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An efficient method that estimates the depth map of a 3D-scene using the motion information of the H.264-encoded 2D-video
is presented. The motion information of the video-frames captured via a single camera is either directly used or modified to
approximate the displacement (disparity) that exists between the right and left images when the scene is captured by stereoscopic
cameras. Then, depth is estimated based on its inverse relation with disparity. The low-complexity of this method and its
compatibility with future broadcasting networks allow its real-time implementation at the receiver; thus 3D-signal is constructed at
no additional burden to the network. Performance evaluations show that this method outperforms the other existing H.264-based
technique by up to 1.98 dB PSNR, providing more realistic depth information of the scene. Moreover subjective comparisons of
the results, obtained by viewers watching the generated stereo video sequences on a 3D-display system, confirm the superiority of

our method.

1. Introduction

Three-dimensional television (3D TV) generates a com-
pelling sense of physical real space for the viewers by allowing
on-screen scenes to emerge and penetrate into the viewers’
space. Viewers thus feel that they are part of the scene they
are watching. It is predicted that by commercialization of 3D
TV applications, another revolution will take place in TV’s
history (the last one being the introduction of digital video
broadcasting).

The history of 3D TV can be traced back to 1920s, when
the first experimental 3D TV set-up was built [1]. Since then,
several attempts have been made to introduce this technology
into the market. Despite the immense keenness towards 3D,
the great expectations of viewers, content providers, and
distributors have not yet been fulfilled. The main drawbacks
were the discomfort of the viewers (headaches, eyestrain) due
to the poor quality content, the low-tech display systems, and
the high costs involved in the production and distribution of
3D content.

The successful introduction of 3D TV to the consumer
market relies not only on technological advances but also

on the availability of a wide variety of 3D content. Thus
the production of 3D-format videos is important. Equally
important is the ability to convert existing 2D material to
3D format. This allows the existing popular movies and
documentaries to be watched on 3D screens. Converting 2D
content to 3D video streams is possible if the depth informa-
tion is estimated from the original 2D video sequence. Using
the depth information, 3D video content in the stereoscopic
format (two temporally synchronized video streams, one for
the right and another for the left eye) can be rendered from
the 2D video stream, via a process known as depth image
based rendering (DIBR) [2].

Depth map estimation techniques generally fall into one
of the following categories: manual, semiautomatic, and
automatic. For the manual methods, an operator would
manually draw the outlines of objects that are associated
with an artistically chosen depth value. As expected, these
methods are extremely time consuming and expensive. For
this reason, semiautomatic and automatic techniques are
preferred for the depth map estimation. These techniques
are designed based on the human visual depth perception
mechanism. There are several factors (referred as monocular



depth cues) such as light and shade, relative size, motion
parallax, interposition (partial occlusion), textural gradient,
and geometric perspective, which help the human visual
system perceive the relative distance of objects within a real
scene. In fact, depth map estimation techniques try to use
these monocular depth cues and imitate the human visual
system when estimating the distance between objects to
generate binocular parallax (disparity) for the viewer.

A machine learning approach for estimating the depth
map for 2D video sequences is proposed in [3]. Although
the results of this approach are promising, it requires an
operator to input the local depth information of some
selected frames. Extraction of depth from blur has also been
explored by researchers [4]. The problem in this case is that
depth is not the only cause of the blur in a picture. Other
reasons include motion, climate conditions, and fuzziness
of objects within a scene. The estimation of depth based
on the edge information has also been studied [5, 6].
Another group of researchers has utilized the motion/edge-
corrected color-segmentation via a K-means algorithm to
estimate the depth map [7]. This algorithm does not provide
solutions when the camera is moving or when the objects
have complicated motion. Also, since supervised image
segmentation is implemented, when the number of objects
within the scene is higher than a prespecified number, the
algorithm cannot recognize the silhouette of all objects and
estimate their relative distance from the camera. The study in
[8] applies an unsupervised image segmentation algorithm
to separate the objects. Then to decide on the depth value
of each object, the proposed algorithm uses the assumption
that the objects on the top part of the image are further from
the viewer and the ones at the bottom part of image are
closer. This assumption, however, is not valid for all video
sequences.

There is a relationship between the distance of moving
objects from the camera and their registered motion, which
has been utilized in previous studies for motion estimation
[9] and also for depth map approximation [10-12]. For
objects traveling with the same speed, but different distance
from a still camera, this relationship implies that the camera
registers larger displacements (in pixel) for the closer objects
to the camera. This approach is based on the principle
known as the Pulfrich effect [13, 14]. The Pulfrich effect is
a psychophysical phenomenon wherein lateral motion of an
object in the field of view is interpreted by the visual cortex as
having a depth component, due to a relative difference in the
signal timings between two eyes. To utilize this principle, the
study in [10] uses a modified time difference method (MTD)
to detect the horizontal motion of objects and determine
the image-presentation time-delay for synthesizing a stereo
pair. The MTD method does not work for images containing
objects with complicated motion.

The study in [11] uses color segmentation and the KLT
(Kanade-Lucas-Tomasi) feature tracker to estimate motion
information. Then, the depth map is approximated based
on the estimated motion information. In this approach,
factors such as camera movement, scene complexity, and the
magnitude of the estimated motion are used for converting
the motion information of each frame into depth map.
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The facts that this method is not based on existing video
coding standards and it involves a relatively complex motion
estimation extraction process do not allow its cost-effective
real-time implementation at the decoder side. In [12],
motion estimation is based on the H.264 standard but uses
fixed (rather than variable) block-size matching technique.
This study assumes that the motion of every object is directly
proportional to its distance from the camera; thus the depth
map is approximated as a constant factor of the estimated
motion. Unfortunately, this is only true for a relatively small
part of real life footage (when the camera is panning across
a stationary scene, or a still camera captures a scene with
moving objects). Otherwise, when the objects and the cam-
era are both moving, there would be ambiguity in the depth
estimation based on the motion information. The other issue
in [12] is related to the accuracy of H.264-estimated motion
vectors when they are used to derive the objects’ motion.
The principle idea behind the motion estimation process
in H.264/AVC and other standards relies on maximizing
the compression performance and optimizing rate distortion
and not on obtaining accurate estimates of the objects’
displacement in the scene. Thus, not all motion vectors can
be used to accurately estimate the depth unless they reflect
the objects’ displacement.

In this paper, we present an effective scheme that finds
an approximate depth map of the scene using the motion
information of the H.264 encoded video which is derived
(at quarter pixel accuracy) via matching blocks with different
sizes, where the sizes dynamically adjust to the video content.
This proposal is an improved version of algorithm in [12]
from two aspects: (i) generalizing previous assumption that
any motion is directly proportional to distance from camera,
and (ii) improving accuracy from motion vectors in H.264.

To resolve the issue regarding the accuracy of motion
vectors, we propose an algorithm that examines the motion
vectors and (whenever necessary) properly modifies their
values, to ensure that the values of the motion vectors reflect
the displacement of objects. When a moving camera captures
a scene with moving objects, our proposed scheme provides
a solution to estimate the motion of moving objects and
uses this information to find the scene’s depth map [15].
Since the motion estimation procedure is based on the block-
matching technique, there will be depth ambiguity between
the foreground and the background at the object boundaries.
To solve this problem, our algorithm first adopts a color-
texture segmentation algorithm known as JSEG to properly
distinguish between the different object-regions [16]. Then it
reevaluates and modifies the estimated values of the motion
vectors of the object-boundary pixels. To ensure that the final
estimated depth map is smooth and free of artifacts, our
algorithm assumes that each segmented object has a unique
depth value and accordingly corrects the estimated motion
of the object-body pixels using the object-boundary pixels.
This enhances the visual quality of 3D video that is rendered
based on the estimated depth map.

After refining the motion vectors in different stages, the
absolute horizontal values of the refined motion vectors are
used to approximate initial depth values. To enhance the
visual depth perception, we propose to increase the contrast
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FIGURE 1: Stereo geometry for two identical parallel cameras.

among the initial approximated depth values by using a
nonlinear scaling model.

Finally, a DIBR technique is used to render the 3D videos
based on the approximated depth map and 2D video. The
3D videos created using this scheme are of the stereoscopic
format and are supposed to be watched on 3D TVs in the
sense of stereoscopic TV. Note in this paper that by “3D TV,
we mean 3D TV in the sense of stereoscopic TV.

The rest of this paper is organized as follows. Section 2
provides background information on the principal idea
behind this study. Section 3 elaborates on our 2D-to-3D
conversion scheme. Section4 presents the performance
evaluation of our scheme and discusses the results in detail.
Section 5 presents the conclusions.

2. Background

In 3D video capturing using stereo camera set-up, the
displacement between the left and right camera images is
directly related to the distance of objects from the camera.
This displacement, which is known as disparity [17], creates
an intrinsic feeling of depth for viewers watching stereo
videos. Basically when two slightly different images are
projected on the left and right eye retinas (each from a
slightly different viewpoint), the brain fuses these images
such that the perceived image represents everything included
in two images, but in a three-dimensional format.

Figure 1 illustrates how the disparity is related to depth
for two identical parallel cameras. P is a scene point whereas
pr and pg are its images captured by the left (Cr) and right
(Cr) cameras, respectively.

For this case, assuming that the images are rectified, the
disparity, d (= xg — x1), is expressed as in [17]:
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where xp and x;, are the coordinates of p; and pg, respec-
tively. Z is the distance of point P from the cameras (depth),
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FIGURE 2: Relationship between disparity and depth for sample
parallel cameras (. = 0.1 mand f = 0.05m).

is the focal length of the cameras. In a practical stereoscopic
camera set-up, f. is usually equal to the average distance
between the human eyes and f is chosen based on the region
of the interest within the scene.

The relationship in (1) shows that the depth of a point
P (i.e., Z) can be easily obtained if the disparity (xg — x1.)
is known. Figure 2 illustrates the relationship between depth
and disparity. Znesr and Zg,, in Figure 2 are, respectively,
referred to the nearest and furthest distances within the scene
where still 3D perception is possible for the human visual
system. In other words, only objects within [Z,ear and Zg,]
are perceived as 3D, while the ones outside this range are
viewed as 2D objects. In practical 3D TV applications, Zg,,
does not exceed 5 meters, since the depth of objects beyond
this distance from the camera is not visually perceptible on
a 3D-display. Also Figure 2 shows that the 3D visual depth
perception of the scene will not change if the viewer moves
along horizontal coordinate of the scene.

For our case where the 2D scene is captured by only one
camera, we shall obtain the depth Z of a moving point P
using the registered displacement that is resulted from its
motion. In other words, if the left and right side frames
shown in Figure 1 are aligned in the time domain to form
two consecutive frames, then pr and p; would be two
consecutive images of moving point P, and xg — x; would
be the displacement between them. Since the time delay
between two consecutive frames is small (as in the studies
[10-12]), we assume that the displacement due to motion in
the 2D case is equivalent to the disparity in a stereoscopic
set-up. Then Z, the depth of point P, can be calculated using
(1), if xg — xz is measured. The displacement (xg — xr)
between two consecutive frames could be obtained using
information embedded in the motion vectors of the encoded
video, assuming that ft. is constant. The following section
provides detailed information on this process.

3. Proposed Scheme

To find the displacement of objects within a scene captured
by single camera, we use the motion vector estimation
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FIGURE 3: 2D video frame (a) and magnitude of estimated motion vectors (b).

procedure of the H.264 standard. Since H.264 motion vector
estimation is block-based (i.e., it measures the displacement
of a block and not a point or object), we propose correction
steps that reevaluate and refine the estimated motion vectors
in order to calculate the motion vectors for the objects within
the scene. Then the resulting object motion vectors are trans-
formed to depth information. The following subsections
elaborate on different steps of our proposed scheme.

3.1. Motion Vector Estimation. H.264/AVC-based motion
vectors (MVs) are estimated using variable block sizes of 16 x
16,16x8,8x16,8x8,8x4,4x8, and 4 x4 pixels, at quarter-
pixel matching accuracy [18]. These two H.264 features
(variable block size and quarter-pixel matching accuracy)
have been shown to yield motion vector precision that is
far superior to those of any previous standards [18]. An
additional advantage of using the H.264/AVC standard is
the fact that H.264 has been chosen as the platform for 3D
TV applications [19]. This means that the proposed scheme
will be compatible with future 3D networks and players
and also could be implemented at the receiver-end where
the motion vectors are readily available at no additional
computational cost. The existing approach in [12] forces the
encoder to use only 4 X 4 block sizes and this will significantly
decrease the compression performance and will increase the
computational complexity of the overall system.

The use of small block sizes results in many wrong
matches due to ambiguities and noise; however it preserves
object shapes with relatively fine details. In contrast, the use
of large block sizes cuts down on the wrong matches but
may blur the objects boundaries [17]. For the above reasons,
in our study, a variable block size is used to deal with the
basic trade-off involved in selecting the best window size.
Figure 3(a) shows a frame from the “Orbi” sequence and
Figure 3(b) illustrates the magnitude of estimated motion
vectors for this frame (the brighter the region, the higher is
the magnitude and vice versa).

In H.264, depending on the application and content,
some frames are selected to be compressed as I-frames.
For compressing I-frames only intraprediction is utilized
and no motion estimation is involved. Thus, to retrieve the
motion information, we utilize the estimated motion vectors
of the P-frame just after each I-frame. Since the MVs for

the P-frame are estimated in relation to the I-frame (as
reference), a simple solution for finding MVs of the I-frame
is to invert the MVs of the P-frame. This will give us the
displacement of some overlapped blocks of the I-frame. To
estimate the approximated MVs of each separate block of
the I-frame, the MVs of overlapped blocks are weighted and
averaged [20]. Since the use of [-frames in compression is not
as common as P-frames and B-frames, an alternative solution
is to estimate the MVs of an I-frame at the decoder side by
implementing block matching process between the decoded
I-frame and the previously decoded frame.

There also exist blocks within a P-frame or B-frame
which are compressed based on intraprediction. In this
case we estimate the block’s motion as the median of its
neighbouring-block motion vectors. There is no provision
for the intraprediction case in [12].

Multiple reference frames may be used in H.264 motion
estimation for enhancing the compression performance. In
this case, the estimated motion vectors do not represent the
displacement of objects over two consecutive frames any
more. To resolve this problem, we assume that the motion
vector length is related to the reference image distance [21].
Therefore, to find the motion information between two
consecutive frames, the H.264 estimated motion vectors
should be rescaled proportionally, according to the distance
between the used reference image and the last encoded image
in the video sequence as suggested in [21].

For B-frames, forward or backward reference frames are
used for predicting the blocks. To ensure that the estimated
motion vectors represent the displacement of objects over
consecutive frames, the motion vectors of each block should
refer to the same region? in forward or backward reference
frames. If that is not the case, the block’s motion is estimated
as the median of its neighbouring-block motion vectors.

3.2. Camera Motion Correction. A potential problem that
arises in motion-based depth estimation algorithms is when
both the objects and the camera are in motion, that is, neither
of them is stationary. In this case, an object that is estimated
to have captured larger motion than others may not be closer
to the camera, since the camera may have moved in the
opposite direction from the object. To resolve this issue, the
camera motion needs to be approximated and the motion
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FIGURE 4: (a) Residue frame, and (b) a color-texture segmented frame of “Orbi” sequence.

information registered by the camera should be corrected
accordingly.

In the camera panning case, the registered motion
information for the stationary areas of the scene would
be equivalent to the camera motion. These areas are often
flagged as “Skip Mode” by the H.264/AVC motion estimation
process. The “Skip Mode” is used for 16 x 16 blocks, where
the motion characteristics of the block can be effectively
predicted from the motion of its neighboring blocks, and the
quantized transform coefficients of the block are all zeros.
When a block is skipped, the transformed coefficients and
the motion data are not transmitted, since the motion of the
block is equivalent to the median of the motion vectors of the
surrounding blocks. This median is known as the predicted
motion vector (MV,) [18].

As long as there is no camera motion, the predicted
motion vector of a skipped block is zero. However, when
camera panning is present, all the predicted motion vectors
of the skipped blocks become equal to a unique nonzero
value (which represents the camera motion). Since most
of the skipped blocks over the entire frame are blocks
that contain background areas, our proposed scheme uses
the predicted motion vector (MV,) with the maximum
occurrence to estimate the value of the camera motion.
In order to find this vector for each frame, we compute
the histogram of the MV s of all the skipped blocks. The
MV, that corresponds to the maximum of the histogram is
recognized as the camera (panning) motion [15]. The net
motion of each object is extracted by subtracting the camera
motion from the MVs of all blocks within the frame. This
procedure cannot be accommodated in [12] since only 4 X 4
blocks are used and the size of the skip-mode blocks is 16 x
16. The following code summarizes the above-mentioned
procedure:

for each frame:

(1) find skipped-mode blocks with MV,~=
0.

(2) calculate the histogram of the MV,s
of blocks found in 1.

(3) assign the MV, with maximum
occurrence to camera panning motion.

(4) subtract camera panning motion from
all the MVs within the frame.

Besides panning, camera zoom-in/out can also cause
depth ambiguity. To address this issue, we check the tendency
of MVs in the four corners of the frame to detect zoom in/out
[11]. Then the estimated MVs are scaled accordingly. Note
that zoom-in/out may cause reverse depth or eye fatigue if
not corrected in the depth estimation process.

3.3. Correction of False Displacement Estimates. The criterion
used in video compression standards is to optimize the rate
distortion and maximize the compression performance, that
is, to transmit the least number of bits. The motion vectors
obtained by H.264/AVC coding are thus derived so as to
minimize the compression rate and optimize rate distortion
and not maximize the accuracy of the estimated motion
of the objects within a scene. Thus, the matching blocks
determined by a motion vector do not necessarily relate
to the same part of an object in the scene. In such a case
the estimated motion vectors do not accurately convey the
displacement of an object; that is, they do not point to the
corresponding left and right areas as defined by the disparity
in a stereoscopic scenario (Figure 1).

To check if a motion vector points to the same object
(or part of it) in two consecutive frames, our proposed
scheme compares the motion of the block with that of its
surrounding blocks. To this end, we use two predefined
thresholds, Th; and Th,. Threshold Th; is defined as the
difference between the MV of the block and the median
MV of the neighboring blocks (MV,,) of the same object.
Our experiments have shown that if this difference is larger
than 1, then either the MV is not the actual displacement
or there is a moving edge within the block. Threshold Th,,
which is the measure of the variance of the residue block
resulting from subtracting the present and previous frame,
is then used to help us determine if the block includes the
boundary pixels of a moving object. In the residual block,
the edges of moving objects appear thicker and with higher
density compared to static objects and the background (see
Figure 4(a)). Camera motion compensation is taken into
account when constructing the “residue frame.” Note that
the “residue frame” is obtained by direct subtraction of two
consecutive frames. In the case of panning, since we know



the global motion vector, simple shifting will compensate for
camera motion. In the case of zooming, the frame zoomed
out more (i.e., shows objects further away) is cropped and
scaled to match the other frame.

We have found through performance evaluations that
if the variance (i.e., Thy) is less than 1000, then there is a
very high probability that there is no moving edge within
the block and therefore the MV needs to be replaced by
the median MV the instant neighboring blocks. Otherwise
(i.e., there is a moving edge within the block), the H.264-
estimated MV is correct.

Assume that the MV of a certain block is presently being
estimated. To find the adjacent blocks that belong to the same
object as this block, we use an unsupervised segmentation
algorithm called JSEG [16]. This algorithm consists of color
quantization and spatial segmentation as two separate steps.
As a result, each frame is segmented into different regions
based on the color and texture of the region, without any
presumption about the number of objects (see Figure 4(b)).
For detailed information on this algorithm see [16].

The following code summarizes the above procedure for
displacement correction:

for each frame:

(1) calculate MVdiff = abs(MV — MV,) for
each block.

(2) compute residue frame as:

resFrame = abs(lumacurrent frame —
lumaprevious frame)

(3) calculate the variance of each block
within residue frame (resVAR).

(4) implement JSEG algorithm to segment
the frame based on color and texture and
distinguish different object regions.

(5) for the blocks which MVdiff > Th; &
resVar < Th;, new MVs are calculated
as of median MV of their instant
neighboring blocks belong to the same
segmented object.

3.4. Displacement Correction of Object-Border Pixels. In this
study, we use the absolute value of the horizontal component
of the motion vectors (i.e., abs(MV,)) for estimating the
depth map. This is because, as explained earlier, the disparity,
d (= xg — x1), which is the horizontal displacement between
the two camera images, is related to the depth Z (as shown in
Figure 1).

Since all the pixels within each matching block are
assumed to have the same amount of motion, the abs(MV,)
is assigned to each pixel within the block. This assumption,
however, is not valid for blocks that include both stationary
background pixels and moving object pixels. For such blocks,
a different procedure should be used; otherwise the resulting
object borders in the constructed 3D video may appear
blurred, and the small details or even entire objects may be
removed.
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FiGure 5: Initial depth map after correcting the displacement of
object-border pixels.

A computationally expensive solution is to perform
pixel-based motion vector estimation for the object-border
pixels. We propose an alternative solution which detects
the border blocks with nonzero motion vectors and, then,
classifies each pixel within each of these blocks as a
background pixel or an object pixel. This process is based
on the results of the JSEG algorithm (Section 3.3). The
estimated abs(MV,) is assigned to the object pixels, while
the median of the abs(MV,) of the surrounding nonobject
pixels is assigned to the background pixels. The background
pixels inside the block who have been assigned with updated
abs(MV,) might be utilized in the motion correction process.
Note that if the block includes multiple segmented regions,
the MV of the pixels within each segmented region is
calculated as the median of MVs of pixels within the
neighboring blocks which belong to the similar segmented
region.

JSEG algorithm is robust, but as it can be observed
from Figure 4(b), oversegmentation may occur because
of the varying illumination shades [16]. For this reason,
pixel classification of border blocks is further verified by
calculating the average luma intensity of the corresponding
block in the “residue frame” and then comparing it with
the luma intensity of each pixel within the block. The luma
intensity of the background pixels in the “residue frame”
should be less than the calculated average. This is because
the intensity of the still-background pixels in the “residue
frame” is close to zero, while the intensity level of moving
region edges is high.

In our method, to accurately estimate the motion
vectors of the background pixels located in the central part
of the blocks, we start the motion correction procedure
with those background pixels that have higher number
of neighbouring pixels with correct motion-values. This
ensures that the median value is mainly based on correct
motion values. After each iteration, the abs(MV,) values are
updated and this process continues until all motion values
are corrected. After pixel-based motion vector estimation,
the absolute horizontal value of the motion vector of each
pixel is used to approximate its initial depth value. Figure 5
shows the initial depth map after the above-mentioned
procedure.
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FIGURE 6: Motion information after correcting the displacement of
object-body pixels.

The following code summarizes object-border correction
process:

for each object:
(1) find blocks which MVy~= 0.

(2) label pixels within the blocks found
in 1 as background-pixel or object-pixel
based on the object-segmentation results
by JSEG.

(3) find corresponding blocks of the
ones found in 1 in the resFrame.

(4) compute average luma intensity of
blocks found in 3 (resAVR)

(5) compare the luma intensity
background pixels within each
block found in 3 (in the resFrame)
with resAVR; if it was higher than
that, change the pixel’s label to
object-pixel.

(6) label the corresponding pixels
within the blocks found in 1 (in the
current frame) according to the ones in
5.

(7) for background pixels within

the blocks found in 1 recalculate
motion as of median of abs(MVy) of
instant-neighboring background-pixels
by iteration.

(8) for the object pixels assign the
estimated abs(MV,) of the block.

3.5. Displacement Correction of Object-Body Pixels. For the
proposed method we assume that all the pixels of a
segmented object have one depth value. Since the depth of
each pixel is related to its abs(MV,), a common abs(MVy)
should be assigned to all the pixels within each object region.
A simple solution is to calculate the average abs(MV,) of
all the pixels within each segmented object and assign that
to all the pixels. The problem with this approach is that the
H.264 motion estimation process assigns zero-value motion

vector or skip-mode flag to the flat areas of segmented objects
(usually middle part). Thus, averaging all the abs(MVy)
will not give an accurate estimate of the motion of the
segmented object. Among the pixels of a segmented object,
the border/edge pixels are the ones whose motion better
represents the motion of the entire object. Thus in our
proposed scheme, the average of the abs(MV,) value of
border pixels is assigned to all the pixels of the segmented
object and is used in estimating the object’s depth value. This
may cause some detailed depth information of the central
part of objects to be lost, but it will not hamper the quality of
the final 3D video, since the depth information of the object
boundaries is preserved [5, 6]. Figure 6 shows the resulting
motion information after correcting the displacement using
the above-described process. In our study, the thickness of
the object-boundary was set to four pixels at most, with the
motion of a segmented object estimated as the average of the
motion values of these pixels.

3.6. Perceptual Depth Enhancement. The visual depth per-
ception on 3D display systems is limited to the objects within
a certain range from the camera. This means that only the
objects within a certain distance from camera can be seen
on a 3D display system, while distant objects have no depth
perception. Considering this limitation, to enhance visual
depth perception of videos to be watched on 3D display,
we apply a nonlinear scaling model to the abs(MV,) values,
which increases the disparity of closer objects and decreases
that of distant objects. Since there is a nonlinear relation
between the visual depth perception (disparity) and the
distance of an object as shown in Figure 2, the proposed
scaling factors are defined such that the further the object
is, the smaller the scaling factor. This will increase the
contrast among depth values and enhance the visual depth
perception.

Our model assumes that there are N uniformly spaced
depth layers within a scene, that is, within [Zpear and Zg,]. A
set of scaling factors is defined as

N i _ Zfar) Zfar
S(l) a N-1 (1 Znear " Znear

where § is the scaling factor and i ranges from layer 0, which
corresponds to Znear (here i = 0, S(0) = Zg/Znear) to layer
N — 1 which corresponds to Zg,, (i =N -1, S(N —1) = 1).
To generate the enhanced depth map, the abs(MVy) values
are sorted and categorized to N uniformly spaced layers. If
abs(MV,) belongs to the ith category, its value is scaled as
follows:

0<i<N-1, (2

D = abs(MV,)S(i), (3)

where D is the enhanced disparity value and S(i) is the scaling
factor at the ith depth layer. Figure 7 shows the estimated
depth information after perceptual depth enhancement.
Using the approximated depth map and the 2D video
sequence, the stereoscopic pair images are rendered via the
depth-image-based rendering algorithm proposed in [2].
This algorithm includes a depth map smoothing process
(using asymmetric Gaussian filter) to resolve the occlusion



Figure 7: Estimated depth map after perceptual depth enhance-
ment.

problem of depth image-based rendering. In our implemen-
tation, only the right-eye stream is rendered (based on the
estimated depth map and the 2D video sequence), and the
original 2D video is used as the left-eye stream [5, 6].

4. Performance Evaluation and Discussion

The performance of our proposed depth map estimation
method is tested using the 2D video sequences “Interview,”
“Orbi,” “Breakdancers,” and “Ballet.” “Interview” and “Orbi”
have been captured by a 3D-depth range camera (Zcam)
[22], which measures the depth map of the scene while
recording the 2D video. Thus, the true depth-measures of the
scene are available in the form of sequences which consist
of luma information only. The 2D streams of “Interview”
and “Orbi” are 10-seconds and 5-seconds long, respectively,
with 720 x 576 pixels resolution and 4:2:2 YUV format
[23]. “Breakdancers” and “Ballet” are two multiview video
test sequences (8 views), with 1024 x 768 pixels resolution,
provided by Microsoft Research (MSR) group for research
on multiview video coding (MVC) standard [24]. MSR also
has provided the approximated depth map of the scene using
stereo matching. For our experiment, the forth view video
sequence of each test set and its corresponding depth map
was used.

In our experiments, the motion between two consecutive
frames is estimated using the H.264 encoder (JM 12.2
version). We assume that the broadcasted video is of
acceptable visual quality. For this reason, in our experiments
the quantization parameter was set to QP = 30, which yields
PSNR values above 37 dB for the tested sequences. The GOP
size was set to 25 frames, and the frame structure was IBBP
with 5 reference frames. We compare our method with the
one presented in [12]. Since the recorded depth per each
pixel is an integer number between 0 and 255, (where 255
represent the shortest distance from the camera), we assume
that there are 256 depth layers for the perceptual depth
enhancement step. For the same reason, the estimated depth
maps of both methods are normalized as integer numbers
between 0 and 255.

Figure 8 shows a snap-shot of the original 2D stream, the
original depth map, and the estimated depth maps generated
by [12] and our approach. The experimental results have
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been posted online for further review [25]. We observe that
our approach yields more realistic depth estimates compared
to [12]. As it is illustrated in Figure 8, unlike [12], our
method can approximate the depth information of an entire
object even if only partial motion information of the object
is available. This is due to our object-body displacement
correction procedure. The success of this procedure, how-
ever, depends on the accuracy of the adopted color-texture
segmentation algorithm. As it has been reported, JSEG is
a robust segmentation algorithm but has some limitations
(over segmentation where variation of illumination shades
exists) [16]. Therefore, in order to further improve our depth
estimation technique in the future, more research is needed
on enhancing the segmentation procedure.

Comparing the results in Figure 8 shows that both tech-
niques like other motion-based depth estimation approaches
fail to estimate the depth maps of static objects (e.g., the
table in Figure 8(b)). According to the human visual system,
which integrates different depth cues to perceive the depth,
one can expect the integration of depth cues to provide
more sufficient means for depth map estimation techniques
[5, 6]. Improvement on retrieving depth information of
static objects may require integration of our approach with
other depth cues, such as sharpness, and it is recommended
path for future research.

The visual quality of the resulting 3D video streams
using our method and the one presented in [12] are
subjectively tested against the original depth map (for Orbi
& Interview) and the one acquired via stereo matching
by MSR (for Breakdancers & Ballet), based on the ITU-R
Recommendation BT.500-11 [26]. Eighteen people graded
the videos from 1 to 100 in terms of 3D visual perception
and visual picture quality in two separate experiment sets
(with a short rest period between sessions). The evaluation
is performed using the SeeReal, C, 3D display. For the 3D
visual perception part of the experiment, the viewers were
asked to score the videos based on the depth or volume that
objects appeared to have. For the visual picture quality part,
the viewers were asked to rank the videos based on picture
quality, which could be affected by visual noise, blur, or
various other distortions and picture instabilities (which may
cause visual discomfort for viewers). Higher picture quality
corresponded to higher scores.

Figure 9 illustrates the average scores of our subjective
test. The original stereoscopic video had the highest scores
in terms of visual picture quality and our method yielded
the highest scores in terms of 3D visual perception. These
tests show that the approximated depth map obtained by our
method provides the best 3D visual perception and the visual
picture quality of the results by our technique is higher than
that of the existing method.

Since our technique and the one suggested by [12]
are both capable of approximating the depth information
only for areas with moving objects, watching the resultant
stereoscopic video streams may create visual discomfort for
viewers. However the use of the object-body displacement
correction procedure in our method has been successful in
reducing this effect. This procedure reduces the artifacts and
results in a smooth depth map. Without it, the rendered
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FiGure 8: 2D video sequence (a, b, ¢, d), recorder depth map (e, f), depth map estimated by stereo matching (g, h) estimated depth map by

[12] (i, k, 1), and estimated depth map by our approach (m, n, o, p).

stereoscopic image would have the binocular parallax effect
only for parts of moving objects (for which the H.264-
based motion information is nonzero). In this case, some
part of an object is perceived in 3D format and the rest
in 2D, something that would increase the viewer’s visual
discomfort.

The visual 3D perception improvement obtained by
our method is due to two factors: the perceptual depth
enhancement step, and the prominence of the depth for
moving-objects. Figure 10 demonstrates this effect clearly. As
it can be observed, the fingers of the moving hand in image
(b), rendered using the depth estimated by our technique, are
longer than the ones based on the real depth map (a) and the
estimated depth map by [12] (c). This effect increases the 3D

perception when the rendered videos are watched on a 3D
display.

For the quantitative analysis, we chose to compare
the quality of the stereoscopic videos synthesized using
our technique with those of the technique proposed in
[12] and the stereoscopic videos rendered from the actual
(recorded) depth map. Note that since the ground truth
depth maps of Breakdancers and Ballet are not available, the
results for these two streams did not go under quantitative
analysis.

Figure 11 illustrates the five different PSNR comparisons
that we chose for our analysis. In one scenario we compare
the right view generated by our method and the one by
[12] with the right view rendered based on recorded depth
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FIGURE 9: Average subjective test scores of 3D visual perception (a) and picture quality (b) for test streams. The error bars denote the 95%

confidence intervals.
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map (Figures 11(b) and 11(d)). These comparisons show
how close the average quality of the estimated 3D views
is to the actual ones. In this case, the higher PSNR values
indicate better visual quality. Table 1 shows the average PSNR
values obtained for this case. We observe that our method
outperforms the proposed method in [12] by 1.81dB to
1.98 dB.

In addition to the above, we also compare the generated
right views with the actual 2D video stream (Figures 11(a),
11(c), and 11(e)). These comparisons show how effectively
the two different techniques generate depth perception.
In this case, since there is no depth present in the 2D

(c)

FiGure 10: Rendered right image based on real depth map (a), estimated depth map by our approach (b), and estimated depth map by [12]

video stream, large PSNR values indicate failure in adding
significant depth perception to the stream. Table 2 shows the
average PSNR values obtained for this case. As expected, we
observe that the actual 3D views have the least similarity
with the 2D video (no depth perception). More importantly,
our method yields a PSNR value that is very similar to the
actual 3D views while the PSNR value obtained by the [12]
is higher than the original recorded depth. This conveys the
fact that the depth map estimated by [12] creates the least 3D
perception.

The percentages of the badly matched pixels for the
estimated depth yielded by our scheme and by [12] were
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FiGure 11: Quantitative analysis of the results.

TaBLE 1: Average PSNR comparison case Figures 11(b) and 11(d).

Average PSNR (dB) Interview  Orbi
3D views based on our method versus actual 36.45 31.91
3D views
3D views be}sed on existing method versus 34.47 30.1
actual 3D views
computed as
1
B= 2 (ID(6y) =Dr(xy)[ >Th), ()

()

where N is the number of all pixels within the depth map, D
is the estimated depth map, D, is the recorded depth map,
and Th is the error tolerance. In our experiment we use Th =
1 [27]. The results show that for our method the percentage
of the correctly matched pixels is 53% (Interview) and 48%
(Orbi). For [12], the percentage of correctly matched pixels is
34% (Interview) and 27% (Orbi). The comparison confirms
that our method outperforms the existing method by 19% to
21%.

5. Conclusion

We present a new and efficient method that approximates
the depth map of a 2D video sequence using H.264/AVC
estimated motion information. This method exploits the

TaBLE 2: Average PSNR comparison case Figures 11(a), 11(c), and

11(e).

Average PSNR (dB) Interview  Orbi
Right view rendered based on.the actual 3297 2785
depth map versus actual 2D view

Right view rendered based on our estimated 3238 27,89
depth map versus actual 2D view

Right view rendered based on the estimated

depth map the by existing method versus 36.99 33.34

actual 2D view

existing relationship between the motion of objects and their
distance from the camera to estimate the depth map of the
scene. Our proposed method revises the motion information
based on the characteristics of the 3D visual perception.
In this study, the 2D horizontal motion is approximated
as the displacement existing between the right and left
images when the scene is captured by a stereoscopic camera.
For cases involving a moving camera and for possible
problems regarding the displacement of object borders
and false displacement estimates, our proposed method
provides appropriate solutions. To improve the quality and
smoothness of the estimated depth, our algorithm utilizes
color-texture segmentation. Our proposed approach can
be implemented in real-time at the receiver-end, offering
3D experience without increasing transmission bandwidth
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requirements. Performance evaluations have shown that our
approach outperforms the other existing H.264 motion-
based depth map estimation technique by up to 1.98dB
PSNR, that is, providing more realistic depth information of
the scene.

The visual quality of our constructed 3D stream was also
tested subjectively, with viewers watching the generated 3D
streams on a stereoscopic display. The subjective tests showed
that the 3D streams created based on our approach provided
viewers with superior 3D experience. Moreover, in terms of
visual quality, our approach outperforms the other existing
H.264-based depth estimation method.
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Endnotes

1. Part of this work was presented in the 15th International
MultiMedia Modeling Conference.

2. Image segmentation is required in such cases (see
Section 3.3).
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