blocking artefacts are introduced, but they are progressively masked at lower bit rate.

introduced by the DCT coefficients manipulation. The PSNR
in all the other images is increased.

Figure 8 shows the results obtained on the “Fruits”
image. The quality improvement of the output is slight in the
case of added noise with ¢ = 7 (just 0.05 PSNR dB), but it
grows with the additional noise (the gain achieves the 0.52 dB
of PSNR in the case of added noise with ¢ = 30). However
the color noise reduction is visually perceivable in any case.

4.2. DCT-CNR: Pro and Cons. In order to evaluate the effect
of the DCT-CNR on the compression step, it has been
integrated into the open source cjpeg encoder [27]. The
reference image has been generated coding the input with the
DCT-CNR disabled. Figure 9 shows an image of the Macbeth
chart acquired in low-light conditions. The 200% enlarged
details show the pro and cons of the algorithm: in the upper
left highlighted square, the homogeneous regions have been
cleaned preserving the strong edges. In the lower left detail,
a blocking effect is visible. In such critical case the 8 x 8
DCT block analysis provided a different classification among
adjacent blocks due to the adaptive threshold computation.
Note that the image has been encoded at the maximum

quality factor; so there are no quantization errors added
by the JPEG encoder. However, the blocking effect, which
is also a well-known drawback of the JPEG algorithm,
is progressively masked increasing the compression rate.
Figure 10 shows one more example. At lower compression
quality (denoted by f in the figure), the blocking effect
introduced by the compression makes the artifacts less
perceivable due to the chroma noise reduction algorithm.
Figure 11 proofs the efficiency of the DCT-CNR on
homogeneous regions. The highlighted detail shows the
appreciable reduction of the color noise in the image.

4.3. DCT-CNR: Comparative Testing. The DCT-CNR have
been compared with two other techniques. The first one is
based on blurring the a and b channels in CIELAB domain
through a median or Gaussian blurring [4]. The results
obtained by applying the Gaussian filter to the chroma
channels after color transform from RGB to CIELAB domain
has been analyzed in terms of PSNR and visual quality
of the output images used in the experiments described
in Section 4.1. In the following discussion this method is
referred as Chroma Blurring (CB). The second technique is
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FIGURE 11: An example of the performances of the DCT-CNR with an indoor and low-light image. The detail on the left highlights the
chroma noise affecting the input; the corresponding image on the right shows the result of the proposed algorithm.

TaBLE 3: PSNR results of DCT-CNR, Chroma Blurring, and Dfine algorithms.

PSNR (dB)

Noise amount o=7 o =10 o =30

Image DCT CNR CB Dfine DCT CNR CB Dfine DCT CNR CB Dfine
Lena 30.53 30.49 29.76 29.88 29.91 29.85 28.98 29.05 29.28
Baboon 26.24 26.25 25.46 26.00 26.03 25.05 25.73 25.76 24.98
Fruits 31.86 31.61 31.58 30.86 30.62 30.88 29.64 29.42 29.85
Girl 32.93 31.98 32.87 31.82 31.66 32.16 30.23 29.87 30.80
Ship 35.50 35.45 35.44 33.96 34.12 34.66 32.00 32.25 33.68
Cat 30.94 30.94 29.75 30.18 30.18 30.02 29.23 29.24 28.16
Dogs 36.96 36.89 36.96 35.11 34.97 36.48 32.92 33.21 35.25
Flowers 32.30 32.08 32.04 31.40 31.20 31.81 30.35 30.14 30.87
Sea 29.98 30.04 29.90 28.98 29.06 29.07 27.95 28.04 28.08
Parrot 35.50 35.32 35.73 33.86 33.61 34.84 32.09 31.72 33.44

Average 32.27 32.11 31.95 31.21 31.14 31.48 29.91 29.87 30.44
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FIGURE 12: Algorithms comparison (Baboon image). Note that DCT-CNR and CB better preserve the input image textures, whilst the Dfine

destroys too many details.

the Nokia’s Dfine Photoshop Plugin [19]. As discussed in
Section 1 such approach is semiautomatic: it estimates the
chroma noise amount by computing statistics on homo-
geneous areas of the image in different luminance values.
Additional regions could be selected by the user that manages
the noise reduction process through a set of parameters.
Table 1 shows the PSNR results of the three algorithms. The
performances vary with the amount of input noise. In the
case of added noise with ¢ = 7, the DCT-CNR has the best
results on the average, but the PSNR variations with the CB
and Dfine are small. The Dfine performances slowly decline
with the noise increase from ¢ = 7 to ¢ = 30 and the
average loss is of about 1.5 dB, whilst the CB degradation is
about 2.2 dB and the DCT-CNR loss is about 2.4 dB. Such

data show that the Dfine performances improve at high noise
levels. But the PSNR is not always linked to the visual quality
of the output. A strong filtering able to destroy the noise also
provides details loss with related quality degradation. It is the
case of the Dfine and the CB (Table 3).

The problem is evident in the image with large textured
regions, as “Baboon” (Figure 12). In this example the differ-
ent PSNR values correspond to the different image qualities.
Even if the Dfine allows to reduce an appreciable amount of
noise, the strong filtering yields a contrast decrease in the
output. CB and DCT-CNR allow preserving the details at the
cost of a less evident noise reduction. Figure 13 summarizes
the results obtained processing the “Parrot” image. The Dfine
achieves the best results in terms of PSNR, but the visual
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FIGurg 13: Comparison among DCT-CNR, CB, and Dfine in the Parrot image. The best results in terms of PSNR are achieved by the Dfine,
but most of the details in the image are lost and the image appears too flat.

FIGURE 14: The enlarged detail shows the case of the Ship image with added noise with ¢=10. Even if the highest PSNR is achieved using the
Dfine (left), the quality of the output of CB (center) and DCT-CNR (right) is better because the texture in the rocks is better preserved.
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analysis reveals the lost of noticeable details and the output
appears too flat. Figure 14 shows an objective result. The
200% enlarged detail of the Ship image shows that the Dfine
is too aggressive and it destroys the textured region at all,
whilst the CB and the DCT-CNR outputs achieve a higher
quality, even if their PSNR is lower.

But a fair comparison among the algorithms must take
into account their complexity and the specific application
they have been developed to. The DCT-CNR is fully
automatic and it has been developed to be implemented
as additional feature of a JPEG encoder with negligible
additional hardware and computational resources. The main
constraint driving the algorithm design was to reduce the
computational and memory costs. Most of the chroma noise
reduction algorithms, Dfine and CB included, have been
developed for postprocessing. Their application into an IGP
implies adding to the chain a block dedicated to chroma
noise reduction, with consequently increase of resources
requirement.

5. Conclusion

A simple and efficient algorithm for chroma noise reduction,
called DCT-CNR, has been presented. It operates in the
DCT data domain, managing the chromatic components
only. The DCT-CNR has a very low complexity in terms
of computational costs and it also requires few hardware
resources because it could be easily integrated in the JPEG
compression block of an IGP of a digital still camera improv-
ing the final image quality without additional complexity.
It is based on a DCT block classification and it is able to
preserve the zones of the image containing details or edges
by applying a stronger filtering on the flat regions.
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